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Transferable screened atomic pseudopotentials were developed 30 years ago in the context of the
empirical pseudopotential method (EPM) by adjusting the potential to reproduce observed bulk
electronic energies. While extremely useful, such potentials were not constrained to reproduce wave
functions and related quantities, nor was there a systematic way to assure transferability to different
crystal structures and coordination numbers. Yet, there is a significant contemporary demand for
accurate screened pseudopotentials in the context of electronic structure theory of nanostructures,
where local-density-approximation (LDA) approaches are both too costly and insufficiently accurate,
while effective-mass band approaches are inapplicable when the structures are too small. We can now
improve upon the traditional EPM by a two-step process: First, we invert a set of self-consistently
determined screened LDA potentials for a range of bulk crystal structures and unit cell volumes,
thus determining spherically-symmetric and structurally averaged atomic potentials (SLDA). These
potentials reproduce the LDA band structure to better than 0.1 ev, over a range of crystal structures
and cell volumes. Second, we adjust the SLDA to reproduce observed excitation energies. We find
that the adjustment represents a reasonably small perturbation over the SLDA potential, so that
the ensuing fitted potential still reproduces a ) 99.9'Po overlap with the original LDA pseudowave
functions despite the excitation energies being distinctly non-I DA. We apply the method to Si and
CdSe in a range of crystal structures, finding excellent agreement with the experimentally determined
band energies, optical spectra e2(E), static dielectric constants, deformation potentials, and, at the
same time, LDA-quality wave functions.

I. INTA&DUCTION

In the density functional approach, ' one solves single-
particle effective Schrodinger equations with a distinct,
self-consistently determined screening potential V~~c.'

V~x~[p(r)] =
I.. d'r'+ Vx[p(r)]+ V~[p(r)1 (3)

solving Eq. (1) is spent in constructing and iteratively
updating the screening potential VHxc [p(r)] using, e.g. ,
the local-density approximation (LDA), in which

Here, V,„t(r) is a fixed external (possibly pseudo) poten-
tial determining the chemical and structural identity of
the system, and p(r) = P,."~@;~2 is the charge density of
all occupied single-particle states g;. The external pseu-
dopotential V,„t(r) can be written as a sum of a nonlocal
pseudopotential and a local pseudopotential

~h

Vext (r) = Vnonlocal(r) + Vlocal(r)

= V„„l,l(r) + ) ) v(, )(~r —K ~)],
B.

where o. is the chemical atomic type and K stands for
all possible atomic positions (including those related by
lattice translations) of cr Here g.a stands for a summa-

tion over all R for a given o. and e„, is the local part of
the o,th atomic pseudopotential for the unscreened ion.
V„„l,l(r) is the nonlocal part of the pseudopotential
which can also be represented as a sum over o; and R of
the nonlocal parts of fixed atomic pseudopotentials. tA"e

have used V and v to denote, respectively, crystalline and
atomic potentials. Much of the computational efFort in

The first term is the interelectronic Coulomb ("Hartree" )
potential, and V~ and V~ are the exchange and correla-
tion potentials, 2 respectively. While V,„(,(r) can be con-
structed explicitly for each system once and for all, sim-
ply by summing over fixed atomic potentials as in Eq.
(2), Vox~[p(r)] is not a linear sum over atomic quan-
tities, and must be obtained separately for each physi-
cal system without any system-to-system transferability.
Here, we will erst explore the possibility of constructing
from Eqs. (1)—(3) transferable and fixe (i.e. , screened)
spherical atomic potentials (local part only) v (r) such
that the solutions of

(
A

+ Vnanlocal (r)
2

+5.) U' '(l~ —a-l)) i" ='*@* (4)
B.

reproduce with a good approximation to the solutions of
the LDA Eqs. (1)—(3), i.e. , @, will have large overlaps
with Q, and e; will be close to e;. For simplicity, the
noiilocal LDA potential V„„l«~](r) in Eq. (4) is kept
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the same as in Eqs. (1) and (2).
Our approach involves two approximations. First,

while V~xc (r) of Eq. (3) can be written rigorously
as a sum of nonspherical, atom-centered potentials, we
use instead in Eq. (4) a spherical representation. Sec-
ond, while V~x~[p(r)] of Eq. (3) is systein dependent
[through the system's p(r)], we will assume that v (r) of
Eq. (4) are fixed atomic potentials and hence transfer-
able &om one system to the other. The combined non-
spherical and nontransferability error will be examined
by comparing the solutions (e, , @;) of Eq. (1) with the
solutions (e;, @,) of Eq. (4) for a few systems covering
a range of coordination numbers and volumes. At this
step we have a spherical (S) and approximately trans-
ferable LDA potential vsLDA(r) which we will term the
"SLDA." We will show that this potential provides good
approximations to the LDA results for bulk systems in
that the band structures are reproduced to within better
than 0.1 eV over a considerable energy range. Thus the
SLDA approach, like the LDA itself, sufFers &om poor re-
production of the observed excitation energies. Therefore
in the second step we will empirically adjust vs&DA(r) to
reproduce the experimentally observed excitation ener-
gies. The amounts of adjustment needed will be clear
indicators of "LDA errors. " It is interesting to note that
relatively minor changes are required in vs&DA(r) to re-
produce the observed excitation energies. Thus the re-
sulting wave functions retain a large overlap with LDA
wave functions. This approach yields what we term as
the "semiempirical pseudopotential method, " or SEPM.

This procedure could permit simple, noniterative elec-
tronic structure calculations [via Eq. (4)] for large
systems. This approach is analogous to the well-known
"empirical pseudopotential method" ' (EPM) that has
been successfully applied to many systems. Part of
the motivation of our work, however, derives &om the
fact that the conventional EPM, without check, some-
time gives inaccurate wave functions. Unlike the EPM,
in which v( )(r) was adjusted to fit the single-particle
excitation spectra with no regard to the quality of the
associated wave functions and charge densities, our ap-
proach produces a large (in practice & 99.9%%uo) overlap

(@,l@;) with the IDA wave functions, while reproduc-
ing experimental excitation energies. Furthermore, un-
like the EPM, which produces only discrete form fac-
tors and is hence suitable only for a particular crystal
structure and lattice constant, we will develop a con-
tinuous vsEPM(r) which can be used for difFerent struc-
tures and volumes with good transferability. In essence,
unlike the conventional ab initio LDA pseudopotential-
generating programs, '~2 which solve the equations of an
isolated atom, we will use the LDA equations of peri-
odic solids [Eqs. (1)—(3)] to extract efFective, screened
solid state potentials v( ) (r) [Eq. (4)]. This approach af-
fords a systematic procedure for generating transferable
effective potentials &om bulk LDA calculations, retaining
LDA-like wave functions but adjusting the potential to
produce accurate excitation energies. We will illustrate
the method for a covalent solid (Si) and for a more ionic
case (CdSe), considering in each case a number of crystal

structures and a range of unit cell volumes, thus provid-
ing information on the transferability of these potentials.

The rest of this paper is organized as follows. Section
II outlines the formalism of this method, defining also all
quantities used later in figures and tables. Readers who
are interested only in the theoretical aspects can read just
that part of the paper. Section III applies the method
outlined in Sec. II to CdSe and Si systems, analyzing
various steps of the approximations and comparing many
electronic properties calculated by the present method
to experiment. This provides the interested readers with
the detailed data needed to judge this method. Most
numerical results are presented as tables and figures. The
final results are given in Tables XI and XII and Figs. 6—
10. Section IV compares this method with other methods
and discusses the area in which this method can be used.

II. CONSTRUCTION OF SEMIEMPIRICAL
PSEUDOPOTENIALS FROM BULK

LDA CALCULATIONS

A. The spherical LDA potential (SLDA)

Any periodic total potential such as V; „;,+ VH~~ of
Eq. (1) can be rigorously expressed as a sum over atom-
centered nonspherical functions. For example, the local
part of the total LDA potential [Eqs. (2) and (3)] for
crystal structure cr can be written as

Vr,D&(r): Vio i(r) + VHxc(r)

(5)

where a' is the lattice atomic site, which is diferent &om
o., the chemical atomic type. One n could correspond to
more than one n' (e.g. , the diamondlike structure). The
decomposition of Eq. (5) is not unique, and neither is

I

the nonspherical potential v&D& (r). However, for sym-
I

metric decompositions, v&D& (r) can be expanded as

I

vLDA (r) = ).vLDA
'
(lrl) 1~i (r)

where Ki(r) are the Kubic harmonics of crystal structure
cr (Ref. 13) for the symmetry-allowed angular momentum
/. For the diamond structure, for example, the symmetry-
allowed / values are 0,3,4, . . . . In the following, we will
introduce two simplifying approximations intended to re-

move the dependence of vLD&' (r) on angular momen-
turn l and crystal structure o and define three errors
caused by these two approximations.

The aphef'ical aypr ozimation

We retain only the spherically symmetric (I = 0) part
of Eq. (6). For structures which connect all lattice
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atomic sites o, ' of the same chemical type o. with symme-
try operations (e.g. , the diamondlike structure), we can

l—0defin vsLDA(r) vLDA (r). The subs«rpt "SLDA'
denotes "spherically approximated LDA." Thus we will
make the following spherical approximation of Eq. (5):

Vr.DA(r) ~ Vsr, nA(r) = )„). vsL'DA(lr R, I). (7)

We de6ne as C the reciprocal lattice vectors of struc-
ture o with unit cell volume 0 and as V(C) the Fourier
transform of V(r). The nth atomic structure factor of
structure a is

0]. In both cases the nonspherical error is assessed by
calculating b, Vi of Eq. (9), and is called the error of
"strictly forbidden reBections. "

There is another kind of error. The solved
vsfL'DA(IG I)'s are a set of numbers corresponding to a
discrete IG I

set. The plot of vs„nA(IG I) vs IG I
can

involve some scatter, so the individual points cannot be
described by a single smooth curve (which is needed in
our search for a r-space continuous pseudopotential). We
refer to this as scatter error. We examine its conse-
quences by fitting the points (vsfL'DAl(IG I), IG I) for a
given structure o to a parametrized form

3.S(~,~l (G ) )0 )

R

where g~ stands for summation over R 's within
r

one unit cell. In this notation, the spherical approxi-
mation of Eq. (7) implies the neglect of the following
nonspherical potentials:

20
2 2

SLDA (g) ) SLDA ( )

(G ) = "Sr.'DA(IG I)
—usL'nA(IG I) (12)

Then, the "one structure scatter error" for structure o is
calculated as

+Vi ( ~) LDA( ~) SLDA( ~)

LDA(G-) —Q S' "'(G-) vSLDA(IG-I).

(9)

vr.nA(G ) = ) s ' (G ) vsL'DA(IG I) (10)

This quantity [AVi ] is called the error of "strictly for-
bidden reBection" due to reasons explained later.

To solve for vsfL'DA(IG I), we will first solve Eqs. (1)—
(3) within the LDA (using ab initio nonlocal pseudopo-
tentials) for a set of structures and unit cell volumes
denoted collectively by (o'), finding the self-consistent
Fourier coeKcients VLDA(C ) of Eq. (5). We then at
tempt the equality

where v denotes the (numerical) solutions to Eq. (10)
and u denotes the fitted value of Eq (ll). The error

AV2 reflects the neglect of the scatter of vsLDA(IG I)
for a single structure, which is another manifestation of
the error in the spherical approximation. Combining the
"strictly forbidden reflection" error EVr of Eq. (9) with
the "one structure scatter error" AVz of Eq. (12), gives
the total error due to the spherical approximation for a
given structure o .

2. The str uetuv al aces age aper oximation

So far, the potentials vsI, DA and us&'D& depend on the
crystal structure o. We now average over a number of
difFerent structures (o). Thus, at the right hand side of
Eq. (7), we perform the replacement

for each structure o. We solve Eq (10) for each G
which has a nonvanished VLDA(G ) and flnd real val-

ued vsfL'DAl(IG I). The spherical approximation of Eq.
(7) maiiifests itself by the fact that the solution of Eq.
(10) is not always exact (or even possible), thus the er-

ror AVi (C ) in Eq. (9) is nonzero. Equation (10) can
be considered as a matrix linear equation for each G
with o. and real and imaginary parts as its column and
row indices, respectively. Because, this matrix could be
singular, the solution could be not exact ~or even pos-
sible). A simple example is when Sf l (G ) = 0 but

VLDA(C ) g 0. These are called "forbidden reflections, "
e.g. , G = ((222), (442), (622), (644), and (842)) for the
diamond lattice, G = ((004), (014), (031), and (033))
for wurtzite, and G = ((002), (004), (024), and (114))
for zinc blende. For these G values, vsL'DA(IG I) is ei-
ther approximated [when Sf l (G ) g 0, but the matrix
is singular] or not calculated at all [when Sf l(G ) =

(n, cr) (a) (a,o )
SLDA( ) SLDA( ) ( SLDA( ))~& (13)

20
(~) 2 2

Sr,nA (&) ) +Sr nA (n) (14)

The corresponding error due to structural scatter is

where the angular brackets denote "structural average. "
The corresponding error can be assessed by directly com-
paring the two quantities in Eq. (13). Note that the
spherical approximation (Sec. II A 1) [Eq. (7)] im-

plies specific errors AVz + LV2 for a given structure
rr, while the structural averaging approximation (Sec.
II A 2) [Eq. (13)] concerns the transferability error of

vsLDA(r) used to describe different structures jo').
To implement the structural average of step 2, we in-

clude in the flt of Eq. (11) all structures (o). The re-
sulting curve (dropping now the superscript o) can be
wntten as
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3 ( ~) SLDA(l ~l) SLDA(l&-I)

Note that this "structure averaged scatter error" LV3
difFers &om the "one structure scatter error" AV2 [Eq.
(12)] in that the former involves structural averages in
the Gtting of u. Consequently, the magnitude of the error
4V3 is larger than the magnitude of 4V2 .. the increase
reBects the error introduced by structural average.

At this stage we have a spherically symmetric and
structural averaged, screened atomic LDA potential

us&D&, this will be called the SLDA in the following dis-
cussions. We will examine the errors LVj, LV~, and
AV3 defined in Eqs. (9), (12), and (15), respectively. In
addition, to test the eKect of the total error LVi+LVq
collectively we will solve the band structure of Eq. (4)
[replacing v& )(~r —R ~) by usfLDA([r —R [)] and com-

pare the resulting eigenvalues e, , wave functions g, , and
related properties with those obtained by solving self-
consistently the original LDA Eqs. (1)—(3) for the same
structures.

We close this section by noting that if one wishes
to perform non-self-consistent (e.g. , Harris-functional-

like ) electronic structure calculations, usLDA(r) can be
used as an excellent input potential.

B. Using the SLDA to construct the semiempirical
pseudopotential method (SEPM)

Our next task is to adjust the SLDA potential of Eq.
(14) so that the ensuing wave functions of Eq. (4) will
still retain a high overlap with the LDA wave functions of
Eqs. (1)—(3), yet the eigenvalues will fit the experimental
(or quasiparticle calculated) excitations. In this process,
the ab initio nonlocal potential V„„i,i(r) of Eqs. (2)
and (4) (which represents the effects of core electrons)
is kept unchanged as in the reference LDA calculations.
Furthermore, we use the same analytical form of Eq. (14)
for both usfL)DA(q) and usfE)pM(q): the coefficients will

change from CsLDA(n) to CsEPM(n) while b and c will
be kept fixed.

The Gt to the observed excitations is chosen as fol-
lows. If P; denotes the physical property that we wish to
reproduce and M' = BP,/OC is its derivative with

respect to the fitting coefficients C of Eq. (14), we will
minimize the "cost function"

2

I" =) u);~ P'" —P —) M' AC( )
i

(16)

where b,C„=CsEPM(n) —CsLDA(n) are solutions of
the linear equations (16) and iv, and ~„are prede-
termined weight functions. As will be shown later, the
changes &oin CsL)DA(n) to CsE)pM(n) are rather small;
thus the use of a linear representation (16) for the fitting
process is adequate. A simple choice for the weights

m, associated with each physical property P, is to set
tv, = 1/AP2, where AP, is the acceptable tolerance of
P; (of course, depending on the results of the fit, one
can further adjust iv;). The weights w can be fixed as

p/[[CsLDA(n) ~
+ [CsLDA(n+ 1)

~ ], where p is an overall
scale factor that controls the magnitude of all changes
LC . Fortunately, as will be shown later, only small
changes EC (i.e. , large P) are required to fit the ex-
perimental values of P, We And that if some P, can-
not be fitted well, this usually reBects internal inconsis-

tency, so increasing AC„(i.e. , reducing P) will not help

much. As will be shown later, the closeness of usEPM(q)
to usLDA(q) implies that many properties of the SEPM
follow those of the SLDA. These include wave functions,
deformation potentials, the transferability between dif-
ferent structures, etc. This closeness provides a control
over the quality of the SEPM wave functions, which is
lacking in traditional empirical pseudopotential Gtting
procedures.

III. APPLICATIONS TO BULK CdSe AND Si

In this section, we will apply the approach outlined in
Sec. II to covalent Si and to partially ionic CdSe, thus
covering a range of semiconductor systems.

A. Calculating the spherical and structurally
averaged usLDA (q)(a3

We generate ab initio nonlocal pseudopotentials for
the LDA calculations of Eq. (2) using the method of
Trouillier-Martins. Throughout this paper, we will use
the p potential as the local potential, while the s and d
are taken as the nonlocal parts. In CdSe, the 4d orbitals
of Cd are treated as core state and are thus pseudized.
This will introduce an error due to the neglect of p-d
coupling: for example, the LDA band gap changes &om
0.36 eV (with p-d coupling) to 0.74 eV (without p-d cou-
pling). Our reference LDA calculation &om which the
SLDA will be constructed is thus CdSe with pseudized
Cd 4d orbitals. We solve Eqs. (1) and (4) by expanding
@ in a plane wave basis with cutofF energies E,„t. We
determine E,„t by requiring that the band energies of
the pseudopotential calculation match those obtained in
an all-electron calculation (with artificially removed p-d
coupling). For Si, E,„& ——20 Ry is sufficient while for
bulk CdSe we need E,„& ——33 Ry. To test the conver-
gence of the 33 Ry basis set cutoB and the pseudopoten-
tial, we have compared the band energies of CdSe in the
wurtzite structure as obtained using the current pseu-
dopotentials and as found using the all-electron linear
augmented plane wave (LAPW) method in which an ar-
tificially deep 4d energy is used so that there is no p-d
coupling. The average pseudopotential vs LAPW dif-
ference in band structure energies is only 84 meV (e.g. ,

aligned by the top of the valence band, the energy di8'er-
ences for F~, F3„, M4„, M3, Hs, and H~ are 120, 55,
11, 119, 10, and 61 meV, respectively). Thus our CdSe
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TABLE I. The local, screened LDA pseudopotential Vi.DA(G) = Vi«~r + Vrrxc [Eq. (&), in eV]
and the "strictly forbidden reflection" errors AVi(G) [Eq. (9), in meV] for CdSe in two crystal
structures and difFerent cell volumes per atom O. Here, 00 is the equilibrium wurtzite volume per
atom and C = —(h, k, I) are reciprocal lattice vectors with Miller indices (h, k, l). An asterisk
means that the structure factor S(G) defined in Eq. (8) is zero for that G.

(004)
(014)
(031)
(033)
(035)
(oo2)
(010)
(o12)

Wurtzite
0 = 00

VLDA(G) KVi (G)

(eV) (me V)
0.5206 56.0
0.1531 8.3
0.0035
0.0019 9g

0.0011 1.1*
2.186 0
1.529 0
0.510 0

CdSe

VLDA(G)

(eV)
0.4903
0.1313
0.0038
0.0023
0.0014
2.188
1 ~ 533
0.511

0.9400
AVj (G)

(meV)
54.5
7.8
3.8*
2.3*
1.4*

0
0
0

Zinc blende

(hkl)

(002)
(o13)
(114)
(o24)
(004)
(oo1)
(011)
(o12)

CdSe
0= Ao

Vr.DA (G) &Vi (G)

(eV) (meV)
0.5176 54.8
0.3398 4.1
0.2522 1.9
0.2090 1.3
0.0446 2.8
2.189 0
1.501 0
0.500 0

- pseudopotential with 33 Ry basis set cuto8' provides an
adequate representation of the all-electron problem, and
no core correction is necessary for the purpose of this
stud. y.

Using these ab initio pseudopotentials and the
Ceperley-Alder exchange correlation function, we have
performed self-consistent LDA calculations for five CdSe
and five Si systems, which are chosen either because
they are experimentally achievable or because they have
simple structures. The five CdSe systems are (1) the
wurtzite structure with atomic volume Bz+~ '; (2) the
wurtzite structure with atomic volume 0.9440o ', (3)
the zincblende structure with atomic volume Ao ", (4)
the rocksalt structure with atomic volume 0.800, and
(5) the rocksalt structure with atomic volume Bod '.
Here, 00 ' is the experimental equilibrium volume per
atom of wurtzite CdSe at ambient pressure (lattice con-
stants a = 4.30 A. and c/a = s i/6). The unit cell volume
per atom for each structure is chosen here either from
the measured phase transition volume, or &om LDA
calculated equilibrium volumes for that structure. The
same is true for Si systems. Note that both the wurtzite
and the zinc blende structures have coordination number
of 4, while rocksalt is sixfold coordinated. The five Si
systems are (1) the diamond structure with atomic vol-
ume Oo', (2) the diamond structure with atomic volume
0.920o', (3) the simple cubic structure with atomic vol-

ume 0.820rr', (4) the P-tin structure with atomic volume
0.720o' and c/a ratio 0.552; and (5) the simple hexago-
nal structure with atomic volume 0.690o' and c/a ratio
0.94. Here, 00' is the measured cell volume per atom
of diamondlike Si at ambient pressure (lattice constants
a = 5.43 A.). The diamond structure of Si is a fourfold
coordinated semiconductor, while Si in the simple hexag-
onal structure is an eightfold coordinated metal.

The self-consistently screened LDA potentials

VLDA(C ) are used to solve for vs&'DA in Eq. (10). The
errors of "strictly forbidden reflections" [Eq. (9)] are
listed in Table I for CdSe and in Table II for Si. We
note the following: (i) The error AVj is exactly zero for
Cd.Se in the rocksalt structure and for Si in simple cu-
bic and simple hexagonal structures since there are no
"strictly forbidden reflections" because of the high sym-
metry of these systems. (ii) The "strictly forbidden re-
flections" error in P-tin (Table II) is small, presumably
because its bonding geometry for each atom is close to
that of the simple cubic structure and the simple cubic
structure has zero "strictly forbidden reflections" error.
(iii) The maximum error b, Vi has similar values for CdSe
in the wurtzite or the zinc blende structures and for Si
in diamond structures. All errors are about 60 meV at
the primary "forbidd. en reflections" G vectors.

Table III reports the "one structure scatter errors"
AV2 [Eq. (12)]. Results are given for both CdSe and

TABLE II. Same as Table I (see caption), but for diamondlike and P-tin Si.

(oo2)
(114)
(024)
(015)
(001)
(112)

Diamondlike
0 = 00

VLDA (G) AVi (G)
(eV) (meV)

0.0674 67.4*
0.0042
0.0025 2.5*
0.0019 1.9+

2.6381 0
0.5498 0

Si
0=

Vr, DA (G)
(eV)

0.0656
0.0048
0.0027
0.0019
2.652
0.4786

0.9200
A Vi (G)
(meV)
65.6*
4.8*
2.7*

9of(

0
0

(022)
(o42)
(242)
(062)
(020)
(011)

P-tin Si
~=~0

VLDA(G) &Vi (G)
(eV) (meV)

0.0061 6.1*
0.0040 4.0*
0.0022 2.2*
0.0013 1
2.4031 0
1.4560 0
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TABLE III. The "one structure scatter error" AV2 [Eq. (12)] for particular CdSe structures and
cell volumes per atom n, and the "structure averaged scatter error" Evs [Eq. (15)] involving the
variance with respect to the structurally averaged potential. Here, Op is the equilibrium wurtzite
CdSe cell volume per atom and Qp is the equilibrium diamondlike Si cell volume per atom. The
numbers in the table are the averaged values of the five largest AV(~ C ~)'s for that structure. Results
for CdSe are given for the "symmetric" [Cd+Se] and antisymmetric [Cd—Se] pieces. The unit is
meV.

Structure:
Volume 0:
av( ""/n
~v(cd+se)/n
Av '/n
~v(cd —se) /n
Structure:
Volume 0:
av,""/n
z v"')/n

Wurtzite
Op

53.9
62.7
9.66
13.5

Diamond
&o
1.69
24.0

Wurtzite
0.940p

58.6
72.4
10.3
21.6

Diamond
0.92np'

2.01
30.1

Zinc blende
Ap

1.54
15.2
2.74
11.7

P-tin
0.720()

6.52
15.9

Rocksalt
Op

0.36
45.7
0.46
3.48

Simple cubic
0.82n',

2.82
11.3

Rocksalt
0.80p
0.38
19.2
0.82
3.32

Simple hexag.
0.69np'

5.15
15.1

CD -80

-120

~ -160 '

CU
+ 30 &)-------C
CD

O 20

~
C3

10

D
CU p

a
CD
CD
65 0—
CD0
65

G$
O

-20

CL~ 30
0

(a) Cd+ Se

) Cd-Se

A AA

(c) Si

Momentum q (Bohr '
)

FIG. 1. The spherical LDA (SLDA) potential vs&~&([C ~)

[Eq. (10)] as obtained from self-consistent bulk LDA calcu-
lations on five crystal structures and cell volumes. Diamond
symbols show the numerical results obtained by solving Eq.
(10) for all five structures. Solid lines represent least square
fits of all the diamond symbols using the analytic expression
of Eq. (14). Dashed lines represent the empirically adjusted
potential (SEPM) fit to the experimental excitations. For
CdSe, we give the symmetric v + v potential as well as
the antisymmetric v " —v part.

Si. We see the following. (i) For wurtzite CdSe, the AV2
error is as large as the "strictly forbidden refIections" er-
ror Avi, while for zinc blende CdSe AV2 is only 5% of
b, Vi. (ii) For rocksalt CdSe, AV2 is the only source of
the spherical approximation error since LVq ——0. Fur-
thermore AV2's are very small ( 0.5 meV). (iii) For all

Si structures, LV2 is of the order of only 5 meV; thus
for the diamond structure AV2 is much smaller than the
"strictly forbidden refIections" error LV». In summary,
the spherical approximation errors LVq+LV2 for individ-
ual structures are of the order of 60 meV for the fourfold
coordinated structures and much smaller ( 1 meV) for
the higher coordinated structures.

The solutions vs&'DA([C [) vs [G [
of Eq. (10) for

CdSe and Si are shown as the diamond symbols in Fig.
1. Instead of showing v( ) and v( ') separately, we have
plotted in Fig. 1 the sum v ( ) + v ( ) and the dif-

ference v( ) —v( '). [So the index o. in vs&'DA([G ~)

is not Cd and Se, but the symmetric Cd+Se part and
the antisymmetric Cd —Se part. ] The zero momentum

var D~ (0) + vs&DA (0) and vsLDA (0) points are arbitrary(ca,~) (Se,cr) (si,~)

in bulk IDA calculations. They were calculated here
from the work functions of wurtzite CdSe (Refs. 22 and
23) and diamondlike Si (Ref. 24) crystals. The differ-

ence vsLDA (0) —
vs&DA (0) represents the average poten-(Cd, ~) (Se,o )

tial difference between pure bulk Cd and pure bulk Se.
This difference was taken here as the potential difference
between the Cd bulk region and the Se bulk region in a
supercell calculation which consists of a few monolayers
of Cd and a few monolayer of Se on a simple cubic lat-
tice. The important result demonstrated in Fig. 1 is that

v+&~z([G [) of different structures and unit cell volumes
all fall on a nearly universal curve for a given ci.

The structurally averaged and least square fitted
curves us&D&(q) of Eq. (14) are shown in Figs. 1(a)—
1(c) as solid lines. The fit is excellent. The "structure

averaged scatter errors" AVs calculated using usLD&(q)
in Eq. (15) are reported in Table III for CdSe and Si.
Now the errors are typically of the order of 20—70 meV
for all structures. We can thus conclude that structural
averaging is the largest source of error m usLDA(q) for(~)

the higher coordinated structures. On the other hand,
for the lower (fourfold) coordinated structures, the struc-
tural averaging error LV3 has similar magnitude as the
spherical approximation errors LVq + AV2 for individual
structures. The overall error in usLD&(q) for all struc-
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tures is as small as & 70 meV. This suggest a good struc-
tural transferability of us&&A (q).

To examine this point we compare the band structures
obtained using in Eq. (4) us&&&(q) with the band struc-
ture obtained in direct LDA calculations. This compari-
son is given in Tables IV for CdSe in the wurtzite struc-
ture, in Table V for CdSe in the rocksalt structure, and
in Table VI for CdSe in the zinc blende structure and
a deformed wurtzite structure. The root mean square
(rms) differences between LDA and SLDA band ener-
gies are about 50 meV, consistent with the overall error
in us&&'A (q) discussed above. To see the effects of hy-(cv, se)

drostatic pressure we give in Tables IV and V the en-
ergy difference e'(Ao) —e(Bi) for two unit cell volumes
(Op and Oi) as computed in the LDA and SLDA meth-
ods. This comparison shows that the average error in
hydrostatic deformation potential of SLDA relative to
that of LDA is about 20% for wurtzite CdSe and 8%%uo for
rocksalt CdSe. Besides the five CdSe structures men-
tioned above, we give in Table VI the band energies of
wurtzite CdSe but with randomly displaced atoms (of
the order of 4% of the bond length). The band energy
difFerence e, (B; + b) —e;(R;) between this deformed
structure (B; + 8) and the original wurtzite structure
b = 0 reQects phonon deformation potentials. The aver-
age phonon deformation potential difI'erence between the
LDA and SLDA is about 20%.

For Si systems, instead of showing all the band edge
states as we did for CdSe, we give in Table VII only the
rms and maximum band energy difFerences between the
SLDA and LDA. Here, we include most high symmetry
points for each structure (e.g. , L, I', A, and K for the di-
amond structure) and all eigenstates up to 4 eV above
the conduction band minimum for semiconductors and

4 eV above the Fermi energy for metals. The average

SLDA vs LDA energy difFerence is about 60 meV, similar
to the potential error of us&&z(q). Notably, the energy(s)
errors for simple cubic, simple hexagonal, and P-tin struc-
tures are much smaller ( 15 meV) than those for the
diamond structure. This is consistent with the fact that
the potential errors (Table III) of the former structures
are smaller than those in the diamond structure. The
hydrostatic deformation potential difI'erence between the
SLDA and LDA is about 18% for the diamond structure.
Table VII gives the energies of the diamond structure
with randomly displaced Si atoms (by 10% of the bond
length). The error in the phonon deformation potential
is about 14%. Table VII also shows predictions for ad-
ditional crystal structures, not used in our fits. These
include the fourfold coordinated BC8 structure, which
has eight Si atoms per unit cell and an atomic volume of
0.9100'. The average SLDA vs LDA band energy error is
75 meV, only slightly larger than the errors for the struc-
tures included in the Gt. We also tested the simple face
centered cubic structure, which is a 12-fold coordinated
system with an atomic volume of 0.7200'. The average
SLDA x s LDA energy error is also 75 meV.

To summarize the energy errors we can say that the
spherical and structurally averaged potential us(&&A(q)
reproduces the original self-consistent LDA band ener-
gies to within 0.1 eV or better for a range of difFerent
crystal structures, including those not used in its con-
struction.

We next discuss the accuracy of us&&A(q) in reproduc-
ing LDA tvave functions and related properties. To this
end, we have calculated the overlap between the SLDA
wave functions g; IEq. (4)] and the LDA wave functions
g; [Eqs. (1)—(3)j. The results for CdSe in the wurtzite
structure and for Si in the diamond structure are listed in
Table VIII, where wave functions up to about 4 eV above

TABLE IV. Comparison of band energies e; (in eV) of high symmetry band edge states of CdSe
in the wurtzite structure as obtained by the original LDA, the LDA with spherically averaged local
potentials (SLDA), and the empirically adjusted LDA (SEPM). rms denotes the root mean square
difference between LDA and SLDA results. We show band energies at the equilibrium cell volume
Ao as well as the difFerence in band energies at two cell volumes (proportional to the hydrostatic
deformation potential). Both the LDA and the SLDA use basis set cutofF of E,„q ——33 Ry, while the
SEPM is calculated with a reduced cutofF of 6.8 Ry plus a compensating Gaussian (G) correction
discussed in Sec. IIIB. The zero of energy is at the top of the valence band.

&- (Ry):
r,.
+5,6e
Ag, 3

~i,3~

M4„
M3
Hg„
H3~
K3v
K2
rms diff.

Wurtzite CdSe
LDA SLDA

33 33
0.858 0.870

—0.366 —0.371
2.590 2.592

—1.195 —1.194
3 ~ 102 3.122

—0.659 —0.662
3.451 3.498

—0.978 —0.987
3.912 3.957

—1.570 —1.557
4.438 4.467

0.023

e, (Q = Bo)
SEPM
6.8+G
1.847

—0.331
3.434

—1.165
3.792

—0.702
4.218

—0.976
4.693

—1.588
4.742

e, (O =
LDA

33
0.218

—0.041
0.176

—0.130
0.074

—0.074
0.028

—0.102
0.139

—0.169
—0.085

0.940O)—
SLDA

33
0.250

—0.039
0.209

—0.120
0.119

—0.070
0.081

—0.097
0.173

—0.150
—0.011
0.036

e, (O = Qo)
SEPM
6.8+G
0.252

—0.044
0.203

—0.151
0.134

—0.079
0.077

—0.134
0.209

—0.154
0.025
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TABLE V. Same as Table IV (see caption), but for rocksalt CdSe.

E.„t, (Ry):
F,.
L3v
Lg
X5v
Xg
K4v
Kg
E4„
Zg
rms diK

Rocksalt CdSe e, (A =
LDA SLDA

33 33
0.766 0.808
0.282 0.267
3.548 3.451

—1.636 —1.664
—0.235 —0.208
—1.059 —1.086
1.835 1.833
0.381 0.374
3.854 3.874

0.040

0.80o)
SEPM
6.8+G
1.727
0.316
4.009

—1.568
1.055

—0.985
2.809
0.385
4.491

e, (Q
LDA

33
1.176
0.153
0.269

—0.481
0.294

—0.309
0.477
0.155
1.297

0.80o)—
SLDA

33
1.263
0.143
0.367

—0.464
0.358

—0.299
0.516
0.146
1.327
0.052

e;(0 = Ao)
SEPM
6.8+G
1.172
0.196
0.414

—0.402
0.421

—0.228
0.598
0.177
1.315

TABLE VI. Same as Table IV (see caption), but for the
zinc blende and a deformed wurtzite structure of CdSe. We
show band energies at the equilibrium cell volume Oo for zinc
blende as well as the difFerence in band energies between the
deformed and the original wurtzite structures (proportional
to the phonon deformation potential).

E~~t (Ry):

F,.
Lg
X5„
Xg
K2
K3
rms

LDA
33

Zinc blende
0.837

—0.644
2.593

—1.604
3.347

—1.320
3.907

Deformed wurtzite
0.096
0.016
0.177

—0.243
0.208
0.019

—0.123
—0.189

0.270
—0.125

0.113
0.239

F,v

Fic
+5)6v
&i,s
Li,3

M4
M3,
H3v
H3c
K3v
Kg
rms diK

SLDA
33

CdSe
0.829

—0.652
2.550

—1.625
3.258

—1.338
3.833
0.048

CdSe
0.156
0.017
0.143

—0.191
0.277
0.017

—0.144
—0.154

0.319
—0.088

0.181
0.237
0.043

e;(Qo)

SEPM
6.8+0

1.733
—0.603

3.612
—1.553

3.875
—1.265

4.599

e, (R; + h) —e;(R;)
0.162

-0.007
0.165

—0.124
0.342
0.015

—0.083
—0.126

0.350
—0.156

0.289
0.228

the conduction band minimum are included. For both
systems, the average overlap (@,~g, ) is above 99.99Fo,
while the minimum overlap is about 99.97%. This agree-
ment is excellent.

A more stringent test of wave function quality is
to compare the momentum matrix elements M;y
(vP, ~p~@y), since a small change in the wave function can
lead to a large change in this quantity. Table IX com-
pares the momentum matrix elements squared as com-
puted with LDA and SLDA wave functions. We see that
they follow each other very closely, with typical errors
less than l%%u&j.

Given the momentum matrix elements M, y, the ab-
sorption spectra can be calculated as

ez(E) = ) * h(E —Eg + E,), (i7)

while the static dielectric constant is given by

B. Reducing the size of the plane wave basis set

We are now at the point of modifying us(&D&(q) to ob-
tain the SEPM potentials. However, before doing so, we
would like to reduce the number of plane wave basis func-
tions needed to solve the Schrodinger equations with the
SLDA. The motivation here is purely practical: After all,
the purpose of developing an empirical pseudopotential
is to perform fast computations for large systems. The
converged cutoff energies of 20 Ry for Si and 33 Ry for
CdSe correspond to about 250 and 500 plane waves per
atom; this is excessive for large system calculations.
We would like to reduce the cutoff energy to about 5 Ry,

e, =1+— dE,2 ez(E)
'

7T p

where i and f denote the initial and final states. From
perturbation theory, we know that to get the correct
response function [thus ez(E) and e, j under Hamiltonian

H, we should replace M;y by (vP;~ s& ~vga). In our case of
a nonjtocal pseudopotential Hamiltonian, one needs to use
OH/Bk = p+ BV„„i,i/Bk. For the sake of comparison
and to understand how much each term contributes, we
have calculated, however, e2(E) and e, by using both
the momentum p and the p+ BV„„i,i/Ok as the matrix
element M,.y. The results for e, are listed in Table X. The
differences between the LDA and SLDA are only about

In summary, the wave functions, transition matrix ele-
ments, and dielectric constants obtained with the spher-
ical and structural averaged atomic potential us~aDA(q)
reproduce the original self-consistent LDA calculations
extremely well.
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fcc
e, (0.72Ap)

75
122

TABLE VII. Band structure error e;" —e, (in meV) for Si systems. The root mean square
(rms) errors and the maximum errors of the high symmetry band energies for each structure are
listed. We include in the statistics most high symmetry states (e.g. , I, I', X and K for the diamond
structure) and average over band energies up to 4 eV above the conduction band mixiimum or
Fermi level. E,„i ——20 Ry is used for all the calculations. The values in the parentheses of e;()
denote the cell volume per atom and 00 is the equilibrium cell volume per atom of diamondlike Si.
The SLDA vs LDA error in the hydrostatic deformation potential in column 4 is about 18'Po and
the relative error of the phonon deformation potentials in column 5 is about 14'Po. The BC8 and
fcc structures were not included in the fit of the SLDA potential.

Si structure: Diamond Diamond Diamond Deformed diamond Simple cubic
SLDA —LDA: ei(AO) ei(0.920p) ei(00) —ei(0.920p) ei(R+ 6) —ei(R) ei(0.820O)
rms error: 46 69 59 66 10
Max error: 97 136 201 176 22

Si structure: sh P-tin BC8
SLDA —LDA: e ' (0.6900) e ' (0.720s ) e ' (0.9 1 Ap)
rms error: 16 15 75
Max error: 43 41 270

so there are only about 30 plane waves per atom.
With a small energy cutoff, the band energies are usu-

ally not converged with regard to the basis. As a result,
there will be a discontinuity in the band energies vs Bloch
function wave vector k, since the number of plane wave
basis functions changes discontinuously as a function of
k. (This error can appear in large supercell calculations
even though only the I' point energy is used, due to the
folding of off-I' states. ) To correct for this error, we have
used a smooth cutoff which smears out the discontinu-
ity. This smooth cutoff is only used for CdSe systems.
For Si systems, the conventional abrupt cutoff is used.
The details are given in Appendix A. We also developed
a way of implementing the nonlocal potential in a plane
wave basis calculation so that the Hv/r operation scales
linearly with the size of the system. This is called "small
box implementation of the nonlocal potential" and is fast
when E „q is small. The details of this method are given

in Appendix B.
While the "small box" implementation involves only

small numerical errors, the use of a small basis set can
have a dramatic effect on the band energies. Shown in
Fig. 2(a) and Fig. 3(a) are the SLDA band structures
of wurtzite CdSe and diamondlike Si, using a high E,„q
(33 Ry for CdSe, 20 Ry for Si) and a low E,„t (6.8 Ry
for CdSe and 5.6 Ry for Si). [The high E,„& LDA results
(not shown) are almost indistinguishable from the high
E,„& SLDA curves in Fig. 2(a) and Fig. 3(a).] Signifi-
cant differences in band energies are apparent, with the
largest difference occurring at the 8-like states. Based
on this observation, a simple solution is found: we add
to the 8 nonlocal potential a negative Gaussian term

e ~"~ j pulling down the s state energy. By
adjusting V& and B&, we have arrived at the follow-

ing solutions: for Se in CdSe systems, V&
' ——3.72 Ry

LDA(33)
SLDA(33)

0.99991
0.99982

LDA(33)
BC(33)
0.970
0.923

rms

TABLE VIII. Wave function overlaps ](@;~Q,')] where Q, and vP,' are obtained by using different
potentials in the Schrodinger equation. Here, LDA, SLDA, and SHPM denote, respectively, the LDA
[Eqs. (1)—(3)], the LDA with spherically syxnmetrized local potential and the empirically adjusted
SLDA. For CdSe in the wurtzite structure we considered wave functions at the I' point and bands
up to 4 eV above the conduction band minimum, while for diamondlike Si wave functions at the
I', X, and K points and bands up to 4 eV above the conduction band minimum are considered.
The numbers in the parentheses denote the plane wave basis energy cutoff E,„t, (in Ry), while
"6.8+G" and "5.6+G" are defined as in Table IV (see caption). The root mean square (rms) and
the minimum overlap of the wave functions are listed. BC stands for the Bergstresser and Cohen
empirical pseudopotential for CdSe (Ref. 34), while CC denote the Chelikowsky and Cohen nonlocal
Si empirical pseudopotential (Ref. 35).

](@,~g,') ] for wurtzite CdSe
SLDA(33) LDA(33) SLDA(6.8+G)

SLDA(6.8+G) SEPM(33) SEPM(6.8+G)
0.986 0.998 0.998

min 0.971 0.995 0.996

min

LDA(20)
SLDA(20)

0.99998
0.99971

SLDA(20)
SLDA(5.6+G)

0.987
0.983

diamondlike Si
LDA(20) SLDA(5.6+G)

SEPM(20) SEPM(5.6+G)
0.9998 0.9998
0.9993 0.9994

LDA(20)
CC(20)
0.994
0.987
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TABLE IX. Momentum matrix elements M;&

)(g;~p~gf)( for wurtzite'CdSe and for diamondlike Si as
obtained by various approximations. Here, LDA, SLDA,
and SEPM denote, respectively, the LDA [Eqs. (1)—(3)],
the LDA with spherically symmetrized local potential, and
the empirically adjusted SLDA. The unit for M, &

is bohr
The notations "6.8+G" and "5.6+G" are de6ned as in Table
IV (see caption). EPM stands for the Bergstresser-Cohen
empirical pseudopotential for CdSe (Ref. 34) and for the
Chelikowsky-Cohen nonlocal empirical pseudopotential for Si
(Ref. 35). J and

~~
denote perpendicular and parallel to the

c axis of the wurtzite structure, respectively.

4

~ aa ~ L

—r~5.
r25. —res
Xg„—Xg,
Kg„—K3„
K,„—K,'.
Ks, —Kg,

LDA SLDA SLDA SEPM
E,„& for CdSe (Ry) 33 33 6.8+G 6.8+G
E,„q for Si (Ry) 20 20 5.6+G 5.6+G

((i~p~ ~ f) (
for wurtzite CdSe

0.145 0.144 0.141 0.152
0.170 0.169 0.168 0.179

r.„—r.. 0.311 0.313 0.324 0.320
r5„—r6, 0.380 0.382 0.360 0.386

((i~p((( f) [' for wurtzite CdSe
0.107 0.106 0.106 0.116
0.190 0.189 0.196 0.201

r,„—r,. 0.208 0.208 0.227 0.218
r,„—r', . 0.241 0.242 0.231 0.237

)(i(p
~ f) )

for diamondlike Si
0.025 0.025 0.026 0.029
0.546 0.550 0.532 0.533
0.122 0.122 0.115 0.122
0.140 0.140 0.147 0.144
0.123 0.124 0.126 0.120
0.0094 0.0093 0.0082 0.0097

EPM
33
20

0.295
0.301
0.306
0.490

0.222
0.234
0.159
0.315

0.038
0.533
0.123
0.151
0.128
0.0072

MI
CDII o-

-12

X K, U

FIG. 3. SLDA band structure of Si in the diamond struc-
ture as obtained with difFerent basis set cutoff energies (R,„q).
Solid lines in (a) and (b): large cutofF of 20 Ry; dashed line
in (a): small cutofF of 5.6 Ry; dashed line in (b): small cutofF
with a compensating Gaussian (G) correction. The zero of
the energy is at the top of the valence band.

Ecut
=33 Ry
=6.8 Ry

I
U)II
Uc
CQ

C5

CQ -10—

Ecut
=33 Ry
=6.8+8

A L M I A H K

FIG. 2. SLDA band structure of CdSe in the wurtzite
structure as obtained with diff'erent basis set cutoK energies

(R,„q). Solid lines in (a) and (b): large cutofF of 33 Ry; dashed
line in (a): small cutofF of 6.8 Ry; dashed line in (b): small
cutofF with a compensating Gaussian (G) correction. The zero
of the energy is at the top of the valence band.

and R ' = 0.37 A while no correction is needed for Cd.G

In Si systems, V& ———6 Ry and 8&' ——0.265 A.(si) (si)

In Fig. 2(b) and Fig. 3(b), the Gaussian corrected
SLDA band structures with low E,„q are compared with
the high E,„q SLDA results. Comparing to Figs. 2(a)
and 3(a), it is clear that the band energy error has been
mostly corrected. The same is true for other crystal
structures. Especially interesting is the behavior of the
hydrostatic deformation potential and the phonon defor-
mation potentials: We find that the Gaussian corrected
low E,„q SLDA has similar deformation potential errors
as the high E,„q SLDA when compared to the high E,„t
LDA results. The change of e, from high E,„t calcula-
tion to low E,„t but Gaussian corrected calculation is
about 7% as shown in Table X. More detail discussions
are given in Ref. 31.

In summary, when E,„t is lowered to about 5 Ry, there
are large band structure errors. However, when a Gaus-
sian potential is added to the 8 nonlocal potential, most
properties are restored to their high E,„t values. The
physical properties we tested include band energies, wave
functions, transition matrix elements, density of states,
and dielectric constants. Although this step of lowering
E „~ might be numerically the most severe approxima-
tion in our whole procedure, we find satisfactory results
in all tested properties.
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C. Fitting the SLDA potential to the SEPM

D. SEPM results and colnparison
with the traditional EPM

In this section, we will show our SEPM results
and compare them with the results of the traditional

3

0 2

CQ

Q)
Q)

0
G$

-2

C5

CO

I

O

CL
LU
(f}

I I I

1 2 3 4

Momentum space q ( Bohr '
)

(b)

FIG. 4. Potential difFerence usEpM —
u&&DA in momentum

space for (a) Cd and Se and (b) Si. 'These are the p state po-
tentials and are used as the local potentials in the calculation.

We next will fit usLD&(q) to get the semiempirical po-

tential usEpM(q) using Eqs. (14) and (16). The low E,„t
and the Gaussian corrections are kept axed as is the non-
local part of the LDA pseudopotential V„„~,~. The fit-
ting procedure follows the outline in Sec. II. Equation
(16) has been iterated 2—3 times, as described in Ref.
15. For CdSe, we now also include in the Hamiltonian
the spin-orbit interaction. This is done by adding to the
Hamiltonian the relativistic LDA (nonlocal) spin-orbit
pseudopotential term, and, at the same time, expanding
the wave function g in terms of spin up Qt and spin down

gg components (see Appendix B and Ref. 30). The non-
local spin-orbit term was generated by the atomic pseu-
dopotentiaj generator, and is used without any modifi-
cations. Only ten of the coefficients C( )(n) of Eq. (14)
for each n out of a total of 20 C( )(n)'s have been modi-
fied in Eq. (16). This corresponds to the modification of

us&D&(q) in the region of 0 ( q ( 5 bohr

The resulting usEpM(q) is shown as dashed lines in
Figs. 1(a) and l(b) for CdSe and Fig. 1(c) for Si. The

change &om us&D&(q) to usEpM(q) [Figs. 1(a)—(c)] is

very small. Figures 4 and 5 show the di8'erence usEpM—

us&0& in momentum and real space, respectively. While
this difFerence depends on the details of the fit, we can
see that the changes are rather small and located around
the bond center region in the solid.

The local and nonlocal SLDA and SEPM potentials
for Si and for CdSe are deposited in an anonymous FTP
site in a numerical form, so interested readers can get
them electronically.

20

10 -- SEPM SLDA (Cd)

1
'I

\

', SEPM (Se)
1

SEPM (Cd)
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-15—
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UJ -20—
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2 3 s
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FIG. 5. Potential differences usEpM QsLDA and the

semiempirical pseudopotenitals uszpM in real space for (a)
Cd and Se and (b) Si. These are the p state potentials and
are used as the local potentials in the calculation. The vertical
arrows indicate the bond center locations in the equilibrium

(a) wurtzite and (b) diamond structures.

Bergstresser and Cohen 4 (BC) local empirical pseudopo-
tential for CdSe and with the Chelikowsky and Cohen
(CC) nonlocal empirical pseudopotential for Si. The
comparison is done for (a) the band structure, (b) the
wave functions, and (c) the optical properties.

(a) SEPM band energies. The fitted experimental
quantities P, (Refs. 36—55) and their SEPM results are
listed in Table XI for CdSe and in Table XII for Si. To
see the modification from SLDA to SEPM, we also listed
the physical quantities calculated from the SLDA. For
Si, our SEPM band structure has a similar quality as
the (already accurate) Chelikowsky-Cohen nonlocal em-
pirical pseudopotential. The results of GW quasiparti-
cle calculations are also listed in Table XI for CdSe to
compare with our results and experiments. For CdSe, our
SEPM result has a much better quality, especially for the
upper valence bandwidth, compared to the Bergstresser-
Cohen local empirical pseudopotential. For CdSe in the
rocksalt structure, our SEPM conduction band minimum
is at X point and valence band maximum is on the Z line.
These are consistent with the experimental results and
GTV quasiparticle calculations. To see the trend, we
have listed the SEPM band energies in Tables IV, V,
and VI for CdSe structures. Note that both the hydro-
static and. phonon deformation potential of the SEPM
follow closely those of LDA and SLDA results. This is
one of the advantages of using the SI DA as our starting
potential in the fitting procedure. The SEPM inherits
many of the correct properties of the SLDA (hence LDA)
without explicit fitting. Finally, the band structures of
wurtzite and rocksalt CdSe using the SEPM with spin-
orbit coupling are shown in Fig. 6 (Ref. 57) and Fig. 7,
respectively, and the band structure of diamondlike Si
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LDA S
33
20

wurtzite
6.40
7.16

SLDA
6.8+G
5.6+G

E,„t, for CdSe (Ry)
E,„t, for Si (Ry)

e, (J )
6.34
7.07

CdSe
M's = (ilplf)
M'f = (tip+ ',„If)—
M'f = (ilp+ g'g(&+ G)lf)
M, s = (alp+ ~„(v+G+ w)l f)

6.52 4.66 4.85
7.30
7.48
7.63

5.19
5.31
5.40

TABLE X. The static dielectric constants e, of CdSe and Si as calculated using Eqs. (17) and
(18) and different sources for the transition matrix element M~f between initial (i) and final (f)
electronic states. p denotes the momentum operator, while V, G, and W are the nonlocal potential,
the 8 nonlocal Gaussian correction, and the smooth E,„& operation, respectively, as discussed in
Ref. 31. k denotes a wave vector in the bulk Brillouin zone. LDA, SLDA, and SEPM denote,
respectively, the LDA IEqs. (1)—(3)], the LDA with spherically symmetrized local potential, and
the empirically adjusted SLDA. EPM stands for the Bergstresser-Cohen empirical pseudopotential
for CdSe (Ref. 34) and the Chelikowsky-Cohen nonlocal empirical pseudopotential for Si (Ref. 35).
The correct matrix element form is M,f = (ilBH/Bkl f) when compared to the experiment. J and
II denote perpendicular and parallel to the c axis of the wurtzite structure, respectively.

LDA SEPM EPM
33 6.8+G 33
20 5.6+G 20

CdSe wurtzite e, (ll)
6.43 6.32

7.017.15
M*t = ('lplf)
M'y = (' Is + g, If)
M;f ——('lp+ s'A,. (&+ G)lf)
M;f ——('Ip+ —,'„(&+G+ ~) If)

6.64
7.33
7.50
7.61

4.88
5.37
5.49
5.57

4.68

M'x = (ilplf)
M'f = (&I&+ 'gg If)
M'f = (ilp+ sl, (l + G)lf)

Si diamond
16.49 16.11
14.09 13.78

14.38
12.82
12.88

12.26
10.91
10.95

10.58
10.33

I56

-15—
CQ

CdSe
SEPM

using the SEPM is shown in Fig. 8.
(b) SEPM tvave functions. In Table VIII we show

the wave function overlap between the SEPM and LDA.
In the same table, we also list the wave function over-
laps using the traditional empirical pseudopotentials of
Bergstresser-Cohen and Chelikowsky-Cohen. To com-

pare the different overlaps properly, we compare (g, lg!)
with the same E,„t basis for both @; and @,'. For CdSe,
the overlap of the Bergstresser-Cohen wave function with
the LDA wave function is on average only 97%, the mini-
mum overlap being 92%. On the other hand, the overlap
of the SEPM wave function with the LDA (and SLDA)
wave function is 99.8'%%up on average, the minimum being
99.5%. For Si, the Chelikowsky-Cohen nonlocal EPM
wave function overlap with the LDA result is 99.4% on
average, the minimum being 98.7%. On the other hand,
the overlap of the SEPM wave function with the LDA
(and SLDA) wave function is 99.98% on average, the min-
imum being 99.94%. Thus SEPM wave functions are 10
times closer to their LDA counterparts than the tradi-

A L M I A H K -5

FIG. 6. SEPM band structure of CdSe in the wurtzite
structure with spin-orbit interaction. Only spin up band en-
ergies are shown (The spin down band energies can be 0.1
eV different from the spin up band energies at low symmetry
points. ) The plane wave cutoff energy is 6.8 Ry; a Gaussian
compensating 8 potential is used. The zero of the energy is the
vacuum level. To simplify the comparison with experiment,
the "single" space group representation (instead of "double"
space group representation, Ref. 57) is used for the band state
notation. The spin-orbit splitting is indicated by A, B', and
C in the parentheses.

CDI -10I
-15

6$
CQ

-20

X W

CdSe
SEPM
Rocksalt

FIG. 7. SEPM band structure of CdSe in the rocksalt
structure with spin-orbit interaction. Only spin up band en-
ergies are shown. The plane wave cutoff energy is 6.8 Ry; a
Gaussian compensating 8 potential is used. The zero of the
energy is the vacuum level.
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tional EPM wave functions.
In Table IX, we have listed the matrix elements

I(g;Iplgf)l of the SEPM results and the traditional
EPM results for CdSe wurtzite structure and Si dia-
mond structure. The matrix elements of the SEPM fol-
low closely the LDA and SLDA results. On the other
hand, the matrix elements of the traditional EPM m. -y

sometimes dier from LDA results by a factor of 2.
(c) SEPM optical properties. The SEPM density of

states and the dielectric constants e2(E) are shown in
Figs. 9(a)—9(c) for CdSe and Figs. 10(a) and 10(b)

for Si. The density of states compares very well with
the experimental data, ' especially the peak positions.
For CdSe, however, there are a number of discrepancies
caused by the neglect of the Cd 4d orbits in our pseu-
dopotential treatment. (i) The width of the CdSe upper
valence band in Fig. 9(a) is smaller than the experimen-
tal value. This is partly caused by our neglect of the Cd
4d states. Because of p-d coupling, the 4d state will push
up the top of the valence band resulting in an increased
upper valence band width. (ii) The optical absorption
spectrum eg(E) of CdSe agrees very well with the exper-

TABLE XI. Comparison for CdSe of band energies (in eV), band gap Eg (in eV), and effective
masses (in units of electron mass) as obtained in the LDA, the LDA with spherically symmetric
local potential (SLDA), the semiempirical SEPM, the traditional empirical pseudopotential method
(EPM) (Ref. 34), GW quasiparticle calculations (Ref. 36), and experiments. See Fig. 6 for the
identity of the various band state notations used in this table. The LDA, SLDA, and SEPM
Hamiltonians include spin-orbit interactions. The original data in Ref. 36 did not include spin-orbit
interactions. The data listed here in the GW column have been corrected from the original data
by adding the effects of spin-orbit interactions estimated from our calculations. Unless otherwise
stated, the assumed structure is wurtzite and the energies are measured from the top of the valence
band rq„(A). ZB and RS denote the zinc blende and rocksalt structures, respectively. "6.8+G" is
de6ned as in Table IV (see caption).

CdSe
E~~t (Ry):
Fq, q„(A)[work func. ]
r,'.„(A) —r, .„(a)
Fg, s„(A) —rg, s„(C)

I'3„
rs. (A+ R)
1 s, —rs„(A+ H)
rs, —15„(A+B)
r', „
M3, —M4„
Mg,
M3
M4,
M4„
M3„
M2„
Mg„
M3„

H3 —H3„
K2 —K3
m-(II)
m, (J )
m-~(ll)
m„~(i)
m„n(i)
&g (ZB)
Ag, —Z4„(RS)

L3 (RS)

Reference 22.
Reference 23.

'Reference 37.
Reference 38.
Reference 39.
Reference 58.

~Reference 40.
"Reference 41.

LDA
33

—6.29
0.031
0.46
0.73

—4.27
—0.83
3.11
6.45

—12.19
4.04
3.39
4.83
6.35

—0.74
—1.39
—1.74
—2.55
—3.65
—4.19
4.88
6.05
0.07
0.08
1.64
0.18
0.20
0.70

—0.62
—0.60

1.78
—4.57
—0.87
3.42
7.25

—12.83
5.18
4.50
5.86

—0.85
—1.48
—1.91
—2.79
—3.82
—4.40

1.87
0.73
0.89

Expt.

—5.35, —6.89
0.025(i0.002)"
0.43(i0.01)""'

1.74(+0.1)"
—5.20 (+0.3)"

—1.20(?)'
4.30(+0.1)s'"'

8.5(+0.15)s
—11.4

5.2(5.16—5.25)""
4.5 (+0.15)
6.25(+0.15)
?.50(+0.15)

—1.20"
—1.70"
—2.45"
—3.20"
—3.60"
—4.90"

5.75(5.5—6.0)'s
7.45(7.3—7.6)" s

0.13(+0.01) '

0.13(+0.03) '

1.30() 1 or 1.2 + 0.3)
0.36(0.45 or 0.27+ 0.1)

0.9(V)'
1.68

0.70(0.63—0.76)
0.70 (0.63 —0.76)

'Reference 42.
'Reference 43.
"Reference 44.
Reference 45.
Reference 46.

"Reference 47.
Reference 48.

~Reference 49.

SEPM
6.8+G
—5.24
0.027
0.40
1.72

—4.06
—0.84
3.96
7.12

—12.08
4.88
4.17
5.23
6.95

—0.81
—1.35
—1.79
—2.51
—3.37
—3.88
5.66
6.34
0.13
0.16
1.83
0.29
0.44
1.59
0.69
0.76

SLDA
6.8+G
—4.61
0.052
0.43
0.73

—4.59
—0.91
3.00
6.26

—12.27
4.07
3.27
4.71
6.24

—0.90
—1.59
—1.98
—2.87
—3.94
—4.50
4.93
5.99
0.07
0.08
1.26
0.15
0.21
0.59

—0.80
—0.82

—0.076

1.78
—2.53
—0.58
4.24
7.75

—14.73
5.10
4.90
6.41
7.73

—0.55
—0.70
—1.17
—1.51
—2.36
—2.70
5.93
7.04
0.18
0.17
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CQ
-16
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imental data for the peak positions. However, in the
E 14 eV region, the experimental e2(E) has larger val-
ues than the SEPM results. This too is because we have
neglected the Cd 4d states in our CdSe SEPM calcula-

FIG. 8. SEPM band structure of Si in the diamond struc-
ture. The spin-orbit interaction is not included. The plane
wave cuto6 energy is 5.6 Ry. A Gaussian compensating 8
potential is used. The zero of the energy is the vacuum level.

tions. The 4d electrons have a contribution to e2(E) right
in the 14 eV region. (iii) The static dielectric constants
e, using e2(E) in Figs. 9(b) and 9(c), Fig. 10(b), and Eq.
(18) are reported in Table X. For CdSe, the experimental
value of e, is 6.2, ' while our SEPM result is 5.5. The
difference of 0.7 is likely due to the neglect of 4d states
as explained in Ref. 63.

For Si, the SEPM e2(E) misses the first peak appar-
ent in the experimental result. This peak comes from a
large excitonic eKect of the Si system, and thus cannot
be described by our single-electron representation (the
same is true for all other single-electron methods includ-
ing the LDA and traditional EPM). The experimental
static dielectric constant e, for Si is 11.4, while our
SEPM result is 10.95 (Table X), slightly larger than the
value 10.33 found with the Chelikowsky-Cohen nonlocal
empirical pseudopotential. In the light of the large exci-
tonic effect mentioned above and the neglected local field
efI'ects, we think the agreement between our result and
the experimental result is rather good.

One interesting fact is that, for the LDA, SLDA,

TABLE XII. Comparison for Si of band energies (in eV), band gap Eg (in eV), and effective
masses (in units of electron mass) as obtained in the LDA, the LDA with spherically symmetric
local potential (SLDA), the semiempirical SEPM, and the traditional empirical pseudopotential
method (EPM) (Ref. 35). See Fig. 8 for the identity of the various band state notations used
in this table. The energies are measured from the top of the valence band I'q5i . No spin-orbit
interaction is taken into account. mr'lx(h) and mr' z(h) stand for the non-spin-coupled effective hole
mass [defined as (hk) /2AR] in the I'-X and I' Ldirections-, where i denotes the band degeneracy.
The numbers in the parentheses indicate the experimental uncertainty in the last digit. "5.6+G"
is defined as in Table IV (see caption).

Si
E. & (Ry):
I 2si„[work func. ]
I'g„
I'i5
I'2

X4„
Xi
L2v
Lg„
L3„
Lg,

&g-v
~min
mr, (e)
mT (e)
mr"lx(

mr"~(~)
( ) (h)

Prom Ref. 50.
Prom Ref. 51.

'Prom Ref. 52.
From Ref. 53.
From Ref. 59.
Prom Ref. 54.

gProm Ref. 55.
"Prom Ref. 24.

LDA
20

—5.2
—11.92

2.55
3.14

—2.83
0.62

—9.58
—6.96
—1.17
1.47
3.30
0.51

—4.42
0.97
0.19
0.26
0.17
0.54
0.11

Expt.

4 9h
—12.5(6)'
3.35(1)
4.15(5)
—2.9
1.13

-9.3(4)'
—6.8(2)'
—1.2(2)'
2.04(6)'
3.9(1)
1.124
—4.48
0.92
0.19
0.34m

0.150

0.69g

0.11g

SEPM
5.6+G
—4.90
—11.79

3.01
4.12

—2.78
1.26

—9.52
—6.83
—1.18
1.96
3.88
1.114
—4.26
0.93
0.21
0.31
0.19
0.64
0.15

SLDA
5.6+G
—4.74
—11.98

2.70
3.75

—2.93
0.76

—9.64
—7.06
—1.25
1.58
3.52
0.630
—4.55
0.92
0.19
0.27
0.18
0.59
0.13

CC
20

—12.36
3.42
4.16

—2.88
1.14

—9.90
—7.10
—1.23
2.34
4.34
1.009
—4.47
0.88
0.19
0.31
0.20
0.74
0.12
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FIG. 9. Density of states (DOS) and imaginary part of di-
electric constant ~e2 j o e in
solid lines are SEPM results using a plane wave basis set cu—
ofF of 6.8 R and a Gaussian compensating 8 potentia. e

arallel to the c axis of the wurtzite structure,dicular and para e to e c a
t e DOS is fromrespective y. el The experimental curve or t e is

or e are from Ref. 60.Ref. 58. The experimental curves for e2 are from e .

IV. CONCLUSIONS

This is not the first work which uses t..he bulk LDA
screened potentials to generate effective atomic poten-

theis the work of Stokbro et al. These authors used e

et an1 whenSEPM the e value drops by more t an
p+BV„„~,~/Bk is used in M;y of Eqs. (17) an ( ) in-and 18 in-
stead of p. But this drop for the Chelikowsky-Cohen non-

l 0.25. This implieslocal empirical pseudopotential is on y
that the nonlocal potential of the C e i ows y-
EPM is very di8'erent &om the LDA nonlocal potential.

Cohen nonlocal potential v, &~r~&-&r&
—v ~r&,which is roug y

a positive 0. y ig.55 R hi h spherical step function with a 1
A. radius ) and the LDA nonlocal potential v, (r) —vp(r)

dius of 1 A. , and changes from positive to negative values
when r crosses 0.6 A.).

0)

0 50—
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LDA bulk potential to generate a spherically symmetric
atomic potential for total energy calculations. In order to
a l to dramatically difFerent situations (e.g. , surfaces),
their spherical potential depends on the local c g
sity. In contrast, we use here a fixed potential for i cr-

t t l t uctures. This is possible because we on y
study the bulk systems. Another possible reason or e
good trans era i i y o ourf b 1't f our SLDA potential is that we
only study the band structure, not the total energy, thus
the results may be less sensitive to the potentials (e.g. ,
0.1 eV error is considered tolerable).

Our procedure of fitting empirically from SLDA to
SEPM is analogous to the ab initio GR correction o t e
LDA results Although, conceptionally, the quasiparti-
cle GR' approach is diQ'erent &om the LDA approac
in practice one can consi econsider the GW Hamiltonian as a
correction to the LDA Hamiltonian for its eigenenergies

proach and our SEPM approach change the I DA poten-
tial, such that the ensuing band energies agree with the
exp erimenta resu s. url lt Our SEPM wave functions have
larger than 99.9% overlap with the LDA wave functions.

is provi es somTh d ome insights on a long standing puzz e:
As reported by Hybertsen et aL the GW sing e-par ic e
wave function has also larger than 99.9%%up overlaps with
the LDA wave function and this has never been under-
stood Since in both modifications of the LDA (GW

FIG. 10. Density of states (DOS) and imaginary part of
f Si in the diamond structure. Soliddielectric constant e2 o i in

asis set cutolines are resu sSEPM results using a plane wave asis s
8 otential. Theof 5.6 Ry and a Gaussian compensating 8 potentia .
The ex erimentalspin-orbit interaction is not inc u e

curves for the DOS and e2 are from Ref. 59 and Ref. 64,
respectively.
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and SEPM), the ensuing wave functions have & 99.9%
overlaps with the original LDA wave function, the rea-
son for this must be rather general, and not a unique
property of the GTV correction. The reason might be
that the original LDA band energies are close enough to
the experimental results so that small Hamiltonian mod-
ifications LH are enough to correct them by first order
perturbation Ae; = (@;~AH~g;) without changing the
wave functions.

The change from SLDA to SEPM [us@pM —us&D&]
(Figs. 4 and 5), although always small, is dependent on
the detailed choices of the weights m; and u in Eq.
(16). This nonuniqueness is a manifestation of the em-
pirical nature of the fitting. A more ab initio approach,
using the SLDA and some approximated form of GW
self-energy, might overcome this problem.

Our semiempirical pseudopotential is designed for bulk
systems. It can be applied to the most common struc-
tures that exist for that material. It can be applied to
different volumes for each structure and to the phononic
mode of that structure. It remains to be seen whether
it can be used in alloy systems, where the type of neigh-
boring atoms for a given atom can change. It could be
that some environment dependent scheme, like the lin-
ear interpolation method used in Mader and Zunger's
appoach, " is necessary. The current potential cannot
be used in cases where large charge transfer exists, so
probably it cannot be used for surfaces.

In summary, we presented an approach to generate
semiempirical pseudopotentials. Comparing to the tra-
ditional EPM approach, the current method has the fol-
lowing features. (i) A spherically and structurally aver-
aged screened LDA potential, SLDA, is generated. This
potential can be used to reproduce the LDA band en-
ergies (within 0.1 eV) and wave functions (with overlap) 99.99%) for the most common bulk structures of that
material. (ii) The SEPM is fitted from the SLDA. Be-
cause the change is very small, many physical trends of
the SEPM follow the results of the SLDA (thus LDA)
without explicit fitting. Following the transferability of
the SLDA, the SEPM can be used for different bulk
structures, volumes, and phononic modes. (iii) Because
the change &om SLDA to SEPM is small, the SEPM
wave functions have about 99.9% overlaps with LDA
wave functions. (iv) The fitted band structures, density

of states, optical absorption spectra, arid static dielec-
tric constants are as good as or better than traditional
EPM results compared to experiment. (v) The fitting
&om SLDA to SEPM is a linear process; thus it is easy
and straightforward and guarantees generation of reliable
SEPM's.

ACKNOWLEDGMENT

This work was supported by the once of Energy Re-
search, Materials Science Division, U.S. Department of
Energy, under Grant No. DE-AC02-83CH10093.

APPENDIX A: SMOOTH PLANE WAVE BASIS
CUTOFF METHOD

In a plane wave basis calculation, plane wave functions
e' ' are used in the basis set if

E(G, k) —= —]G —kiz ( E,„„1

where k is the k point wave vector in the first Brillouin
zone and E,„t is a cutoff energy which determines the
size of the basis set. If E,„i is small, the eigenstates (and
eigenenergies) of the system are not converged with re-
gard to the basis set. Thus adding or deleting one plane
wave function in the basis set will change the results.
This causes discontinuities in the band structure because
when k changes a little some plane wave functions may
be added in or deleted from the basis set according to Eq.
(Al). This phenomenon also manifests itself in calcula-
tions for large systems when only the k = 0 states are
examined. This is because the k =—0 states of the large
system may derived &om off-I' point states in the bulk
by k point folding. [In one calculation for a long ( 100
layers) quantum well, we found that the envelope func-
tion of the lowest eigenstate is erroneously oc sin(2vrx/L)
instead of the correct one oc sin(mx/L), where L is the
quantum well length. ] To smear out this discontinuity,
we have used the following smooth cutofF scheme. Still,
we use all the plane wave functions of Eq. (Al) as our
basis set. Then we define a weight function

~(G) = & ~ z ~[K,„g—E(c,k)j
2(i —P)R „t

if E(C, k) ( PE,„i
if PE,„i & E(G, k) & E,„t, (A2)

where P & 1 is a control factor (P = 0.8 is used in the
current calculations). Then in the G space representation
of the Hamiltonian H = 2(C —k) + Vk(Gi, Gz), H is

changed to H' = 2(G —k) + ui(Gi)Vk(Gi, G2)ur(G2).
In other words, before the wave function @ is multipled by
the potential of the Hamiltonian, it is multipled by ui(G)
in G space. Computationally, this will add no apprecia-

ble cost. Now when a new plane wave function enters the
basis set by Eq. (Al), its tv(G) is close to zero. As a re-
sult, this plane wave function provides no new variational
degree of freedom to lower the potential energy [but it
costs kinetic energy 2 (G —k) ]; hence its variational co-
eFicient is zero and the band structure will not suffer a
sudden change. This smooths out the discontinuity in
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the band structure (in the long quantum well calculation
mentioned above, the erroneous lowest eigenstate disap-
pears). One minor inconvenience af this approach exists:
when a constant potential Vo is added to the original po-
tential V of 0, using this cutoK method, the resulting H'
is not simply subjected to a constant shift in energy. In
our calculation we fix the original potential V by requir-
ing the vacuum level to be zero. Another smooth cutofF
method which avoids this inconvenience is to change H
to 2(G —k) iv (G) + Vic(Gi, G2) (for conjugate gra-
dient calculations, the divergence of the kinetic energy
term does not pose problems since a proper precondi-
tioner can be used). However, this method increases the
total width of the energy spectrum of the Hamiltonian,
which makes it difEcult to calculate the density of states
of large systems when the moments method is used. As
a result, this approach is not used in our study. Finally,
when P = 1, the current smooth cutoff method changes
back to the conventional simple cutog' method.

APPENDIX B: SMALL BGX IMPLEMENTATIGN
GF NGNLGCAL PSEUDGPGTENTIAL

For large system calculations we need the operation
II@ to scale linearly with the size of the system. If the
potential V in 0 is nonlocal, the traditional G space ma-
trix multiplication method g~, V(G, G')@(G') scales
as N, where N is the size of the system. Using the
Kleinman-Bylander (KB) nonlocal pseudopotential is
faster than using the traditional method, but it still scales
as N, unless the truncated real space implementation is
used. Here we will introduce a simple, "small box" im-
plementation of the nonlocal pseudopotential based on
the traditional method (so that no KB reference wave
functions are needed and there is no danger of spurious
eigenstates). For the traditional angular-momentum-
dependent nonlocal pseudopotential, the nonlocal part
can be written as

Vnonlocnl (r) ) vnonlocal (r Ri )
B.;

= 5.):l&i-(R.-))«(lr —R*l)P'i (R')I

(Bi)
where R; are the atomic positions. Here (Pi~(R, )l is a
projection function of aiigular momentum Jim) centered
at R; and vi(r) is the lth angular momentum pseudopo-
tential, assumed zero if r ) rond, and rond is about I A. .
When @ is applied to v„„i,i(r —R.;), only the part of g
inside lr —R;l ( r,„q has contributions. This leads us to
the following implementation. For a given atom located
at R;, on the real space numerical grid, consider a small
box (denoted by Q) surrounding R, with its center grid
point closest to R;. Define @g(r) = @(r) for grid points
r inside Q. Then treat @g(r) as if it were periodic within
box Q, and apply it to v„oniocni(r —R;), as in a small su-
percell calculation. This permits us to first fast Fourier
transform vga (r) to @g(Cg), where G g is the recipro-
cal lattice vector of the small box Q. We also transform

v„„i,i(r —R;) into Gg space as vg(Gg, G&). We then
calculate

Pg (Gg ) = Q vg (Gg G'q) gg (G~) (B2)

and fast Fourier transform Pg(Gg) back to real space
Pg(r) and then add this patch of wave function Pg(r) to
the whale space wave function Hg. Repeating this pro-
cess for all the atoms, we complete the nonlocal potential
application for the whole system. The computational ef-
fort for each atom is fixed (independent of the total size
of the system); the whole operation scales linearly to the
number of atoms and thus the size of the system.

One approximation is that we treat gg (r) as if it were
periodic in small box Q. To reduce the error of this ap-
proximation, we have multiplied gg(r) by a mask func-
tion f(lr —R;l) before it is Fourier transformed into
Cg space [to insure the Hermiticity of the operation,
f(lr —R;l) has also been multipled to Pg(r)]. This mask
function is zero (or small in practice) on the boundary
of the small box Q, so that f(lr —R;l)eject(r) is periodic.
To compensate the effect of f(lr —R;l) on the nonlo-
cal potential, vi(r) f (r) instead of vi(r) is used to find

vg(Gg, G~) in Eq. (B2).
The biggest approximation in this method is the finite

size of the small box. In principle, if we have an infinitely
fine real space grid, this method will be exact provided
the small box covers the nonzero region of the nonlocal
pseudopotential. In reality, we have a finite real space
grid, so this method introduces small errors which de-
pend on the size of the small box. In our 5 Ry low E,„&

calculations with numerical Fourier grids roughly twice
the size of the basis set sphere in C space, we find that
when the box size is about 1.5 of 2r, „& the eigenenergy
error is about 0.1 eV, which is tolerable for our calcula-
tions.

The most time consuming step in this method is to
carry out Eq. (B2). If E,„i is large, the number of Gg
is large and this method becomes slow. However, for our

5 Ry E,„& calculation, using a small box size of 3r,„&,
the number of Gg is about 80, so the computation count
for each atom is about 80, which is small. We find that
the computation time on the nonlocal part is about 1.5—2
times that of all other parts.

The vg(Gg, G&) in Eq. (B2) can. be calculated once
and for all for all the atoms of the same type. The atoms
may be at diferent positions inside their small boxs. This
can be treated by applying a phase factor an gg(Gg),
thus the same Vg(Gg, G&) can be used for them. When
the spin-orbit interaction is used in the Hamitonian, the
same procedure can be used, except that the dimensions
of the gg(Gg) and the matrix vg(Gg, Gl&) will double
because of the spin degree of &eedom. Finally, when
the size of the small box is the same as the original su-
percell, the result of the current method is the same as
the traditional G space matrix multiplication method.
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