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Coulomb blockade at almost perfect transmission
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We study the equilibrium properties of a quantum dot connected to a bulk lead by a single-
mode quantum point contact. The ground-state energy and other thermodynamic characteristics
of the grain show periodic dependence on the gate voltage (Coulomb blockade). We consider the
case of almost perfect transmission, and show that the oscillations exist as long as the transmission
coefficient of the contact is less than unity. Near the points where the dot charge is half-integer, the
thermodynamic characteristics show a nonanalytic behavior identical to that of the two-channel spin-
— Kondo model. In particular, at any transmission coefficient the capacitance measured between
the gate and the lead shows periodic logarithmic singularities as a function of the gate voltage.

I. INTRODUCTION

The phenomenon of Coulomb blockade of tunneling
has recently attracted a lot of interest, both theoretical
and experimental. It can be observed, e.g. , by measur-
ing conductance of a system of two macroscopic leads
connected to a small metallic grain by tunnel junctions.
At low temperature, tunneling of an electron into the
grain leads to an increase of the electrostatic energy of
the system by finite amount Ec = e /2Co, where Co is
the grain capacitance. Thus, the tunneling conductance
becomes exponentially small, with the activation energy
Ec. One can then add a gate electrode in order to control
the electrostatic energy,

tunneling, 7 ~ 1.
In this paper, we study the Coulomb blockade in a

quantum dot connected by a controllable tunnel junc-
tion to a single electrode, Fig. 1(a). Conductance mea-
surements in such a system are not possible. However,
the Coulomb blockade shows up in the oscillations of the
equilibrium characteristics of the system, e.g. , its ground-
state energy E, or the average charge (Q) of the dot. Ex-
perimentally the capacitance C = 02E/BV2 between the
gate and the lead can be measured. 5

a)

(Q —eN)
Q

Here, Q is the grain charge; parameter N is proportional
to the gate voltage Vg The activation energy is now a
function of Vg. At the values of the gate voltage cor-
responding to N = n + 2 the energies of states with
charges en and e(n+ 1) are equal, and the activation en-
ergy vanishes. Therefore, one observes periodic peaks of
conductance as a function of the gate voltage.

Recently, the Coulomb blockade was observed in semi-
conductor heterostructures. Unlike metallic systems, in
a semiconductor device it is often possible to control the
barrier height by adjusting the voltage on additional gate
electrodes. In such experiments one can study the evo-
lution of the Coulomb blockade as the transmission coef-
ficient 7 of the tunnel barrier changes from 0 to 1. The
experiments ' indicate that the increase of the trans-
mission coeKcient leads to the suppression of Coulomb
blockade. At 7 1 instead of well-separated peaks,
weak periodic oscillations of conductance G(Vs) are ob-
served. Experiment indicates that the Coulomb block-
ade disappears at 7 = 1. On the other hand, in the
experiment the Coulomb blockade oscillations were ob-
served even when the conductance of the junction ex-
ceeded e2/7rh. To resolve this contradiction, one needs a
theory of the Coulomb blockade in the regime of strong

2D
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FIG. 1. (a) Schematic view of a quantum dot connected to
a bulk 2D electrode. The dot is formed by applying negative
voltage to the gates (shaded). Solid line shows the boundary
of the 2D electron gas (2DEG). Electrostatic conditions in the
dot are controlled by the gate voltage Vg. Voltage V applied
to the auxiliary gates controls the transmission coefficient 7
through the constriction. (b) Constriction between two 2D
regions. Inside the constriction the wave functions have 1D
form (2).
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Sec. V, we discuss the nonanalytic behavior of the ther-
modynamic characteristics of the system at N = n+ 2
using the analogy between the Coulomb blockade prob-
lem and the two-channel Kondo model. We argue that
the periodic logarithmic singularities in the capacitance
measured between the gate and the lead should be ob-
served at any value of the transmission coefBcient 7 & l.

XI. DNE-DIMENSIONAL MADEL

PIG. 2. The average charge Q of the dot as a function of di-
mensionless gate voltage N at difFerent values of transmission
coefBcient: 7 = 0 (solid line), 7 « 1 (dashed line), 1 —7 « 1
(dash-dotted line), and 7 = 1 (thin line).

Most of the theoretical work on Coulomb blockade is
devoted to the case of weak-tunneling, when the trans-
mission coefIicient of the tunnel barrier is small: 7 « 1.
At zero temperature, in the limit of very high barrier
the charge of the dot Q(N) is quantized in units of the
elementary charge e, except for the degeneracy points
N = n+ 2, where Q changes from ne to (n+1)e (solid line
in Fig. 2). However, if the small probability of tunneling
through the barrier is taken into account, the charge of
the dot is no longer a good quantum number. As a result
the plateaus in (Q(N)) are not horizontal, with the'slope
proportional to 7, Ref. 6. This phenomenon is due to the
quantum fluctuations of the dot charge caused by virtual
processes of electron tunneling between the grain and
the lead. Furthermore, the quantum fluctuations were
shown7 to.smear the steps of the average grain charge Q
at half-integer values of N, making (Q(N)} a continuous
function (dashed line in Fig. 2).

In this paper, we present a theory of the Coulomb
blockade near the strong-tunneling limit 7 = 1. In
Sec. II, we show that the Coulomb blockade in the sys-
tem shown in Fig. 1(a) is described by a one-dimensional
(1D) model. This allows us to use the bosoiuzation ap-
proach, and treat the Coulomb interaction exactly. In
agreement with experiment, we find no contributions
which are periodic in Vg in any measurable characteris-
tic of the system at 7" = 1. The backscattering on the
barrier at 7 & 1 can be treated in the bosonization ap-
proach as a small perturbation. In Sec. III, we calculate
the first nonvanishing correction to the ground-state en-
ergy of the system E(N), average grain charge (Q(N)),
and capacitance C(N). These corrections are periodic
in N, with the period corresponding to the change of
the grain charge by e. In the case of electrons with spin
the corrections diverge logarithmically at low energies,
indicating that the higher-order calculation is necessary.
Such a calculation performed in Sec. IV removes the sin-
gularities at all values of N except half-integer ones. In

The system we study is shown in Fig. 1(a). The dot is
connected to the lead by a narrow constriction formed by
applying voltage V to the auxiliary gates. We assume
that the width of the constricton in its center allows only
a single transverse state below the Fermi level. In this
sense the electron gas inside the constriction is one di-
mensional. As the electron moves away &om the center
of the constriction, the channel becomes wider, Fig. 1(b),
and the number of transverse modes grows. Since the
constriction is formed electrostatically, its boundaries are
smooth and do not scatter the electrons. Thus the con-
striction creates an ideal quantum point contact between
two two-dimensional (2D) regions: the dot and the lead.

In the following, we will neglect the fact that the dot
size is finite, i.e., the infinite system shown in Fig. 1(b)
will be considered. The difference between the two sys-
tems is that an electron entering a finite dot will even-
tually return back to the lead through the constriction.
The time 7 between these two events is determined by the
inverse width of the discrete energy levels in the grain.
In the case of an ideal single-mode junction, the width
is equal to the level spacing e' in the dot, and 7 h/s'.
An important difference between noninteracting and in-
teracting systems is that the latter has another energy
scale, E~. In particular, the typical &equency of charge
8uctuations is Ec/5 (see, e.g. , Sec. III). Since in a 2D
dot E~ )) s, the characteristic time h/Ec, at which the
Coulomb blockade develops is much shorter than ~. In
the following, we will consider the limit ~ m oo corre-
sponding to the infinite system.

An important property of the infinite system shown in
Fig. 1(b) is that it is essentially one dimensional. To see
that, let us consider wave function 4(x, y) of an arbitrary
state penetrating the constriction. Near the center of the
constriction the wave function is one dimensional:

(2)

where Po(y) is the wave function of the ground state
for the transverse motion, and wave vector k is deter-
mined by the energy corresponding to @(x,y). Since we
consider an ideal contact characterized by the quantized
value of conductance G = e /vrh, the wave function (2)
does not have a scattered component Po(y)e '" . Out-
side the constriction the wave functions have a much
more complicated form. In particular, they may be
strongly aG'ected by the disorder present in the 2D leads.
Nevertheless, one can label any wave function by a sin-
gle parameter k. Thus, the Hamiltonian of the system of
electrons penetrating the constriction can be written as
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f
Hp ——

~

Ep+
~ alai, dk,

2m ) (3) J = (k + k')
atria),

, dkdk',
4+m

where a~& is the creation operator for the electron in state
@A,, (x, y), and Ep is the energy of the transverse motion
corresponding to the wave function Pp(y).

It is worth noting that Hainiltonian (3) does not de-
scribe the whole system of 2D electrons. For instance,
the electrons with energies below Ep do not penetrate
the constriction and are not included in Hp. However,
since we are interested in electron transport through the
constriction, the existence of electron states confined in
one of the electrodes, and therefore omitted in (3), does
not acct our results.

The Hamiltonian (3) has a one-dimensional form.
However, unlike in a usual 1D system, the density of
states is determined by the 2D leads and is, therefore,
energy independent. As a result the physical proper-
ties of the system at energy scales of order of Fermi
energy E~ cannot be described by the 1D model. On
the other hand, the low-energy properties of the sys-
tem, such as conductance at low voltage and tempera-
ture eV, T (( E~, or Coulomb blockade that develops
at energy scale E~ && E~, can be described by the 1D
model.

To consider the Coulomb blockade at 7 ( 1, we have to
add scattering potential V(x, y). We assume that this po-
tential is localized inside the constriction, where one can
use the simple 1D form (2) of the wave functions. Then
the Hamiltonian describing such scattering also takes a
1D form

0' = — V k —k' a&~aA, dkdk'.

Here, the 1D scattering matrix element V(q) is deter-
mined as

&(q) = fJ &(*w)IA(ii)l* "~,*dii

where m is the electron mass. Both Hp and J(0) have 1D
forms in terms of operators ay. Hence, the charge opera-
tor found from Eq. (6) is also essentially one dimensional:

Q = —i—Jf " ",t(kdk'. (8)

Equations (3), (4), (1), and (8) present a complete 1D
Hamiltonian of the system in k representation. It is more
convenient to treat this Hamiltonian in coordinate rep-
resentation, which can be obtained by making a Fourier
transformation to the alternative 1D fermion operators:

@(x) = 1
aA, e'"*dk.

27r

Unlike the initial 2D wave functions 4(x, y), these alter-
native operators are completely one dimensional.

As we already mentioned, we are interested in low-
energy properties of the system. Thus, we can lin-
earize the spectrum of electrons in Eq. (3) near the
two Fermi points, and write the fermion creation op-
erators in terms of left- and right-moving fermions:
@(x) = @L,(x) + g~(x). The three parts of the Hamil-
tonian then transform to

Hp ——hv~ ~t x iV —k~ ~ x

—@R(x)(i%+k~)g~(x) dx,

8'= Vx

(Q —eN)
2Cp

(10)

Here, v~ is the Fermi velocity; the 1D scattering potential
V(x) is obtained from the real 2D potential V(x, y) by
averaging over the electron density ~Pp(y)~ in the trans-
verse direction. The charge operator (8) takes the form

To complete our 1D formulation of the Coulomb block-
ade problem, we must show that the interaction Hamilto-
nian also has a 1D form. Assuming good screening within
the 2D dot, we will describe the Coulomb interaction by
the charging energy (1), with Q being the charge inside
the dot. In the absence of a tunnel barrier the boundary
of the dot is not well defined; we will assume it to be at
the center of the constriction. To find the explicit form
of the charge operator, we note that there is an obvious
relation between Q and the current operator:

Q = ——[Q, Hp] = J(0),

&i(x)&i(x) + @~(x)@R(x) sgnx d*. (»)
2

As expected, the operator (13) has the simple meaning
of the charge transferred from the region x ( 0 to the
region x & 0.

To summarize, we established that the Coulomb block-
ade in a dot connected to a bulk electrode by means of a
quantum point contact can be treated as a 1D problem.
This will greatly simplify the following discussion, since
we can now bosonize the Hamiltonian (10)—(13) and treat
the quartic in fermion operators interaction term (12) ex-
actly.

where J(0) is the operator of current at point x = 0. The
current operator can be obtained by integrating the stan-
dard expression for the current density over the trans-
verse coordinate y. The expression for the current den-
sity at x = 0 is local, and we can use the 1D form (2)
of the wave functions inside the constriction. Then the
current operator takes the form

III. PERTURBATION THEORY
IN REFLECTION AMPLITUDE

A. Bosonized Hamiltonian

The bosonization technique is applicable whenever
the system behavior is determined by the low-energy
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properties of the 1D electron system. As we already men-
tioned, the typical energy scale at which the Coulomb
blockade becomes important is E~. This energy is much
lower than the Fermi energy, and the condition of appli-
cability of the bosonization approach is satisfied. At low
energies the electron system can be viewed as an elastic
medium. Therefore the bosonized Hamiltonian can be
written in terms of two variables: the displacement of
the elastic medium u(x) and its momentum density p(x).
The Hamiltonian (10) of noninteracting electrons takes
the form:

Hp = + —mnpv~ [V'u(z)] dx.p'(*)
2mfLp 2

Here, m is the electron mass, np ——mv~/vrh is the elec-
tron density. The two fields, displacement u(x) and mo-
mentum density p(z), satisfy the standard commutation
relation,

[u(x), p(y)] = ihb(x —y).

To bosonize the interaction Hamiltonian (12), we
should find the expression for the charge transferred
through the point x = 0. This can be done by substi-
tution of the bosonized formula for the electron density

@&/& + @&@& ~ —npVu into Eq. (13). Alternatively,
one can just note the obvious relation Q = enpu(0) be-
tween charge and displacement. In either case, we get

backscattering term becomes periodically dependent on
N, and therefore leads to periodic dependence of all the
thermodynamic properties on gate voltage. Below, we
calculate the first nonvanishing periodic correction to the
ground-state energy due to the backscattering.

B. Perturbation theory for spinless electrons

To Gnd the first-order correction to the ground-state
energy one has to calculate the average of the cosine term
in Eq. (18) over the ground state of the quadratic Hamil-
tonian (14), (16). This can be performed along the same
lines as in the Debye-Wailer theory:

hEi —— ~r ~D cos[2vrnp(u(0))]e

Here, we introduced the reflection amplitude r. [In
the first order in backseat tering potential, r
V(2k~)/ihv~. ] From Eq. (16), it is obvious that (u(0)) =
N/np. In a 1D elastic medium the average quantum fluc-
tuation of the displacement ((u )) = (u ) —(u) diverges
logarithmically due to the low-energy phonons. In our
case, the phonons with energies below E~ are pinned
down by the interaction term (16), see Ref. 13. There-
fore the fluctuation of u is large, but finite. To find ((u )),
we will explicitly diagonalize the Hamiltonian Hp + H&.
This is achieved by the transformation

Hc = Ec[npu(0) —N]'. (16)

It is important to emphasize that the interaction term
(16) is quadratic in bosoiuc variables, and the Hainilto-
nian Hp+ H~ of the system without scattering potential
can be diagonalized exactly.

We are primarily interested in the periodic dependence
of the ground-state energy on the gate voltage, i.e., on
¹ One can easily see that after the transformation,

N 1
u(z) = —+ ug cos(kiz] —bg)dk,

Ap K p

1
p(x) = pecos(kizi —bi, )dk.

7r p

Here, the phase shift bA, is defined as

bi, = arctan
~(vrhvFk

(20)

(21)

(22)

u(x) -+ u(z) + N/np, (17)

the Hamiltonian Hp + H~ does not depend on N. Hence
we expect the Coulomb blockade to be completely sup-
pressed by charge fluctuations in the absence of scatter-
ing potential, i.e., at 7 = 1 (thin line in Fig. 2). To find
the Coulomb blockade oscillations at 7 ( 1, one has to
consider the effect of scattering on the potential of the
barrier.

In the bosonization approach, only the low-energy
properties of the system are considered. The scattering
on a localized potential is, therefore, characterized by
two constants: the amplitudes of forward and backward
scattering V(0) and V(2k~) given by Eq. (5). In boson
representation the scattering potential has the form:

H' = —V(0)npVu(0) — D cos[2vrnpu(0)], (18)
V(2k~)

mdiv~

where D is the high-energy cutoff (bandwidth). The
first term in Eq. (18) does not change under the trans-
formation (17) and does not lead to a dependence of
the ground-state energy on N. On the contrary, the

In Eqs. (20) and (21), we neglected the odd modes pro-
portional to sin kz because they do not contribute to u(0)
and, therefore, are decoupled from both interaction H~
and scattering H'. The fields uA, and pI, satisfy standard
commutation relations [ug, pi, ~] = ihb(k —k'). In terms
of these fields the Hamiltonian Hp + H~ takes the form

OQ f 2

Hp + Hc =
~

" + -mnp(v~k)'u'„~ dk. (23)
(2mnp 2

It follows from Eq. (20) that the contribution of the low-
frequency modes to the displacement u(0) is suppressed
by the factor cosh' hv~k/Ec This gives ris. e to
the low-frequency cutofF in the logarithmic integral for
((u (0))). A simple calculation then gives

(24)

Here p = e, with C 0.5772 being the Euler's constant.
We can now find the periodic correction to the ground-
state energy using Eq. (19),
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bEi ————lr IEc cos 27rN.
'y

7r2
(25)

As expected the amplitude of oscillations of the ground-
state energy becomes of the order of Er. at ~r~ 1.

The average charge (Q) in the dot can now be found
using (12),

e BbEg
(Q) = eN- = eN ——e~r~ sin2mN.2' N (26)

The period of oscillations corresponds to the change of
the average number of particles in the dot by one. At
weak reflection, ~r~ (( 1, the amplitude of the oscillations
of charge is small (dash-dotted line in Fig. 2).

Finally, the periodic correction to the capacitance mea-
sured between the gate and the lead can be found as
bCi ——8 bEi/BV . It also exhibits periodic oscillations
as a function of the gate voltage.

In the above discussion, we completely ignored the
spins of electrons. The spinless case can probably be
realized in an experiment in a high magnetic field. How-
ever, in the absence of magnetic field one should take the
spins into account. We will now demonstrate that the
spin degree of &eedom affects the above results dramat-
ically.

C. Perturbation theory for electrons with spin

To take into account electron spins, we consider a
model with two channels corresponding to two spin di-
rections:

H = E {np[u, (0) + u, (0)] —N}',
H' = ——~r~D{cos[2mnpui(0)] + cos[2vrnpu2(0)]}. (29)

The expressions for Ho and H' are obtained by a straight-
forward generalization of Eqs. (14) and (18) to the two-
channel case. [In Eq. (29), we neglected the forward scat-
tering terms. ] The two channels are coupled through the
interaction term (28) which depends only on the sum
ui(0) + u2(0) representing the total charge brought into
the dot. Thus, it is natural to transform the Hamiltonian
to charge and spin modes u, , = (ui + u2)/i/2 (and sim-
ilarly for momentum densities p, ,). In the new variables
the Hamiltonian (27)—(29) takes the form:

- 2
Hc = Ec V2npu, (0) —N

H' = ——~r~D cos [~2mnpu, (0)] costi/2 vrnpu, (0)]. (32)

One can easily calculate the first-order correction to
the ground-state energy following the discussion of the
spinless case. An important difference between these
two cases is that now we have two modes, and only one
of them is pinned down by Coulomb interaction (31).

Therefore, the quantum fluctuation ((u2)) of the displace-
ment in the spin channel diverges logarithmically. This
leads to a strong suppression of the oscillations of the
ground-state energy. The amplitude of these oscillations
is ~r~/EcE:, where s is the low energy cutoff of the or-
der of the level spacing in the dot. In the limit of large
dot (s -+ 0) the first-order correction to the ground-state
energy vanishes. Thus, in order to obtain the Coulomb
blockade oscillations one has to perform the calculation
up to the second order in barrier potential.

The second-order correction to the ground-state energy
can be presented in the form

1 IbE, = —Im (H'(t)H'(0)) dt.
h 0

(33)

I"I Ecln
I

4v 2 &Ec1
7r ks) (36)

In the limit of large dot Er /s -+ oo, and the second-
order result diverges. This indicates that the terms of
higher orders in ~r~ should be taken into account.

IV. HIGHER-ORDER CALCULATION
OF THE GROUND-STATE ENERGY

To proceed with the higher-order calculation, we will
first simplify our Hamiltonian (30)—(32). Since the loga-
rithmic divergence arises at small energy scales E &( E~,
we do not have to treat the charge fluctuations exactly.
At such low energies the charge fluctuations are sup-
pressed by the interaction term, and one can replace
cos ~2vrnpu, (0)] in Eq. (32) by its value averaged over
the unperturbed ground-state. After this simplification
the charge-related part of the Hamiltonian completely
decouples and can be excluded.

Another simplification is made possible by the fact that
the barrier potential depends only on the spin mode dis-
placement at x = 0. Therefore, the odd elastic modes

From the explicit form (32) of the perturbation H' it
follows that the correlator (H'(t)H'(0)) factorizes into
charge and spin parts. The spin part is easily calculated:

1
(cos[i/2vrnpu, (0, t)] cos[~2vrnp'll (0, 0)]) = . . (34)2iot '

The slow decay of the correlator at large t is due to
the low-&equency modes. In the charge channel the
low-frequency components of u(0) are suppressed. As
a result at t )) 5/Ec, the charge part of the correlator
(H'(t) H'(0)) saturates

(cos[~2mnpu, (0, t)] cos[~2vrnpu (0, 0)])
2pEc &

~

cos 7rN —
2 sin vrN

~

. (35)4Ect2 )
The substitution of Eqs. (34) and (35) into the expres-
sion for the second-order correction (33) gives the integral
which diverges logarithmically at large t. The divergence
can be cut ofl' at t h/s (or at t 5/k~T if the correc-
tion to the free energy at a Gnite temperature is being
calculated). The result has the form
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proportional to sinkx are not coupled with H' and can
be excluded. To this end, we will change the variables:
u, (x) = [u, (x) + u, (—x)]/~2, and similarly for the mo-
mentum densities p, (x). Thus, we arrive at a Hamilto-
nian bI, = (c + ct) cI, . (43)

on the Jordan-Wigner transformation to a spin chain was
suggested by Guinea. We will use a simpler transforma-
tion:

Hp —— ' + V'u dx, (37)

f SpEc D l '~'
H' = —

~ ~
~r~ cos7rN cos[mnou, (0)].

)
(38)

The bandwidth D, here, should be taken of the order
of the charging energy E~, because only at such small
energies the charge fIuctuations can be neglected.

The Hamiltonian (37), (38) is very similar to the
Hamiltonian (14), (18) of noninteracting electrons in the
presence of scattering potential. The important differ-
ence is that the cosine in Eq. (38) has an argument that
is twice smaller than the one in Eq. (18). The latter rep-
resents a product of two fermion operators gt(0)@(0).
Similarly, Eq. (38) can be interpreted as a sum of two
fermion operators: @t(0) + @(0). To support this obser-
vation, we will rewrite the Hamiltonian in terms of an
alternative bosonic Geld,

l~l

@(x) = —~clou, (/xf) + p, (x')dx'.
hnp p

(39)

Unlike the old variables u, (x) and p, (x) defined at x & 0,
the field C(x) is defined on the whole x axis and has
the same number of degrees of &eedom. The commu-
tation relations for the new variables have the form:
[4'(x), 4(y)] = i7r sgn (x —y).

In terms of the field 4, the Hamiltonian (37), (38) takes
the form

hv~
4' ['7C'(x)1'd* (40)

H' = —
i i

ir[ cos AN cos 4(0).
f SpEcD'i

(41)

Expression (40) obviously coincides with the well-
known form of the bosonized Hamiltonian of a 1D gas of
noninteracting right-moving electrons (see, e.g. , Ref. 11).
In this case, the operator gD/27rhv~ e' &*1 is identified
as the electron annihilation operator Q(x). Consequently,
the Hamiltonian (40), (41) can be debosonized to the fol-
lowing form:

OO

Hf = (I,bt„b„—A(bt„+ bi, ) dk, (42)

where bI, and b& are the new fermion operators in k rep-
resentation, electron energy (i, = hv~k is measured Rom
the Fermi level, and A = +2phv~Ec/vr ~r~ cos7rN.

The Hamiltonian (42) contains a term linear in fermion
operators bI, and b&. If it is treated perturbatively, one
obtains the result (36). However, it is possible to take
into account all the higher terms of the perturbation the-
ory. This can be done by transforming the Hamiltonian
(42) to a quadratic form. One such transformation based

(44)

The Hamiltonian Hq is very similar to the Hamiltonian
of a resonant impurity at the Fermi level. Unlike the
latter, Hq does not conserve the number of particles and
should be diagonalized by a Bogoliubov transformation.
As a result, we get the diagonal form

Hq ——E+ Cg (C~~C„+ Cj~C„) dk,
p

(45)

where E is the ground-state energy of our Hamiltonian.
The two branches of the excitation spectrum correspond
to some linear combinations of particle and hole states.
One of the branches is not affected by coupling to the
impurity level: C& ——(c& + ct &)/~2. The other branch
has some admixture of operators t-t and c,

4
Q(2 + p2

r d6
~Q(„'+ I' — 6 —6 (46)

where the principal value of the integral is assumed. The
parameter I' = 47rA /hv~ has the meaning of the width
of the resonant level.

The correction bE to the ground-state energy of the
Hamiltonian H~ can be found, e.g. , by averaging Eq. (45)
over the unperturbed ground state,

8E = — (I,(C~tC„)odk.
p

(47)

The resulting integral over k is logarithmically divergent
at the upper limit due to the second term in the right-
hand side of Eq. (46). However, as we already mentioned,
the bandwidth in our Hamiltonian should be E~. Unlike
in the case of the perturbation theory, the logarithmic
integral now has an intrinsic cutoff I' at low energies.
This low-energy cutofF is due to the higher-order terms
in A. As a result the correction to the ground-state energy
is now finite, bE = —(I'/2m) ln(Ec/I'). In our original
notations, this result has the form

4p f 1
bE = ——

iv i Ec ln
i i

cos ~N.
( (r [' cos' sr N )

(48)

To summarize, the chain of transformations has lead

One can easily check that if c and cI, are fermion op-
erators, the operators bI, have correct anticommutation
relations. After this transformation, we get a Hamilto-
nian quadratic in fermion operators,

OO

Hq = kcgcA, —A cg c + c + c + c t"y dk.
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us from bosonized Hamiltonian (27)—(29) to simple form
(44). The transformations are exact at low energies.
They uncover the low-energy cutoff I' for the logarith-
mic divergence of the second-order perturbation theory.

It is important to note that I vanishes at half-integer
values of ¹ At these points the logarithm in Eq. (48)
diverges. Due to the prefactor, correction hEis'not di-
vergent, but still has a nonanalytic behavior at N
n + 2. The nonanalyticity shows up in the capacitance
C = 0 E/BV2, measured between the gate and the lead:

~&(N) = —lrl p Ec»l » lcos2~N (49)
8p t' 1

7r q lrl' cos' mN)

Here, P is the parameter controlling the relation between
N and the gate voltage, N = PVg, its value is determined
by the system geometry. One can easily see that the
capacitance is logarithmically divergent at half-integer
¹ The nature of these singularities is discussed in the
next section.

V. ANALOGY TO THE TWO-CHANNEL
KONDO MODEL

The logarithmic divergence of the capacitance (49) at
half-integer N was found for the case of strong tunneling.
It is instructive to compare it with the similar divergence
in capacitance in the weak-tunneling case:

(~&
bC(N) = 2P Ec e—xp

l

—
l

ln
l

E 4ltl) & I2N —11)
(5o)

Here, t is the transmission amplitude; expression (50) is
written for the vicinity of the point N = 2. Both expres-
sions (49) and (50) predict a logarithmic singularity at
N = 2, with the factors in front of the logarithm being
of the same order at ltl lrl 1. It is, therefore, natural
to conjecture that the logarithmic divergencies of capac-
itance exist not only in the limiting cases of weak and
strong tunneling, but at any value of the transmission
coeKcient.

To support this idea, we shall first outline the argu-
ments leading to the divergence (50) of capacitance in
the weak-tunneling case. The solution was based on
the mapping of the Coulomb blockade problem onto an
anisotropic multichannel Kondo model. At N close to
2, one can consider the perturbation theory in tunnel-
ing amplitude and neglect all the terms involving virtual
states with a charge different &om 0 and 1. This re-
striction on the possible charge states is due to the large
charging energy associated with all other states. Thus,
all the relevant terms of the perturbation theory are con-
structed in such a way that first an electron tunnels
through the barrier &om left to right, changing the dot
charge from 0 to 1, then another electron tunnels from
right to left returning the dot to the state with Q = 0,
then one more electron tunnels &om left to right leading
to Q = 1, and so on. One can note that the same struc-
ture of the perturbation theory takes place for the Kondo
model with anisotropic coupling J~(cr+8 + cr S+). In-

stead of the two types of electrons, left and right, we now
have two other types, spin-up and spin-down. Further-
more, each electron scattering on the impurity Hips its
own spin, e.g. , &om up to down, and the spin of the im-
purity, down to up. This means that the next electron
scattered on the impurity has to Hip its spin from down
to up, then &om up to down, etc. This leads to the same
structure of the perturbation theory as in the Coulomb
blockade problem.

A small deviation of the system &om the point N =
2

gives rise to the energy difference between the states with
Q = 0 and Q = 1. It is completely analogous to the ef-
fect of magnetic field 6 in the Kondo problem. Thus,
the capacitance of the system C 8 E/BN2 is analo-
gous to the magnetic susceptibility of the Kondo impu-
rity y; = 82E/Bh . The latter is inversely proportional
to the Kondo temperature, which leads to the exponen-
tially large factor in Eq. (50).

Finally, the presence of the real spin of electrons (con-
served in the tunneling process) should be interpreted
as a "color" for the electrons in the Kondo model. Thus,
the spin-2 case maps onto the two-channel Kondo model.
The latter is known to exhibit some non-Fermi-
liquid properties. These include the logarithmic diver-
gence of the susceptibility at h = 0, resulting in the log-
arithmic singularity in Eq. (50).

The result (50), for the capacitance in the weak-
coupling regime, was obtained using the exact solution
of the Kondo model. Another approach based on the
renormalization group treatment allows one to find
some low-energy properties of the system at any cou-
pling strength. The main idea of this technique is that at
low energies the effective coupling constant in the Kondo
model grows, and the system approaches the strong-
coupling fixed point. This fixed point is stable, and the
low-energy properties of the system are determined by
the leading irrelevant perturbation. Therefore the low-
energy behavior is universal, i.e., independent of the ini-
tial conditions. The stable fixed point for the multichan-
nel Kondo problem was studied in detail by conformal
field theory methods. In particular, the logarithmic be-
havior of the susceptibility in the two-channel Kondo
model was rederived.

To apply this method to the Coulomb blockade prob-
lem one should first find the fixed points. There are two
obvious fixed points: 7 = 0 and 1. As we already dis-
cussed, the weak-tunneling fixed point 7 = 0 corresponds
to the weak-coupling fixed point in the Kondo model.
This fixed point is, therefore, unstable. It is then natural
to assume that the strong-tunneling fixed point 7 = 1
maps to the strong-coupling fixed point of the Kondo
model. To test this hypothesis one should first show that
the 7 = 1 fixed point is stable. This caii be done by cal-
culating the scaling dimension of the perturbation H' in
the Hamiltonian (30)—(32). The correlator (H'(t)H'(0))
can be found from Eqs. (34) and (35). At half-integer
values of N (corresponding to zero magnetic field in the
Kondo model) it decays as 1/ts. Thus the scaling dirnen-
sion of the perturbation H' is 2, and the fixed point is
stable.

The stability of the 7 = 1 fixed point suggests that
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bc; = kgT 1n(Er-/kgT)
vrp/r [2

Ec (51)

Taking into account the relation h = 2Ec (N —2)
between the effective magnetic field h in the Kondo
model and the deviation of N from a half-integer value,
we can find the susceptibility from Eq. (36) as by;
(2Ec) 0 bE2/BN . The result is

by; = 1n(Ec/k~T)
2p[r[2

(52)

The ratio k~Tby, /bc; now takes the universal value 2/vr,
in agreement with the theory of the two-channel Kondo
model

Finally, it is instructive to discuss the relation between
our quadratic Hamiltonian (44) describing the low-energy
properties of the Coulomb blockade problem and the sim-
ilar Hamiltonian for the Toulouse limit of the two-channel
Kondo model. The latter was obtained by Emery and
Kivelson and has the following form:

at half-integer N the system with any value of transmis-
sion coefficient 7 approaches the strong-tunneling limit.
We, therefore, can argue that periodic logarithmic di-
vergences of the capacitance (49) and (50) are a general
property of the system and should be observed at any
value of the transmission coeFicient. In particular, the
divergence of capacitance at weak tunneling (50) can be
interpreted as a consequence of the divergences (49) in
the strong-tunneling limit.

The last statement can be tested by calculation of the
so-called Wilson ratio in the strong-tunneling limit. In-
deed, since the weak-tunneling properties of the Coulomb
blockade problem were found by mapping to the Kondo
model, one expects the correction to the heat capacity
to have a nonanalytic temperature dependence bc;
k~Tln(Ec/k~T), and its ratio to the correction to the
susceptibility to be universal. ' If the low-energy be-
havior of the weak-tunneling model is controlled by the
strong-tunneling Gxed point, the same must be valid for
the model (30)—(32). A straightforward calculation of the
correction to the heat capacity in the second order in H'
gives

H = iv~ gt(x) dx~&(*)
|9x

+ [qt(0) + vP(0)j[dt dj + h(dtd —1/2). (53)
/2vra

Unlike in the Hamiltonian (53), the second part of
Eq. (44) is proportional to the weak magnetic field:
A oc h. However, one can still bring the Hamiltonian (53)
to the form identical to (44). A linear transformation of
fermion operators analogous to (46) allows one to absorb
the second term of Eq. (53) into the kinetic energy term.
After such a transformation the third term of Eq. (53)
takes the form, which is identical to the second term of
Eq. (44) at low momenta. Therefore, at low energies the
Hamiltonians (44) and (53) are equivalent. This proves
our conjecture that the strong-tunneling fixed point is
identical to the strong-coupling fixed point of the two-
channel Kondo model.

VI. CONCLUSION

In this paper, we have studied the Coulomb blockade
in the limit of the barrier transmission coefficient 7 close
to unity. The Coulomb blockade oscillations of the dot
charge and capacitance persist as long as 7 & 1. As j
approaches unity, the sharp peaks in the system capaci-
tance transform into a weak oscillation with periodic log-
arithmic divergences at the points where the dot charge
is half-integer.

The analogy between the Coulomb blockade and
Kondo problem discussed in Sec. V allowed us to con-
clude that the logarithmic divergences in capacitance
should be observed at any value of 7 . Of course, the
exact calculation of the capacitance in terms of the trans-
mission and reflection amplitudes is possible only in the
limits 7 « 1 and 1 —7 « 1.
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