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The five diit'erent elastic constants of all the hexagonal 4d transition metals {Y,Zr, Tc, and Ru)
and the 5d transition metals Re and Os have been calculated by means of first-principles electronic-
structure calculations using the full-potential linear mufBn-tin orbital method. The calculated data
agree with the experimental values within 30+0. We demonstrate, using experimental data, that
the hexagonal transition metals obey the Cauchy relations much better than the cubic ones. This is
due to the fact that the shape of the density of states for the hexagonal materials retains its form to
a larger extent, for all types of shears, than it does for the cubic metals. We introduce normalized
elastic constants C", =C';~./B, where B is the bulk modulus, which show a regular behavior for the
hexagonal transition metals, in contrast to the cubic transition metals, where large irregularities
are observed. These regular as well as irregular behaviors are well reproduced by the full-potential
calculations.

I. INTRODUCTION

Recently the elastic constants for a number of cubic
transition metals were calculated from first principles,
and good agreement between theory and experiment was
found. 4 For cubic materials, there are only three inde-
pendent elastic constants; this makes a theoretical treat-
ment considerably simpler than for a Bravais lattice with
a lower symmetry. For a hexagonal lattice there are five
independent elastic constants, usually referred to as Cii,
C] 2 C]3 C33 and C55. A theoretical treatment of the
elasticity of hexagonal systems is thus considerably more
involved than for cubic materials. The task of calculat-
ing the elastic constants of hexagonal systems becomes
even more difFicult when realizing that the strains needed
to calculate some of them give rise to a geometry with
very low symmetry. Since it is a very strenuous task to
calculate the total energy of a system with low symme-
try, a first-principles calculation of the elastic constants
of hexagonal materials is therefore a demanding prob-
lem. Possibly this is the reason why so far no theoretical
work on elastic constants of hexagonal systems based on
first-principle methods have been published.

Quite generally, a study of the elastic constants for
materials is well motivated by, for example, the under-
standing one thereby gains about the chemical bonds and
the cohesion of a material. It is of particular interest to
examine the validity of simple and popular concepts such
as central forces in describing the elastic behavior of ma-
terials. In order to treat the elastic properties of hexago-
nal metals, we will in the present work not rely upon any
assumptions about the nature of the interatomic forces.
Rather, the total energy of the system is calculated &om
first principles. In the present investigation we have fo-
cused our attention to the elastic constants of a selected

II. THEORY

The elastic constants C p p are defined by means of
a Taylor expansion of the total energy for the system,
E(V, n), with respect to a small strain n of the lattice
(V is the volume). The letters a, ti, c, and d refer to
Cartesian components. In the present work we consider
the hcp crystal structure, which is spanned by three vec-

tors ( ~, ——,', O), ( O, 1, O), and ( O, O, —: ). The
Bravais lattice vectors are normally written in a matrix
form, i.e.,

( Ws

K=
/ 0 1

0

0
0

The distortion of the lattice is expressed by multiplying
Eq. (1) with a symmetric (n „=nv ) distortion matrix
e, which is written as,

set of hexagonal transition metals, i.e., all hexagonal 4d
metals as well as the 5d metals Re and Os. Previous
work has shown that much of the chemical bonding in
these materials can be understood quantitatively from
simple models. For instance, the Friedel model explains
the parabolic trend of the equilibrium volume, bulk mod-
ulus, and the cohesive energy for the transition metals,
including the presently studied hcp materials. However,
as mentioned, a study of the individual elastic constants
of a material reveals much more information and a con-
siderably more complex and detailed picture is required
in order to explain the elastic behavior.

The rest of this paper is organized as follows. In Sec. II,
we describe the underlying theory for the elasticity of
hexagonal systems as well as the computational aspects
of our study. In Sec. III, we present our results. In
Sec. IV, we summarize our findings.
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The antisymmetric part of the matrix (n „= —o.„)
gives rise to pure rotations and can therefore be ne-
glected. As mentioned above, we express the energy of
the strained system by means of a Taylor expansion in
the distortion parameters,

E(V, ) = E(Vo0) + Vo ) b

1+
2

Cabcd o'abo'cd
l

~

a, b, c,d

The volume of the unstrained system is denoted Vo and
E(Vo, 0) is the corresponding total energy. In the equa-
tion above, we have introduced the parameter 7. b, which
is an element in the stress tensor, and C b g, which is an
adiabatic elastic constant. The Taylor series in Eq. (3)
is truncated after the third term and here we merely note
that there are of course higher-order terms, of which the
first involves the third. -order elastic constants. Since the
matrix in Eq. (2) is symmetric, it contains only six dif-
ferent parameters. It is often convenient to change to the
Voigt notation in order to reduce the number of indices.
The Voigt notation replaces xx by 1, yy by 2, zz by
3, xy (and yx) by 6, xz (and zx) by 5, and finally
yz (and zy) by 4. In this notation the elastic constant

is written as C,~ where the new indices i and j will
run over 1, 2, 3, 4, 5, and 6. It follows that we have a
double sum instead of a quadruple sum in Eq. (3). When
introducing the Voigt notation, one has to remember that
the n's are symmetric, n~g = ng~, and if o, g |) b«h o.'~g

and o.b are labeled with the same Voigt index. To ac-
count for this, we introduce the factor (;, which takes the
value 1 if the Voigt index is 1, 2, or 3 and the value 2 if
the Voigt number is 4, 5, or 6. The Taylor expansion of
the total energy can now be written,

E(V, n) = E(Vo, 0) + Vo [(&i + &2) o' + (Ci i + Ci2) ~ 1.

(6)

The second distortion matrix is written as

(1+~ 0 0
0 1 —o, 0
0 0

and this distortion increases the x axis and decreases the
y axis, with an equal amount. The z axis is kept con-
stant and the resulting symmetry of the strained object
is monoclinic. The energy, using Eq. (7) in Eq. (4), is
expressed as

E(Vo n) = E(Vo, 0) + Vo[(ri —r2)n + (Cii —Ci2)o. ].
(8)

From Eqs. (6) and (8) we extract (Cii+Ci2) and (Cii-
Ciz) and can thus calculate Cii and Ci2.

The third strain we have used is given by

0
0 0
1 0
0 1+a)

(9)

and it gives an expression for the energy in which only
one elastic constant, Css, enters. The strain in Eq. (9)
involves stretching the z axis whereas the other axes are
unchanged. Thus, this shear maintains the hexagonal
symmetry of the lattice. The energy for this shear can
be written as

E)V, oo) = E(Vo, O) + Vo (oooo+ oo
C„,b

2

this distortion can be obtained by putting the values of
the strain matrix [Eq. (5)] into Eq. (4), and we obtain

E(V, n) = E(Vo, 0) + Vo ) 7;n;(;
2

~

( i~ io iI

+—) C,,n, (n,.(, (4)

The fourth elastic constant, C55, is determined by means
of a deformation of the lattice, which produces an object
with low symmetry. The deformation is written as

In the present work we use a first-principles theory to cal-
culate E(V, n) for various strains of the system and use
the equation above to evaluate the elastic constants, C,~.
As already mentioned, there are five independent elastic
constants for a hexagonal material, called C]] ) C$2) C$3)
C33 and C55 . Since we have five indep endent constants,
we need five diferent strains to determine these. The
five distortions used in the present investigation are de-
scribed below. The erst distortion is written as

(1+n 0 0
0 1+a. 0
0 0

and it changes the size of the basal plane, while keeping
the z axis constant. The symmetry of the strained lattice
is therefore still hexagonal. The energy associated with

(
0
n

0
1
0

c
0

( ) = &(Vo 0)+ Vo(rs~+2Css~'). (12)

The strains in Eqs. (9) and (ll) give directly the C33 and
C55 elastic constants. We are left with one more elastic
constant, C~3. This elastic constant can be calculated by
observing that there is a useful relationship between cer-

and the resulting lattice has a triclinic symmetry. In this
particular case we need to take into account the previ-
ously mentioned factor (;=2, which according to Eq. (4)
will give us a factor of 4 in front of the elastic constant.
The energy can be written as
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tain elastic constants and the bulk modulus, B. Namely,
the latter can be written as a linear combination of four
elastic constants

2B = —(Cgg + Cg2 + 2Cg3 + Css/2).9

Equation (13) is obtained by inserting into Eq. (4) the
following strain matrix (assuming that the c/a ratio is
unchanged for a small lattice expansion)

4.0

2.0

2.0

1.0

Ru

I
I + I

l
I

I
I

I

/'1+n 0 0
0 1+a 0
0 0 1+n

(i4)
6.0

2.0

Ik

We obtain the following expression for the energy,

E(V, n) = E(Vp) 0) + Vp
~

(ry + 72 + 7s)n

+—(2Cgg + 2Cg2 + 4C$3 + 3s)n
1 2

2.0

1.0

I
2.0

1.0

,g2

I
I ~ I I

The bulk modulus is de6ned by -1.0 0.0 1.0

d2E 1 d2E
(g/2 9V /~2 (i6)

and Eq. (13) is obtained from Eqs. (15) and (16). In con-
nection to the calculation of the bulk modulus, we note
that in principal the c/a ratio will change as a function
of volume dilatation. However, we have performed test
calculations of the bulk modulus allowing for a modi6ca-
tion of the c/a ratio and found that the effect is indeed
very small.

Using the above mentioned strains, we have calcu-
lated the total energy self-consistently by means of a
first-principles method and evaluated the elastic con-
stants. This was done at the theoretical equilibrium
volume (see below). The present calculations were per-
formed in the same way as in our previous work; ' how-
ever, we have not constrained the volume to be constant
when distorting the lattice. We thus made use of a full-
potential linear-muffin-tin-orbital method in combina-
tion with the local density approximation. The density
and potential were expanded in spherical harmonic func-
tions inside muffin-tin spheres and in plane waves in the
interstitial region. We also adopted a so-called "double
basis" of muffin-tin orbitals, where two different tail
functions (Hankel or Neuman functions) with different
kinetic energy are attached to two different linear combi-
nations of the radial solution to the Schrodinger equation
P„and its first energy derivative P evaluated at an en-
ergy E . The Hamiltonian matrix was thus doubled in
size compared to calculations with a single basis. The in-
clusion of a double basis was necessitated by the fact that
a very good energy resolution is required and to achieve
this a well converged wave function is needed.

In order to improve on the convergence in sampling
the k space, we associated each eigenvalue with a small
Gaussian function of width 20 mRy. Moreover, we per-

FIG. 1. Total energy of Ru as function of the lattice distor-
tion parameter n, for the five difFerent strains defined in the
text. Prom the top panel to the bottom panel, the strains cor-
respond to the distortions given in Eq. (5), Eq. (7), Eq. (14),
Eq. (9), and Eq. (11), respectively.

formed specific tests of the convergence of the calculated
results as a function of the number of A: points. This will
be specifically addressed below. The A:-point sampling
was done with the special point method.

In Fig. 1 we plot as an example the energy, E(V, n)
versus strain, o, , for the different types of strains for Ru.
The total energy has been calculated for five different
distortions o.= —0.02, —0.01, 0.00, 0.01, and 0.02, for
everyone of the five different deformations of the lattice.
By means of polynomial fits, we extract the zero-, first-,
and second-order coefficients and from these we obtain
E(Vp, 0), w;, and C;~ in Eq. (1). We note here that the
polynomial fit to the points in Fig. 1 was truncated after
the third-order term. The third-order component of the
fit was always affecting the total energy with an amount
which is less than an order of magnitude compared with
the second-order (elastic constant) term.

III. RESULTS

A. Convergence test of the number of k points

Before describing the main results of our study, let us
first discuss in some detail one of the convergence tests
that we have made for this type of calculation. It is im-
portant to ensure that the total energy is converged in
terms of the expansion of the wave function, charge den-
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sity, potential, and so on. One of the more crucial aspects
of this is that one must have a good convergence in the
sampling of the Brillouin zone. Therefore, we have as
an explicit test of the k-space convergence computed the
C33 elastic constant as a function of increasingly dense
k-point sets. This was chosen to be done for Re. As can
be seen in Fig. 2, the C33 elastic constant is converged for

847 A: points in the full Brillouin zone. Therefore, for
all the other materials and for all other types of shear, we
choose to converge our total energy for 847 k points in the
full zone (although the irreducible part of the Brillouin
zone is of course different for different shears).

B. Calculated elastic constants

FIG. 2. The value of the calculated elastic constant C33 for
Re as function of the number of A: points in the full Brillouin
zone.

lus is consistently overestimated in our calculations with
10—20%. These findings are in agreement with previous
studies and these errors are quite common for theories
based on the local density approximation.

In Table II we display the main result of this study,
i.e., the elastic constants for the hexagonal 4d metals
and for Re and Os. Unfortunately, we have not been
able to find any experimental data for Os and Tc; there-
fore, in these two cases our calculations may serve as a
prediction. When a comparison is possible we note from
Table II that the agreement between theory and exper-
iment sometimes is very good and sometimes somewhat
less satisfactory. It is hard to distinguish general trends
in the deviations from experiment; for certain materials
a specific elastic constant is overestimated whereas for
other materials the same elastic constant may be under-
estimated. However certain trends are distinguishable,
for instance for the later transition metals (Ru and Re)
the theoretical values are all larger than found exper-
imentally and also for Y and Zr most of the theoreti-
cal data are larger than experiment. It is interesting to
note that, for all elements the calculated Ci3 and C33
values are larger than the experimental data. Typically
the deviations between theory and experiment range be-
tween —30 and +30%. The different elastic constants for
the diAerent materials vary between 0.1 Mbar to 8
Mbar, i.e. , they dier by almost a factor of 100, and it
is rewarding that our calculations reproduce this rather
wide span of data quite well. The presently calculated
elastic constants are of comparable quality, in terms of
reproducing experiment, as the previously reported cu-
bic elastic constants. Hence the present work together
with Refs. 1—4 gives a rather complete theoretical study
of the elasticity of the 4d and Sd transition metals, and
an overall rather satisfactory description of the experi-
mental data is obtained.

In Table I we list the calculated and experimental val-
ues of the equilibrium volume and the bulk modulus. The
agreement between theory and experiment is comparable
to previous studies and the results in Table I are in-
cluded for completeness. We have chosen to calculate the
elastic constants at the theoretical equilibrium volumes
listed in Table I. Notice that in agreement with earlier
studies, our calculations give a too low equilibrium vol-
ume for the earlier transition metals (with 5—10%) and
that the error is decreasing as one traverses a series. For
Os, we actually reach a situation where we overestimate
the volume with a small amount, 2%. The bulk modu-

C. Optimization of the axis ratio c/a

By use of Eq. (4), one can derive a criterion for when
the energy is minimized with respect to the diferent
shears, i.e., &

——0. A comparable analysis was also pre-
sented for a tetragonal system (Mosi2) by Alouani et al.
This leads to the following equation:

TABLE I. Bulk properties for the 4d metals Y, Zr, Tc, and Ru; and the 5d metals Re and Os.
Experimental data are taken from Ref. 14. Values in parentheses are estimates.

Element
Y
Zl
Tc
Ru
Re
Os

Experiment
Bulk modulus (Mbar)

0.366
0.833
(2.97)
3.208
3.72

(4.18)

Volume (A)
33.12
23.28
14.30
13.49
14.71
13.99

Theory
Bulk modulus (Mbar)

0.438
1.032
3.486
3.688
4.473
4.761

Volume (A)
30.51
22.19
13.89
13.24
14.63
14.25



ELASTIC CONSTANTS OF HEXAGONAL TRANSITION. . . 17 435

TABLE II. Elastic constants (in Mbar) for the 4d metals Y, Zr, Tc, and Ru; and for the 5d
metals Re and Os. Experimental data are taken from Ref. 15.

Element
Y theory
Y expt.

0.806
0.834

0.184
0.291

Ci3
0.271
0.190

C33
0.881
0.801

C55
0.311
0.269

Zr theory
Zr expt.

1.564
1.554

0.654
0.672

0.758
0.646

1.820
1.725

0.248
0.363

Tc theory
Tc expt.

6.117 2.187 2.075 6.450 1.966

Ru theory
Ru expt.

7.010
5.763

1.962
1.872

1.874
1.673

7.745
6.405

2.400
1.891

Re theory
Re expt.

8.373
6.344

2.933
2.66

2.168
2.02

8.946
7.011

2.225
1.691

Os theory
Os expt.

8.945 2.492 2.456 10.164 1.622

Using this expression we have found the values of o.~,
which minimizes the total energy. This method is of
course less accurate than to calculate the c/a ratio by
means of minimizing the total energy as a function of
this ratio. However, once the w, 's and C,~'s have been
calculated, it is an easy task to get a good estimate of
the c/a ratio by means of Eq. (17). Thus, we have cal-
culated theoretical values for the c/a ratio and we com-
pare with experimental data in Table III. Note that the
agreement is excellent, the difFerence between theory and
experiment is never larger than 1%. To illustrate this,
we plot in Fig. 3 the theoretical c/a ratio as a function
of the experimental c/a ratio, for Y, Zr, Tc, Ru, Re, and
Os. We observe that the worst agreement is found for
Y, where the calculated c/a ratio is 1.1% larger than the
experimental value. We also note that the theoretical
values are somet;imes larger and sometimes smaller than
the experimental data.

sume that the interatomic forces have a certain shape
and directionality. One of the more common approaches
is to assume that the atoms are connect;ed with springs
and that the resulting forces are only in the direction
of the nearest neighbors (central force model). In this
section we analyze our results and compare the exper-
imental elastic constants with what one expects from
a simple central force model. As is obvious from Ta-
ble II, the experimental as well as the theoretical elas-
tic constants vary a lot between the diferent elements.
In terms of central forces, this means that the values of
the spring constants vary substantially through the two
transition metal series. This conclusion is maybe not
too surprising since from the behavior of the bulk mod-
ulus, the equilibrium volume, and the cohesive energy,
one knows that this must be the case. However, a study

D. Analysis ef the results

Traditionally the elasticity of materials has very often
been studied theoretically by means of models which as-

TABLE III. c/a ratio for the 4d metals Y, Zr, Tc, and Ru;
and the 5d metals Re and Os. Experimental data are taken
from Ref. 14.

V

0

C

1.62—

1.60—

1.58—

Element
Y
Zr
Tc
Ru
Re
Os

Experiment
c/a

1.572
1.593
1.605
1.583
1.615
1.579

Theory
c/a

1.588
1.583
1.606
1.584
1.628
1.578

1.58 1.60
I

1.62

c/a ratio (experimental)

FIG. 3. The theoretical c/a ratio plotted as a function of
the experimental c/a ratio for Y, Zr, Tc, Ru, Re, and Os.
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of the bulk modulus, equilibrium volume, and cohesive
energy gives little information about the validity of con-
cepts such as central forces. Instead, an investigation
of the elastic constants gives considerably more informa-
tion about interatomic interactions. In this connection
we observe that Cauchy derived a number of relation-
ships, which hold if the atoms are interacting with cen-
tral forces only. For hexagonal materials, he showed that
for central forces the following relations hold; C]3—C55
and Cqq ——Css ——

2 (Cqq —Cq2). For cubic materials Cauchy
showed that Cq2 ——C44, if the atoms are interacting with
central forces. From Table II we observe that these re-
lations are fairly well fulfilled for the hexagonal transi-
tion metals. The Cauchy relation is better satisfied for
the hexagonal transition metals than it is for the cubic
(fcc and bcc) ones. In cubic materials one sometimes
finds a C44, which is four times smaller than C~2. In
Figs. 4(a) and 4(b), we show the Cauchy ratio (using
the experimental values), for the various hexagonal [in
Fig. 4(a), Cq2/Css and Cqs/Css] and cubic [in Fig. 4(b),
C„/C44] elements. In Figs. 4(a) and 4(b), we have listed
the elements according to the so-called standard order of
arrangement of the elements. ~s Notice from Fig. 4(a) that
the Cauchy ratio is close to one for most of the hexago-
nal transition metals, with some exceptions —for Co, Ti,
and Zr it is closer to two. The overall deviations &om
one much smaller than what one finds for certain cubic
materials where the Cauchy ratio quite often is 3 or 4
[see Fig. 4(b)].

In order to investigate this in more detail, we have in-
traduced a normalized elastic constant, C; -, by dividing
a specific elastic constant with the bulk modulus, i.e.,
C,'. = C;z/B. By introducing this quantity it becomes
easier to study trends, since by dividing by the bulk mod-
ulus one is normalizing the interatomic forces with an av-
erage restoring force of the system. In Figs. 5(a) and 5(b),
we show the experimental values of Czj for all hexago-
nal transition metals, including the hexagonal rare-earth
metal Gd. In these figures we also include our presently
calculated values. Note that the Czz and C33 renormal-
ized constants are scattered around 1.8 for all transition
metals, both experimentally and theoretically. In a sim-
ilar fashion, the normalized C&2, C&3, and C55 constants
are grouped around 0.6. It is interesting to note that
for an isotropic medium the following relations are valid;
Cg i —C$3 Ci2 —C$3—C55 In this case the Cauchy rela-
tion, Cq2 ——(Cqq —Cq2)/2, is valid and we calculate the
primed elastic constants to be, Cz& ——1.8 and C&2

——0.6.
Figures 5(a) and 5(b) thus suggest that the hexagonal
transition metals are quite isotropic. Among the transi-
tion metals this is a property that is quite exclusive for
the hexagonal metals, since for the fcc and bcc transition
metals this is not the case. We observe again, now based
on Figs. 5(a) and 5(b), that the Cauchy relation is fairly
well satisfied for most of the hexagonal transition metals.

In order to analyze the results in Figs. 5(a) and 5(b)
in more detail, we show in Fig. 6 the canonical d density
of states (DOS) for an hcp system. The d DOS is plot-
ted for the di6'erent strains used in the calculations of
the elastic constants described above [Eqs. (2)—(6)]. The
canonical d DOS is intimately connected to the linear

muKn-tin orbital band-structure method, especially in
the atomic sphere approximation (I MTO-ASA). s s The
canonical d bands are the eigenvalues of the d part of the
structure constant matrix, which represents the multi-
pole expansion of the basis (envelope) functions centered
around sites K g 0 in terms of basis functions centered
around R = 0. As a result of the theories behind the
I MTO-ASA method the structure constants are energy
and volume independent and the eigenvalues of a spe-
cific 1 subblock are therefore labeled canonical. Notice in
Fig. 6 that the d DOS maintains its general shape for all

(a)
C„/C,

0

Cg

2

Y Hf Gd Zr Ti Re Tc Os Ru Co
elements

I I I

TaNb V 'A/MoCr Ir Pt Rh Pd Fe Ni AuAgCu

element

FIG. 4. Illustration of the Cauchy relations for the hexag-
onal transition metals (a) and for the cubic transition metals
(b), using experimental data for the elastic constants.
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types of distortions. This is quite di6erent &om the anal-

and 2, where one observes a larger change in the DOS,
when distorting the lattice. As a result h
all the ia t e different types of shears (corresponding to certain
combinations of elastic constants) will give rather simi-

(a)

2.0—

2.5

1.5

0.5

2.5

2.5

1.5
D 0.5
lg

1.5
lO
Q)

0.5

o 25
1.5

CD

0.5—

C,

C,

CtJ

cj

C0
V

a5
V

~ ~

1.5—

1.0—

e c I 1'
~ c12'

c11'
c l 2'

2.5

1.5

0.5
-15.0 -5.0

Energy
5.0

I

15.0

FIG. 6. The ca
Full drawn

nonical density of states for various trious s rains.
u rawn line corresponds to an undistorted lattice dotted)

line corresponds to a —2/0 distortion, and dashed line corre-
sponds to a +270 distortion. Prom the top panel to the bot-
tom panel, the strains correspond to the distortion given in

Zl Re Tc Os Ru

Element

(b)

lar changes in the total energy (in agreement with the
total energy results given in Fig 1~ Th 1S 1s again ln
contrast to the cubic materials, which display a strong
anisotropy in this respect. ' In Fig. 7, we show for Ru
the self-consistently calculated DOS for the strains de-
scribed in Eqs. (2)—(6). Note that the shears correspond-

2.0—

40
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C»+

Ru

v5

oo 1.5
O

V
1.0—

C5

0

~ el%'
c33
c55'
c13'
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C33!2

0.5— 40
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Y Zr Re Tc Os Ru
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FIG. 5. Normalized elastic constants (see text)
, for selected hexagonal transition metals. Closed

see ex z,

symbols represent experimental data and open symbols rep-
resent theoretical d C'' al data. C~~ and C~3 are presented in (a) andI

C$3 C33 and Css are shown in (b) . The dashed lines corre-
spend to the values appropriate for an isotropic medium.

I I

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

Energy (Ry)

FIG. 7. T
Full drawn

e density of states for Ru for vario tvarious s rains.
rawn line corresponds to an undistorted lattice, dotted

line corresponds to a —2/0 distortion, and dashed line cor-
responds to a +2/0 distortion. From the top panel to the
bottom panel, the strains correspond to the distortion given
in Eq. (5), Eq. (7), Eq. (14), Eq. (9), and Eq. (11), respec-
tively. The energy is in Rydberg and the Fermi level E'& is at
zero energy.
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ing to Cii + Ciz, the bulk modulus, and Css/2 are not
volume conserving whereas the shears corresponding to
Cqq —Cq2 and C55 are almost volume conserving. As a
consequence, the bandwidth is almost unchanged in the
latter two cases whereas for the other shears it is not.
However, in agreement with Fig. 6, the general shape
of the DOS is not modified very much by the different
shears.

IV. CONCLUSIONS

To summerize, we have calculated the (five) elastic con-
stants for all 4d and selected 5d (Re and Os) hexagonal
transition metals. The agreement between theory and ex-
periment is relatively good, of the same accuracy as in our
previous study of the cubic transition metals. ' Hence,
this work together with the studies in Refs. 1 and 2, give
a rather complete theoretical picture of the elastic con-
stants of the transition metals. We have shown that the
hexagonal metals satisfy the Cauchy relation much bet-
ter than their cubic counterparts. Hence, one can expect
to describe the elasticity (and possibly lattice dynamics)
reasonably well by means of central forces in the hexag-
onal transition metals. This is shown to be connected to

the relative lack of change in the DOS when the lattice is
distorted, and we have used both self-consistent as well
as canonical bands to demonstrate this. We have also
introduced a new quantity, the normalized elastic con-
stant, by dividing a particular elastic constant with the
bulk modulus, (C,'. = C;s/B) T.he resulting normalized
elastic constants are remarkably constant for the various
elements, with the C&z and C&3 constants having values
close to 1.9 and the C&2, C&3, and C55 constants group-
ing around 0.6, i.e. , values appropriate for an isotropic
medium. The c/a ratios have also been calculated for
the hexagonal metals and the deviation from experiment
is found to never exceed 1%.
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