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The Hartree-Fock exchange energy is calculated for the spin-polarized electron gas at nonzero
temperatures. This calculation is done self-consistently in that the Hartree-Fock self-energy is in-
cluded self-consistently in the Fermi-Dirac occupation numbers while performing a coupling constant
integral. The internal energy and entropy are also considered. We calculate the first and second
derivatives of the exchange energy, internal energy, and entropy with respect to number density
and/or spin polarization density, which are used for calculations of response functions such as the
compressibility and polarization. One should have in mind that our exchange-only scheme using
the coupling-constant-integral formalism is diferent from the usual Hartree-Fock approximation at
nonzero temperatures and is indeed its self-consistent generalization.

I. INTRODUCTION

Electron-electron interactions play a central role in
metal physics, and the homogeneous electron gas is the
standard model in which to investigate these interactions.
The positive charges are spread uniformly throughout the
sample and the diKcult problems are due to electron-
electron interactions. In this model, the direct Coulomb
energy becomes zero so that the net system is charge
neutral. The lowest level of approximation is therefore
to include only electron exchange, which is called the
Hartree-Fock approximation (HFA). In the approxima-
tion, the spin-polarized Hartree-Fock (HF) exchange en-
ergy is given by

1
Eg — ) vqnpg pnq+g2v

pqo

where vq = 4rrez/qz in three dimensions is spin indepen-
dent, v is the volume, and the spin index 0 is + for up
and down spin, respectively. At zero temperature, the
Fermi-Dirac occupation functions are np ——0(k —p),
a step function at a wave vector k, which corresponds
to the Fermi wave vector k~ in the paramagnetic case.
That is, spin-up electrons occupy each one-electron level
with k ( k+, and spin-down electrons, each with k ( k
In the paramagnetic system, we do not have to consider
spins explicitly, which means that spin summations can
be replaced by a factor of 2 and k becomes the Fermi
wave vector k~. Here, we wish to consider spins explic-
itly and evaluate the spin-polarized HF exchange energy
at nonzero temperatures.

The finite-temperature formalism of the local-density

approximation was formally set up by Mermin long
ago. Only a few generalizations have been reported so
far. Gupta and Rajagopal proposed an exchange-only
scheme for the paramagnetic system, which was general-
ized in the self-consistent way by the present authors (to
be referred to as HM). Kanhere et al.s extended calcu-
lations of Gupta and Rajagopal ' to the spin-polarized
case. Previously, we evaluated the HF exchange energy
self-consistently by including the self-energy Z (p) in the
argument of the occupation numbers, while performing
a coupling constant integral. We used the correct
Fermi-Dirac function P(p) = 1/(exp[PE(p)j+ 1), with
E(p) = ep+Z (p) —p, where P = 1/krrT, ep = h p /2m,
and p is the chemical potential. A factor of 2 was multi-
plied where it was needed, instead of considering explicit
spin summations.

We wish to extend the previous works of HM to
the spin-polarized case. This extension is, within
the exchange-only scheme, equivalent to extension of
works by Kanhere et al. , using our coupling-constant-
integral formalism, and also equivalent to generaliza-
tion of the zero-temperature formalism by Gunnarsson
and Lundqvist to the nonzero-temperature one. On the
other hand, it is worth noting that a Green function the-
ory of the itinerant spin-polarized electron gas at T = 0
was published in Ref. 12, where the ground state and ex-
cited state properties of the spin-polarized HF electron
gas were studied in some detail. Rajagopal et al. also
studied a treatment of the integral equation of the vertex
function at T = 0, which includes the importance of the
correct self-energy. In a way, the present authors reexam-
ine this problem for T g 0. It is also worthwhile to note

0163-1829/95/51(24)/17417(14)/$06. 00 51 17 417 1995 The American Physical Society



17 418 SUKLYUN HONG AND G. D. MAHAN 51

1
+-(&) =,~ („)

where E (p) = sz + E (p) —p, p being the chem-
ical potential for spin o. Above, n is the number den-
sity and 8 is the spin-polarization density. In Sec. II,
the nonzero-temperature formalism calculating the ex-
change energy E (n, s, T) and its derivatives with re-
spect to number density and/or spin-polarization den-
sity is developed. The internal energy, entropy, and their
derivatives with respect to density are also considered.
In Sec. III, some applications are considered in calcu-
lating the energies, potentials, and response functions
such as the compressibility and polarization. In Sec. IV,
the present work is summarized and our exchange-only
scheme using the coupling-constant-integral formalism is
compared with the usual HFA in the viewpoint of the ki-
netic part of the exchange-correlation energy, T„,. In the
Appendixes, some comments are made on the chemical
potential and the Seitz theorem, and a simple general-
ization of T, to the nonzero-temperature case is also
discussed.

II. THEORY: TEMPERATURE DEPENDENCE
OF THE SPIN-POLARIZED HFA

We consider a homogeneous spin-polarized electron gas
without external potential. The Hartree potential of elec-
tron gas is canceled by charge neutrality. In this pa-
per, we consider only exchange efFects, neglecting cor-
relation processes. To include correctly the lowest or-
der and all higher-order diagrams with electron exchange
efFects, we use the self-consistent Hartree-Fock approx-
imation in which the HF exchange energy per volume
E (n, s, T) = 0 (n, s, T)/v is given by an integral over
the coupling constant q:

E (n, s, T) = ) E (n, T),

&-(~-,&) =, ):j —~-(n s)&.'*'(~ s)
P|~Pn

(4)

where n is the number density,

k~3 k+3 k3n= =n++n = +3~2 6m2 6vr2 '

and 8 is the spin-polarization density, which will be de-

that Dandrea et aI,. studied the unpolarized electron
gas at any degeneracy for T P 0.

The aim of this paper is to generalize the previous
formalism of HM by considering spin expressions explic-
itly. Actually, Eq. (1) is the correct result only in the
first order of perturbation theory, so we wish to include
higher-order terms in the perturbation theory. To do
this, we express the spin-polarized HF exchange energy
0 (n, s, T) as an integral over the coupling constant, with
the spin-dependent Fermi-Dirac function P (p) including
the self-energy Z (p) in its argument:

fined below, and Q is the fully dressed Matsubara
Green's function with the exchange self-energy Z, 0
being + for up and down spin,

1

~p- —[s~+ ~*-(~ p) —~-]'

Z..(&,&) = — ) ~v, ,g(*l(~, k).XO' 1 P k, ik

g(*)(& &)

The decoupling of up- and down-spin components comes
from the fact that bare (unscreened) Coulomb interac-
tions vz ——4vre /q are independent of spin.

If we assumed that every occupied one-electron level
would be occupied by two electrons of opposite spin, it
would give the previous results of HM for the param-
agnetic case. A more general possibility, leading to a
net spin imbalance, would be to fill each one-electron
level with k ( k+ with spin-up electrons, and each with
k ( k with spin-down electrons. In that case, the sys-
tem would have a nonvanishing magnetization density,

M = gp~(n+——n ),

where g 2 is the electron g factor, and p~ is the
usual Bohr magneton. For convenience, we define the
spin-polarization density s, and the ratio ( of the spin-
polarization density to the number density:

(k~~ k+ ks=n(= ~ =n+ —n = +
3~2 6~2 6vr2'

and then we obtain

E (n, T) = )1 d'g
Z (rj, p)F (rj, p),

rl

d3k
@vs kF (g, k),

27r 3

ge2 kdk p+ k

harp 0 e ~"I "~ + 1 p —k
ln

G (q, k) = PE (q, k) = P[si, + Z (g, k) —p, ], (13)
h2k2 ge2k

p~ = — + ~p~~
2m 7t

h2k2

2m

E (rj, p) =—

Here, p is a sort of the Fermi energy corresponding to
k, —rjezk /7r is zero-temperature shift in the chemical

1 n
n = —(n+ os) = —(1+ o.().

2 2

Due to spins' decoupling, the formalism below is al-
most the same as in the previous paper by HM, ex-
cept for the spin index. That is, if the spin index cr

is dropped out for spin components considered, almost
all formulas are the same as the previous ones. For ex-
ample, dropping o out in Eqs. (6) and (7) directly gives
the paramagnetic Green's function and self-energy. Since
the exchange self-energy [Eq. (7)] does not depend upon
the energy variable ip, the frequency summation of the
Green's function g just gives the occupation number
E (rj, p) = 1/(exp[PE ()7,p)] + 1}.Then,
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potential, due to the exchange self-energy of spin 0., and
by, is nonzero temperature deviation in the chemical po-
tential. Note that Eqs. (12) and (13) provide the self-
consistent equations for Z, G, and E .

We introduce the reduced inverse temperature ( (or
the reduced temperature t) and the reduced radius n:

W (n, s, T) =

BE (n, s, T) 1 ) dE (n, T)
On 2 dn~

CJ

= —) V (n, T),

(3o)
BE (n, s, T) 1 ) dE (n, T)

2 dn~:——) oV (n, T),

where a~ is the Bohr radius, and r, is an effective radius,
which comes from n = 47r(r, ajar) /3. Thus, n (or r, )
is small for a high-density electron gas and large for a
low-density one. For the spin-polarized system, we need
more parameters:

B2E (n, s, T)
(31)

1& d E (n, T)
4 + dn2

= —) K (n, T),
0p

kI3T
1

wrack

From Eqs. (5) and (9), we obtain the relations

(is)

(19)

(32)
B2E (n, s, T) 1 ) d E (n, T)

4 dn2

—:—) oK (n, T),
1

k = ky(1+ o.()'i,
= n(1 ~ o ()
= ((1+o.() ~ .

(2o)

(»)
(22) G ~(n s T) = ' '—:—) oV (n, T),8 28

Scaling all momenta by k, we obtain

G~(rI y) = PE~(rj y) = &i~('9~y) + G2~(rI y) (23)

Gi-(n, y) = P(sk —u-) = (-gi-(n, y) —o-,

gi (ri, y) = y' —1+ 2rjo. ,

o- = (-bv-/V'. ,

G2-(n, y) = P~*-(n, y) = 2n(-~-g2-(n, y),

(24)

(25)

(26)

(27)

1 xdx y+x
y2 (g, y) = ——

&G' (P, ) + 1 y
ln (2s)

The corrections of the chemical potential bp, are deter-
mined by the number conservation n = —Pk F (q, k),
and the Axed value of the spin-polarization density 8 =
—gk(F+ —F ), which give the following condition for
each spin o'.

(34)

where the spin components will be useful below in ex-
pressing the formalism of response functions. For the spin
components E (n, T), V (n, T), and K (n, T),
we consider the normalized quantities to their zero-
temperature values. For E (n, T), we have

E (n, T)E (,t)=
dyy'g2-(n y)F-(n y) (35)

0 0

E (n, o) = 3e k n —/47r = —e k /S~ . (36)

Note that the integral E (n, t ) depends on the spin
density n only through ( = t . We may write down
E (n, t ) =E (( ), andthen

V (n, T) — ( dE

f
OO 1

x dzF (rt, x) = —. (29)

Given n and T, we wish to calculate the HF ex-
change energy and its derivatives with respect to den-
sity, when varying the value of s (i.e., (). By tak-
ing derivatives of E (n, s, T) with respect to density, we
define the exchange potential V (n, s, T), the "interac-
tion function" K (n, s, T), etc. , and their corresponding
spin components, which appear in the calculation of re-
sponse functions. ' Following Ref. 16, in which the spin-
density-functional (SDF) formalism is given, we obtain

V (n, o) = —(e /vr)(6ir n ) ~,

K (n, T)
K~~(n~) t~)—

7( dE 2 d2E
2 d( d(2 (39)

(4o)
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(42)

is the internal energy which is then~ ss e
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the entropy,
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a energyentropy part are the same as those for the internal ener
with the replacement of Uo (n, t ) by 8, (n, t ),

8..(n, t ) =— x'dx(f (x) ln f (x)

+ [1 —f.(*)]in[1 —f.(x)]j. (50)

III. APPI ICATIONS

A. Energies

That is, V, , K, are obtained by substitution of Up in

is normalized to the same normalizing factors as in the
internal part. The normalized functions for the entropy
part are shown in Fig. 1(c). The functions 8, (circle)
and V, (square) decrease &om their zero-temperature
values, while K, (diamond) increases at t The. y are
about of range over —15 to 10 for given t . Comparing
the behaviors of (a), (b), and (c) in Fig. 1, we see that the
normalized functions of the noninteracting &ee energy,
especially those of the entropy part become dominant as
temperature increases.

Note that all functions marked by "hat" [e.g. ,
E ~n(, ), Uo (n, t ), etc.] except those for the en-
tropy part, become 1 at the zero-temperature limit, while
the h fe at functions for the entropy part become zero at the
same limit.

for given temperatures the paramagnetic state (g = 0)
always has the lowest energy.

It is well known that the HF electron gas with un-
screened Coulomb interactions exhibits a ferromagnetic
(g = 1) instability for r, = 5.45 at zero temperature,
originally discovered by Bloch in 1929. Partial polar-
izations (0 ( ( ( 1) were states of maxima. In con-
nection with this fact, Fig. 2 implies that if temperature
increases, we need a larger value of r, for ferromagnetic
instability or partially polarized state. Actually, given r,
larger than r, = 5.45, there is a temperature T above
which the paramagnetic state has the lowest energy. Be-
tween T = 0 and T, there is a partially-polarized state
or a ferromagnetic state, which is minimum in energyenergy,
given T. This ferromagnetic theory of the electron gas
using our self-consistent formalism will be studied in de-
tail elsewhere

It is crucial that one understand ferromagnetic insta-
ility and the associated spin-wave properties of the sys-

tem in the nonzero T case. Following the SDF formal-
ism, the transverse spin susceptibility y+ (q, ~) is given
by16

(p)

x+-(q, ~) = x+ (q, ~)
(54)

1 —(2W /s)y(+) (q, (u)

(q (u) = — + + 55(p) d3k n —n
(27r)' —Ru —8+ (p) + 8 (p + q)

'

with

Consider the energies and potentials in the spin-
polarized case. Using the results of the previous section,
we abtain the total free energy per volume W„(n, s, T):

X~(~, s, T) = Up(n, a, T) + 8 (n, , s, T) + E (n, a, T).
(51)

With Uo(n, 0) = 3@on/5, which is the internal energy
for ( = 0 at T = 0, we obtain the normalized free energy,

8 (k) = h, k /2m+ V + oW . (56)

2.0

(2)Note that G & ——W /a, and that the spin waves are
given by

X„(n, a, T) 1= —) (1+a.() i (U +8, )

(1+o()'~'E.. . (52)

which at zero temperature reduces to the well-known ex-
pression,

5o.

2
(1+ &)"

0.0
C4)

V

-i.o,':

-2.0 "-

-3.0
0.0 0.2 0.4

I

0.6 0.8 1.0

Nate that 8~~ in Eq. (52) has a factor of (1 + o()
through (, as shown in Eq. (50). For a'.=0 5(r, .
3.01), Fig. 2 shows the normalized &ee energy (solid line)
[Eq. (52)], the internal energy plus entropy part (dotted
line), and the exchange energy (dot-dashed line) at t=0.0
(no symbol), 0.25 (circle), 0.5 (square), and 1.0 (dia-
mond), respectively. Due to the entropy part, the dotted
lines are changed very much compared to the dot-dashed
lines as temperature increases. For o.=0.5, we see that

FIG. 2. Plot of the normalized free energy [Eq. (52)] of the
spin-polarized electron gas as a function of ( at 4=0.0 (no
symbol), 0.25 (circle), 0.5 (square), and 1.0 (diamond) for
a,=0.5 (r,=3.01). The total free energy (solid line) consists of
the internal energy, entropy part, and exchange energy. The
internal energy plus the entropy part are represented by dot-
ted lines, and the exchange energy, by dot-dashed lines. For
example, the solid line vrith circles represent the normalized
free energy at t=0.25.
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2G ~y+ (q, ur) = 1,(2) (O) (57)

which has the property that for q = 0, cu = 0. From
Eq. (57), we obtain the spin-wave dispersion to be of the
form

hldsiv = Dz,D(q)(q/ky ), (58)

where

h2k2
Dr.D =

2m(
1 (1+ () Up+ —(1 —() Up

5o (1+q)iysV (1 ()igsV

(59)

At zero temperature, this expression reduces to that of
Rajagopal, and Callaway and Wang, 2 who showed
that the spin waves are stable for 5n & 2 ~ (i.e. ,
r, & 3.039) for ferromagnetic (( = 1) case.

This zero-temperature result should be compared with
previous results by Rajagopal: For the ferromagnetic
((=1) state, spin waves are stable (i) for r, & 5.3447, i2 2i

and (ii) for r, & 5.4699.2i The first case was obtained
by taking three terms in a series solution for the ver-
tex function related to the transverse spin susceptibil-
ity. Taking four and five terms gives r, & 5.4106 and
r, ) 5.4416, respectively, for the stability of the spin
wave. The second one was obtained by solving the
same vertex equation by a variational method. The sec-
ond result is compatible with Herring's result, 22 which is

(5 q /2m)(1 —5.485/r, ), in the sense that both
results give the instability of the spin wave for the HF
electron gas at r, = 5.45, which was considered hints of
the spin-density wave state in the HFA. In the view-
point of previous results, '2 2s the present result (59)
seems to be rather questionable even at T = 0, even
though it was obtained by following a quite exact SDF
theory.

On the other hand, if we assume Eq. (59) to be correct,
we can obtain Di,D for T g 0 by evaluating Up and
V . For values the same as or close to ( = 1, we may
expect that since Up+ is larger than V+ for given T g 0
[see Figs. 1 (a), (b)], the spin waves become stable for
values larger than r, = 3.039+ b, being b ) 0. This
argument is valid as long as states close to g = 1 have
the lowest energy. This is related to the fact that as
temperature increases r, should be larger than 5.45 to
obtain the ferromagnetic instability.

paramagnetic case: v"' = ~ ~' ' ~"~' = p,
"'

Considering exchange effects only and noting the rela-
tion ns (n, () = E (n, s, T) = P E (n, T), we obtain

cj[ns*(n, g)]
Bn~

" * ("" ) =V..(n. , T) —= P*.(T).

(61)

Similarly, we define for the noninteracting case

8[nup(n, ()]
19n~

8[nu'(n, ()]
an~

dUp (n, T)
(dn

Oa ncaa &

d8, (n, T)
( )dn~

scr ncr y

(62)

where u and u' are the internal energy and entropy per
particle of the spin-polarized electron gas, respectively,
and let p (T) be their contribution to the chemical po-
tential:

p (T) —= Vp (n, T) + V, (n, T).

Two equations (61) and (64) are saying nothing but
the Seitz theorem. The Seitz theorem says that

d(nE~)P= (65)

1+ap/( = V, (n, t) + V, (n, t), (66)

where E~ is the ground-state energy per particle at zero
temperature and is generalized to the free energy per
particle X~ = X„/n at nonzero temperatures.

We check the Seitz theorem to see if our formalism
meets self-consistency. Since generalization to the spin-
polarized case is straightforward, consider the param-
agnetic case without loss of generality. For the nonin-
teracting electron gas at nonzero temperatures, we can
determine the chemical potential p,p(T) = p + bp, ,

by considering the paramagnetic version of Eq. (47):j f (x)x dx = 1/3, where f (x) is the paramagnetic
noninteracting occupation number. Here, p is the Fermi
energy and bp is its nonzero-temperature deviation.
By the Seitz theorein, pp(T) should be the same as

P (T)—:Vp(n, T) + V, (n, T), where Vp, V, are obtained
by difFerentiating the paramagnetic internal energy and
entropy part per volume with respect to density, respec-
tively. Normalizing both sides of pp(T) = p (T) by y, ,
we obtain

B. Potentials

~[n(r)s (n(r) ~(r))l
CT

( )
=Pa) (60)

In the local-spin-density approximation, the potentials
are defined by

where aP = (b'pP/pP, and Vp and V, are normalized quan-
tities corresponding to Vo and V„respectively.

This result is rather trivial and shown in Fig. 3(a). For
the interacting electron gas with exchange efI'ects, we can
also determine the chemical potential p(T) = pp(T) +
p (T), with il = 1, through the number conservation:
n = 2 g Il (rl=l, p)/v, i.e. ,

where e"' is the exchange-correlation energy per particle
of the homogeneous spin-polarized electron gas and p,

" is
its corresponding contribution to the chemical potential.
The expression (60) is the generalization of that for the

f 1x dxIl(rj=l, x) = —.
0 3 (67)

Note that g should be 1 because the Seitz theorem relates
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[In fact, the quantity V, (n, t ) becomes —oo as ( -+ 1.]
Compare this behavior with that of p, (T), which is 0 at

= 1.
This singular behavior in p (T) is related to the fact

that the fraction of spin-down component n reduces to
zero as ( -+ 1: That is, in the noninteracting Fermi-Dirac
function f [Eq. (45)], the efFective temperature t = (
becomes very large and thus the chemical potential p
becomes negative and very much smaller than —k~T,
which corresponds to the classical limit; the Fermi-Dirac
function f reduces to the usual Maxwell-Boltzmann ex-
pression.

If we define the normalized total potentials as y, (T) =
[P (T) + p (T)]/p, , we obtain

2.0

1.0

~ W ~ ~
em

l '-

C/}

0.0

(72) -1.0
0.0 0.2

I

0.4 0.6 0.8 1.0
From Fig. 4, we can deduce that for the spin-dawn com-
ponent p (T), e8'ects of the noninteracting part are man-
ifest as temperature increases, especially at large (.

C. Compressibility

The pressure P is defined as the rate of change in E
with volume at constant ¹ The inverse compressibility
is the rate of change of P under the same conditions:

FIG. 5. The compressibility at constant magnetization at
t=0.0 (no symbol), 0.25 (circle), 0.5 (square), and 1.0 (dia-
mond) for o.=0.5 (r, =3.01). Solid lines represent contribu-
tions from the total free energy, and dotted lines, those from
the noninteracting free energy, while dot-dashed lines repre-
sent only exchange effects. Note that contributions from the
exchange energy are similar in magnitude for three t values,
but those from the noninteracting part show big differences
due to entropy efFects.

(dEi
ddt') ~

1 fdP) 2 d2(E/v)
K (dv) ~ dn

(74)

as in Fig. 2, the compressibility from the noninteract-
ing free energy is changed very much as temperature in-
creases, while contributions from the exchange energy are
not changed much.

where E is the total ground-state energy of the system
at zero temperature. At nonzero temperatures, this is
generalized to represent the total free energy W = vT„,
where T = T+ + T . Then, the inverse compressibility
at constant magnetization M = Ping can be expressed as

D. Polarization

Consider the polarization P(q), which consists of two
contributions from each spin:

2 d'(&-) )- ~ d'(~-)
~M dn2 dn2

from which we obtain

(75)

In the long-wavelength limit, the compressibility sum
rule says

= ) n (Ko~+ K8~+ Kx~)~

(80)

Within the HFA, diB'erentiating Eq. (14) for p, , with
respect to n = k /6vr, we obtain

where K~ = 3/(2p n) is the compressibility of the non-
interacting gas at zero temperature.

The results for the compressibility are shown in Fig. 5
at t=0.0 (no symbol), 0.25 (circle), 0.5 (square), and
1.0 (diamond) for o.=0.5 (r, =3.01). Solid lines repre-
sent contributions from the total free energy, and dotted
lines, those from the noninteracting part, while dashed
lines represent exchange efkcts; Due to entropy eR'ects

P..(0) =
1 —0!~ + Bg G~

Oo =, = —Co(1+ ~C)'~',
2p 2

(1 + ~()1/3
2 1 —0!~+Bg

(81)

(82)
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x dxBg I' (iI=1, x) = 0.
o

(84)

For the noninteracting case, the second term in the de-
nominator of Eq. (83) vanishes and the third one becomes
0g a, because there is no exchange efrect. For the para-
magnetic case, Eq. (83) reduces to

where po is the noninteracting density of states for
spin 0, corresponding to po

——3n/2po and Og a is the
nonzero-temperature contribution, which for given ( is
determined by the derivative, with respect to (, of the
number conservation (29) when g=l:

where G (y) is simply obtained by setting il = 1 in
Eqs. (23)—(28). It is worthwhile to note works of Ra-
jagopal et al. , where derivations of all relevant response
functions expressed in terms of appropriate vertex func-
tions and the associated integral equations for the vertex
functions were given. A careful comparison shows that
our formalism in conserving approximations can also be
obtained by considering a special case of their formalism,
i.e. , the Hartree-Fock case with unscreened potential.

If a screening parameter A(q) is defined by e(q) = 1 +
A (q)/q, i.e. , A2(q) = 4ne—P(q), there is a relation
between A(0) and K~, the compressibility at constant
magnetic field B,

P (0) =- Po —= -r.p, P.(0),1 —0,'+ BgQ
[A(0)/qTF] = Kg/Ky, (95)

where Bta is determined by the derivative of Eq. (67)
with respect to (.

For comparison, we consider the following formulas:

where qTF is the Thomas-Fermi wave vector and K~ is
defined earlier. Thus, if we calculate the polarization, the

0.8

P(q) = (I+&) 'P (q)

P'(q) = (P', P'),
(86)

(87)

~ 0.6—
v5

'CN 04

0.2
XC

po ~r
Aa

(88)

). Po(q)
- 1 —Po(q)K (n, T) ' (89)

where P is the polarization for spin o for the random-
phase approximation. If only exchange efFects are consid-
ered, the matrix C becomes diagonal because only elec-
trons with the same spin can be exchanged. Noting the

grelation K (n, T) = &„",we obtain

0.0
0.0

3.0

CL
I

~ 2.0,.CI I I

(b)

0.5 1.0
t

2.0

which becomes in the long-wavelength limit for the para-
magnetic case

Po
P.(0) =

1 —P K (n, T) (90)

Using the relations K —K (n, T)/K (n, 0) and
P (0) = —po h (t ), where h (t ) = f dxf (x), the
above formula (89) in the long-wavelength limit reduces
to

1 ) (1+~()'/'h (t )
1 —nh (t )K /(1 + o.g)i/s

P*(o) = -).~-po-

y dyI' (y)
1 + cosh G (y)

n ( ydyI' (y) x+y
( )x o 1+coshG (y) x —y

(93)

On the other hand, we consider the polarization within
conserving approximations. The spin-polarized case
is a straightforward generalization of the paramagnetic
one in Ref. 25. Thus, we obtain

0
1,0

0.0
0.0

I

0.2 0.4 0.6 0.8

/ . .

/

/

I
I

J

1.0

FIG. 6. Plot of polarizations for (a) the paramagnetic case
and (b) the spin-polarized one. (a) Normalized polarizations
P (0)/( —r,po) as a function of t for the paramagnetic case
for n=0.5 (r, =3.01). Three results are exactly the same. The
solid lines are the results of P (0) in Eq. (85), while the filled

circles and open squares are the same as y„(n, t) and P (0)
in Refs. 7 and 25, respectively. (b) Polarizations P (0)/( —po)
for the spin-polarized system for o.=0.5. The dashed lines
are for t=0.0 (no symbol), which show a divergence around

0.87. The open and filled circles correspond to t=0.2 and
0.25, respectively. Squares and diamonds represent results for
t=0.5 and 1.0. The polarizations are obtained by three meth-
ods explained in text. These three results are of course the
same as in the paramagnetic case. For simplicity, they are
represented as one symbol. The results for nonzero temper-
atures do not show any divergence, which means that there
is a point, between t=0.0 and 0.2, above which the negative
screening disappears.
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compressibility K~ can be automatically obtained using
Eq. (95).

Figure 6 shows results for (a) the paramagnetic and
(b) spin-polarized cases. For o.=0.5 (r, = 3.01), the
polarization P (0) in Eq. (85) is shown as a solid line
in Fig. 6(a), where two other results (filled circle and
open square with no line) from the previous works~ 2s

are also shown for comparison. Three results are exactly
the same. The filled circles are nothing but Eq. (90),
which is the same as the long-wavelength limit of the
formula y„(n, t)/( gp, &—) = yo/[1 —K (n, T)yo] used in
Ref. 7. There, we evaluated normalized quantity y~(n, t),
which is shown here as filled circles. Open squares are
the results obtained for the paramagnetic case by con-
serving approximations, where the vertex functions are
solved self-consistently by iterations and used to obtain
the polarization. The results (open square and filled cir
cle) by the latter two methods have been already shown
in Fig. 3 of Ref. 25, where the polarizations for other o.
values (n=0.1, 0.3, 0.7, 0.8 and 0.9) were also calculated.
Since for the paramagnetic case, polarizations obtained
by three methods are exactly the same [see Fig. 6 (a)],
this sameness is also expected for the spin-polarized case.

Now consider polarizations for the spin-polarized sys-
tem, which are shown in Fig. 6(b). The dashed lines
represent zero-temperature result, and the nonzero-
temperature results for n=0.5 (r, =3.01) are shown at
t=0.2 (open circle), t=0.25 (filled circle), 0.5 (square),
and 1.0 (diamond). They were evaluated by three differ-
ent methods; (i) using Eq. (83), (ii) using Eq. (91), and
(iii) from conserving approximations [Eqs. (92)—(94)].
These three methods yield the same results as in the
paramagnetic case, which are represented as one symbol.

In Fig. 6(b), note a divergence and negative polariza-
tions over a region of ( 0.87 at zero temperature, which
would give a negative screening. ' However, this neg-
ative screening would be considered unphysical, because
when correlation e8'ects are considered there is no sign
of negative screening. ' On the other hand, the results
for nonzero temperatures may indicate that as tempera-
ture increases the negative screening seems to disappear,
and that there is a temperature point, between t=0 and
0.2, above which the negative screening disappear. The
negative polarization region is replaced by a peak at in-
creasing t, and 6nally the peak smooths out.

spin components, the quantities considered are totally
decoupled for spin. Thus, generalization of the previous
formalism for the paramagnetic system to spin-polarized
one was straightforward.

At zero temperature, the correct Fermi-Dirac function
reduces to the noninteracting Fermi-Dirac function, be-
cause of normalization of the chemical potential. The
difference between our exchange-only scheme and the
lowest-order HFA becomes manifest at nonzero tempera-
tures. In the viewpoint of the coupling-constant-integral
formalism with the correct Fermi-Dirac function, our
exchange-only scheme is indeed a self-consistent gener-
alization of the usual HFA at nonzero temperatures.

Using our self-consistent formalism, we calculated
some properties such as the total free energy, potentials,
compressibility, and polarization. These properties have
been already considered at zero temperature by Gun-
narsson and Lundqvist. Here, we focused on nonzero-
temperature behaviors. As temperature increases, the
noninteracting &ee energy decreases faster than the rate
at which the exchange energy increases, so the total
&ee energy decreases. The normalized potentials become
smaller as temperature increases. The spin-down compo-
nents of the noninteracting potentials become negative,
due to the entropy part at nonzero temperatures. The
total compressibility at constant magnetization increases
at temperature, due to the fast increase of the compress-
ibility of the noninteracting electron gas. The polariza-
tion decreases at increasing temperature, and here it is
worth noting the disappearance of the negative screening
at nonzero temperatures.

Here, we wish to compare our formalism with others in
the viewpoint of the kinetic contribution to the exchange-
correlation energy, T„,[n], which has been studied only
at zero temperature by many authors, as far as we
know. T„,[n] is defined by

(96)

where 4 ~„i is the exact Hohenberg-Kohn interacting
ground-state wave function and Cf i, the corresponding
Kohn-Sham noninteracting wave function. The expres-
sion for T„„known as the Bass's equation, was ob-
tained for zero temperature,

(97)

IV. SUMMARY AND DISCUSSION

In the previous paper and this paper, we have been
dealing with a homogeneous electron gas, by performing a
coupling-constant integral with the correct Fermi-Dirac
functions. Especially in this paper, the spin-polarized
electron gas has been investigated, considering spin sum-
mations explicitly. The exchange-only scheme has been
used to calculate the Bee energy, which consists of the
HF exchange energy and the internal energy and entropy
part. Their functional derivatives with respect to den-
sity are also calculated at nonzero temperatures. Since
Coulomb interactions are spin independent and so the
exchange self-energy is decoupled into up- and down-

E (n, T) = E (n, 0)E (assn, t),

V (n, T) = ' = V (n, 0)V (a~n, t)
dE (n, T)

=V(n, 0) E (dE
2 d(

(98)

where the second equality comes from the fact that the
exchange energy does not explicitly depend on a~ at zero
temperature.

Now apply the above formula (97) for T„, to our
exchange-only scheme. Without loss of generality, con-
sider the paramagnetic case. In Ref. 7, we have for the
exchange energy per volume E (n, T) = 0 (n, T)/v,
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where E (n, 0)= e—2k&~/4vrs and we gave an explicit de-

pendence on a~ to E, which becomes 1 at zero temper-
ature. Since at zero temperature our exchange energy
E (n, 0) does not depend explicitly on a~, the kinetic
contribution to the exchange energy T becomes zero.
However, at nonzero temperatures our E (n, T) depends
on a~ through E (a&n, t), because of the exchange self-
energy correction in the Fermi-Dirac function. Even if
the second equality in Eq. (97) is incorrect at nonzero
temperatures in our exchange-only scheme, the erst one
is still correct. For a simple generalization of Eq. (97)
to the nonzero-temperature case, see Appendix B. With
0 [n] = vE (n, T) and T = vT, we obtain

OE (n, T) OE (a~~n, t)=G~ = AO Ggy
Op~ DQ~

= E (n, O)3n
* ' = E (n, O)2(

BE (a~~n, t) dE

= 4E (n, 0) [V (n, t) —E (n, t)], (100)

where we used dn=
z& d( in the second line and

V —E =~ z&* in the last line. Note that Eq. (100) be-

comes zero at zero temperature, because both E and V
become 1 at T = 0. The difference V (n, t) —E (n, t)
can be easily shown in Fig. 1 of Ref. 7. We thus obtain
a nonzero contribution to T at nonzero temperatures,
if our coupling-constant-integral formalism is adopted.
This becomes manifest, since we consider all higher-order
corrections in addition to lowest-order HF term by doing
a coupling-constant integral and the higher-order terms
have been usually included in the correction terms for
correlation efFects. The correlation effects we considered
are efFective only at nonzero temperatures, since they are
just normalized into the chemical potential at zero tem-
perature.
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Noting that p(T) = pp(T) + p (T), we may guess that
0 would contain p (T) and so would be decomposed
into three pieces like Oo,

d(Mp/v) p 82k~
dn " 2m

d(&p/v)
pp T

dA

(A4)

and if Eq. (A3) were correct, it would be also correct to
obtain p, using the relation

d(W /v)
dA

(A6)

However, this is not correct because we have already
obtained p (T) in Sec. IIIB through the formula

d(O /v) dE
de dA

which means that 0 do not have the term —p N, so one
may wonder where p is in the thermodynamic potential
O.

It looks like a contradiction. How can it be resolved?
The above argument was wrong because the wrong equa-
tion (A3) w'as used. Before correcting them, consider the
definition of the chemical potential. For convenience, let
us consider the grand canonical ensemble, which is the
appropriate ensemble for use in a many-body theory. In
this ensemble, all the thermodynamic properties can be
deduced from the grand partition function ZG. , i.e., the
thermodynamic potential 0:

g —PA T (
P(H psN)]— —

10= Qp ——) U),
p

(As)

Ap = 2 ) (e~ —p)n~ + 2k&T ) [n~ ln n~
p Pc7

+(1 —n ) ln(1 —n )],
( 1)l

U( = d~g . d~((T~V(z, ) . . V(r()), (All)
o 0

(A10)

(A3)

Consider the chemical potential using the Seitz theo-
rem, Eq. (65). For the noninteracting case, we obtain

APPENDIX A: NOTE
ON THE CHEMICAL POTENTIAL

AND THE SEITZ THEOREM

where V is the electron-electron interaction. In the last
expression, only different connected diagrams are evalu-
ated, and in the exchange-only scheme, g& U~ becomes
—PO . The change of the thermodynamic potential 0 is

Since the generalization to the spin-polarized case is
straightforward, we consider the paramagnetic case. If
we consider only exchange effects, the thermodynamic
potential 0 can be written down by 0 = Oo + 0 . Since
Oo is the noninteracting thermodynamic potential, it is
tempting to express it as

dO = —Pdv —Sd1' —Ndp,

from which we deduce the average number ¹

(A12)

(A13)

no = uo —porn —TSo,

o = uo —TSo

(Al)

(A2)
On the other hand, the grand partition function Z~

can be written in terms of the partition function QN. .
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Z~(T, v, p) = ) e " Q~(T, v)—:) W(N),
N=o N=p

Q~(T, v)=Tr(e ~ )=e ~

(A14)

(A15)

Z~ ——e ~ =W(N=N)=e~" e (A16)

that is, the free energy X(T, v, N) is directly obtained
&om the thermodynamic potential O through the formula

where X(T, v, N) is the (Helmholtz) free energy. When
the density fluctuations are sinall, W(N) is strongly
peaked about N = N, the average number, with a width
of the order of v N. Thus, we obtain

O=Op+O =T —pN
= (&p+ ~*) —(Vp+ &*)N (A24)

we can obtain p through the formulas

d(Xp/v) d(O /v)
dA dA

d+v
p =

d(Xp/v)
go =

dn )

d(B /v)
p~ dn

(A25)

(A26)

(A27)

with pp instead of p, and O is the remaining. From the
relation

X(T, v, N) = O(T, v, p) + pN, (A17) Thus our contradictory case is resolved.

where the bar on N was and will be below dropped out
for convenience and p is determined by Eq. (A13).

In the canonical ensemble (where N is fixed as in our
system considered), one deals instead of 0 with the Bee
energy T,

T= O+ pN,
dT = —Pdv —SdT+ pdN,

(A18)
(A19)

in terms of which the chemical potential is given by

f DX't
(A20)

From the relation T = NT~ ——vT„= vnT~,

(A21)

Ap ——Mp —pN —TSp ——Wp —(pp+ p )N,

where we used the relation p = pp + p . Note that
np in Eq. (A10) remains as the noninteracting occupa-
tion number even when the interaction is on. That is,
p N is an additional term due to electron interactions,
which should be extracted &om the noninteracting ther-
inodynamical potential and so Eq. (A9) should have been
written down as

which is the Seitz theorem, Eq. (65).
Now consider Bp. To obtain Eq. (Al) from Eq. (A10),

we considered („to be s~ —pp. This is not correct. This
should be c~ —p, where in the exchange-only scheme p
consists of pp and the correction &om the interactions
p . For the noninteracting case, the chemical potential
was p = pp in Eq. (A10), but when the interaction is
turned on, it should be changed to p. Since the chemical
potential is just a number, Op becomes for an interacting
case

APPENDIX 8: NOTE ON THE KINETIC PART
OF THE EXCHANGE-CORRELATION ENERGY

Here, we wish to generalize the zero-temperature for-
mula (97) to the nonzero-temperature case. We first sum-
marize the work by Gorling et a/. , which will be fol-
lowed for the extension to the nonzero-temperature case.
For comparison to be easier, we just use notations by
Gorling et al. They de6ned ~4' ' as the wave function

[n]

which minimizes (@InT+PV„+pAI4'), where T and V„
are the operators for the kinetic and electron-electron re-
pulsion energies, respectively, and A is an arbitrary gen-
eral quantum-mechanical operator. It follows then that

is the exact Hohenberg-Kohns interacting ground-
[~i

state wave function and 4'~'j, the corresponding Kohn-

Sham noninteracting wave function. They also defined
the exchange and correlation energies with p included,

~E ~ [n] = (~4'( 'I IPV„I~@( 'j ) —PU[n],

~E, '~[n] = (~@( ') InT+ pV„+ pAI~4'( 'j )

—('C~
~

lnT+ pV..+qAI'C~ j),

(Bl)

(B2)

with

1
U[n] = — drdr'n(r)n(r') lr —r'I

2
(B3)

'E„P [n] = (~%
~

~~
I
o T + PV..+ pAI'4 ~„'~~)

—(~@( ') IaT + pAI~@( 'j ) —PU[n]. (B4)

They obtained the generalized form of the Bauer
relation

Here, note that in their definition ~E ~ [n] with
n=P=l, i.e., the usual HF exchange energy, is inde-
pendent of p. The total exchange-correlation energy
~E„P [n] =~E ~[n] + ~E ~[n] is given by

O = Op —p N+O—:Op+0, (A23)

where Qp is the purely noninteracting piece, Eq. (A10)
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T„,[n] = ~E„". [n]
7 p —p

where T„,[n] is defined by

6 E"[n]
p —p

(B6)

and the second equality in Eq. (B6) comes &om the fact
that the exchange part rEi i[n] is independent of p at
zero temperature. The above relation (B7) is equivalent
to the Bass equation,

a'E' '[n] O'E" [n]T [77,] = aii = ati
Baby Bag

(B8)

which is the same as Eq. (97).
It is straightforward to generalize the above formalism

to finite temperatures. Since we must average over all
possible configurations of the system at nonzero temper-
atures, the expectation values in Eqs. (Bl) and (B2) are
changed

as a direct consequence of Eq. (B4), by utilization of
the fact that ~4 ' is defined via the minimization of

[nI

(@~csT + PV, + pA~iIr). Equation (B5) reduces to the
Bauer relation for cr=P=1. Using Eq. (B5) with A = T,
they obtained for T„,[n],

with

—Ptio T [
P—(HO PN—)]

e- "= T [e-P( -~")]
(B11)

(B12)

T„,[n] = E„".[n] = a~
g —p Ba~

(BI3)

Furthermore, we obtain for our exchange-only scheme

T.[n] = ~S.'i[n] = a.
p —p Oa~

(B14)

where Ho ——nT + pA and H = nT + PV, + pA. As in
the zero-temperature case, the trace in Eq. (B9) depends
on n, p, and that in Eq. (B10) depends on n, P, and p.
Following the above argument for zero temperature, we
obtain the exactly same relations (B5), (B6), and (B8)
even at nonzero temperatures, with the corresponding
replacements of (B9) and (B10).

However, we should have in mind that our definition
of the exchange energy is diBerent from that of many
authors, s i.e. , Eq. (Bl) with o.=P=I. Nevertheless,
the combined definition (B4) is still correct with corre-
sponding changes (B9) and (B10). Thus only the second
equalities in Eqs. (B6) and (BS) become incorrect, so we
obtain only the first equalities,

I

('+ 'I I'+ ')[-j [-]

(B9)

[
p(FI plv —0) —]—(B10)

, T [
—p(H'0 rJ.N rio). .—.)—

]&
where we used ~f 'i[n] to distinguish our definition of
the exchange energy from others. Note that Ei,i[n] is,
in our notation, O„„and S [n] = 0 (n, T).
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