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Theory of resonant tunneling through a quantum wire
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Quantum confined GaAsiA1As resonant tilnne1ing diodes with submicron lateral dimensions are
studied theoretically using the transfer Hamiltonian formalism. It is shown that a high magnetic
field normal to the current and parallel to the quantum wire cavity can be used to unambiguously
identify the lateral quantum confinement. The current-voltage characteristics for other magnetic
field orientations are also discussed.

I. INTRODUCTION

Since the seminal work of Chang, Esaki, and Tsu,
resonant tunneling of electrons through a double-barrier
quantum well has been extensively studied. Recent de-
velopments in microfabrication technology have made it
possible to produce resonant tunneling diodes (RTD's)
with cavities in the form of quantum dots or wires, i.e.,
zero-dimensional (OD) or one-dimensional (1D) RTD's.
Many researchers have investigated effects of quantum
con6nement on resonant tunneling in such structures
experimentally and theoretically.

Reed et al. observed a series of peaks superimposed
on the negative-differential-resistance peak in a submi-
cron RTD fabricated using electron-beam lithography
and reactive-ion etching. The observed structure was at-
tributed to resonant tunneling through the discrete qua-
sibound states in the quantum well. In the absence of
scattering, additional structure is not expected to ap-
pear in a RTD when the lateral (parallel to the heteroin-
terface) confining potential is the same throughout the
diode. Bryant has argued that the observed structure
is caused by the extreme difference in the emitter and the
well con6ning potentials which enables subband mixing
at the interfaces, or it occurs when the discrete states in
the well are resonant with the emitter Fermi level rather
than the band edge of the emitter subbands. 2 A similar
submicron RTD structure was used to study the tunnel-
ing time, the inelastic scattering time, and the transmis-
sion probability, where a sharp steplike structure was ob-
served well below the main peak in the current-voltage
characteristics I(V). Steplike features between thresh-
old and main peak voltage in I(V) were also reported. s

Tarucha et al. prepared one- and zero-dimensional
RTD's whose lateral con6nement was imposed by a fo-
cused Ga ion beam, and observed 6ne structure in the
I(V), which was assigned to mixing of even- or odd-parity
subbands in the well with subbands of the same parity in
the emitter. The emitter confining potential dependence
of I(V) of 1D RTD's was also reported. ~ By analyzing a
series of current peaks at the onset of tunneling current
in OD RTD's, Tarucha et al. suggested that the magni-
tude of peak current is defined by the degeneracy of the
zero-dimensional level in the well. Gueret et al. reported

fine structure observed in the I(V) of a gated resonant
tunneling diode and argued that the observed structure
gives direct proof of the quantum size effect.

However, more recent work has shown that addi-
tional peaks in I(V) may arise from a completely dif-
ferent mechanism. ' Shallow donors, which are incor-
porated into the quantum well either unintentionally or
intentionally, give rise to a localized preferential current
path which causes subthreshold peaks in the I(V). The
appearance of additional structure in I(V) of small area
diodes, therefore, cannot be taken in itself as conclusive
evidence for lateral quantum confinement.

In this paper, we investigate theoretically resonant
tunneling in 1D RTD's. In particular, we try to clarify
efFects of a magnetic field applied perpendicular to the
current direction, which has been experimentally stud-
ied by using a structure of RTD with submicron lateral
dimensions, ' and show that a high magnetic field may
be used to unambiguously identify the effects of lateral
quantum con6nement.

The organization of the present paper is as follows. In
Sec. II, we present a model for the 1D RTD used for the
experiments of Ref. 26 and the electronic states under ap-
plied magnetic field. Then the tunneling current is calcu-
lated by using the transfer Hamiltonian formalism, where
lateral motion of electrons in the emitter is assumed to be
&ee. The numerical results giving the tunneling current
is presented in Sec. III. In Sec. IV, the effect of emitter
con6nement is discussed. A summary and discussion are
given in Sec. V. Throughout this paper, we set h = 1.

II. FORMALISM

A. Sample structure

A schematic diagram of the device used for the
experiments2s is shown in Fig. 1(a) together with the
coordinate axes for the following discussion. The ac-
tive area of the device is the region of overlap of two
GaAs bars, one (It ——0.5 pm) etched in the top contact
layer and the other (Es = 1.0 pm) in the bottom contact
layer. The sidewall depletion is ~ 0.2 pm for each edge,
and the dimensions of the active conducting region is
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FIG. 1. Schematic diagrams
of the GaAs/AIAs resonant
tunneling diode (a) and the
conduction band profile (b).
The active area of the device
is the region of overlap of two
GaAs bars, one (thickness It.)
etched in the top contact layer
and the other (thickness gs) in
the bottom contact layer.

100 nm x 600 nm. The device is, therefore, considered
to be a short quantum wire and electrons tunnel between
1D states formed in the emitter and the well. The I(V)
have been measured in forward bias where electrons flow
&om the bottom contact to the top contact, and the ex-
perimental results are described in Ref. 26.

B. Model

We use the effective mass approximation and the trans-
fer Hamiltonian formalism to calculate the tunneling cur-
rent for the 1D RTD assuming that the current is limited
by the emitter barrier. Electronic states of the emitter
and well regions are considered separately. In princi-
ple, the confining potentials could be calculated, how-
ever, this requires too much computational time since a
RTD is an open boundary system. 2 In this paper, we
consider fundamental features of I(V) in 1D RTD's, es-
pecially those at high magnetic field. We, therefore, use
a simple model for emitter and well confining potentials
which gives analytical electronic states even under mag-
netic field and is considered to be a good approximation
for a qualitative discussion.

We assume that electrons are &ee along the z direction
and confining potentials of the emitter and the well are,
respectively, given by

forward bias, where electrons flow &om the bottom con-
tact to the top contact, u, & u, and for reverse bias,

In this section, we consider I(V) for forward
bias and we assume u = 0 for simplicity. The effect of
finite u, and I(V) for reverse bias are considered in the
following sections.

The confinement along the x direction is due to the
heterostructure, and for the well is close to a square po-
tential and for the emitter is similar to a triangle poten-
tial. The relative strength is an important factor even
for a qualitative discussion. However, the detailed shape
of the confining potential is not so crucial provided the
transfer matrix element is properly approximated. We,
therefore, assume simple parabolic confining potentials
along the growth direction. The strengths are expressed
by the parameters 0, and 0 for the emitter and the
well, respectively. The actual well width of 90k. implies
0 &O..

C. Magnetic Beld parallel to the long axis (u = 0)

Elects onic 8tate8

For a magnetic field oriented in the z direction, the
single particle Hamiltonian for the emitter, 'R„canbe
written, using the Landau gauge A = (0, Bz, 0), as

V, (z, y) = 2mB.'(z+ As)'+ -'mu)2y', (2.1) 'R, = + (p„+eBx) + ' + -'mO, (z+ b, s) .
2 2 " 2

V (z, y) = 2mB z + 2m(u y (2.2)

where the x axis is defined to be the growth direction,
and y and z are, respectively, perpendicular and parallel
to the long axis of the quantum wire [see Fig. 1(a)]. As
is the distance between the emitter and the well.

The lateral confinement along the y direction is caused
by the sidewall depletion and the confining potential is
approximated by a parabolic potential. The strengths are
expressed by the parameters u and cu for the emitter
and the well states, respectively. Because of the asym-
metric device structure, the degree of confinement is ex-
pected to be difFerent in the emitter and the well. For

(2 3)

In the (z, y, z) representation, the eigenenergies and the
corresponding eigenfunctions are given by

k2» —(i + -', )D. .+ (k„—eBAs)'+ ' (2.4)
e

and

@,.„„(,y, ) = P;(L, ; +b, —X.) *"""'"*' (2.5)

where 0, = (02+ ~2)~~2, u, = eB/m, M, = m(Q, /Q, )2

L, = (mn, ) ~, X, = —(cu, /(mn, ))(ky —eBEs), and
P; (E; x) is the simple harmonic-oscillator-like solution
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(i = 0, 1, 2, . . .,).2s Since 0, 20meV for the device
used for the experiments, only the lowest level (i = 0)
is occupied at low temperature. We, therefore, consider
only the lowest level in the following analysis. The energy
level shows diamagnetic shift for lower magnetic field as
oc (u2/(20, ).

For the well, the Hamiltonian is

2 ] 2
'R = * + (p„+eBx)'+

2m 2m 2m
(2.6)

The energies and the eigenfunctions can be written, in
the (x,p„,z) representation, asso

and

2

E,,A.. = (&+ —.')~+ + (j + —,')~- +
2m

(2.7)

e;,„(x,p„,z) = y, (e+, x') y, (Z;q„') (2 S)

k2
E,,I, = (i+ —2)fI-+(j+ —,')~-+ (2.9)

and

(2.10)

0 = (0 +(u, )i~2, ~ = (u (0 /0 ), L
(mQ ) ~2, and 8 = (mu ) ~ . Since the resonant
peak involving the ground state (i = 0) was observed in
the experiments, we set i = 0 in the following analysis.
The energy level depends on B as 0 and shows diamag-
netic shift for lower magnetic fields as oc u2/(20 ), which
is smaller than that in the emitter because 0 & 0 .

2. Tunnehny cuvv ent

When the tunneling current I is limited by the emitter
barrier, I is given by

I=2e) ) ~Tee e e
~ f —A (kek;e)

k„k.jk.
x A (jk,'; s + eV*)f(s), (2.11)

where we neglect charge accumulation in the well and
assume that the final state in the collector is empty. V*
is the effective applied voltage between the emitter and
the well [see Fig. 1(b)], f (e) is the electron distribution
function in the emitter, T~k~ k k is the tunneling matrix
elements between (k„k) states in the emitter and (jk')
states in the well, and A, (k„k;s) and A (jk„s)are the

where the coordinates [x, q&
— p„/(mu )] are ro-

tated to (x', q„') by the angle of rotation 0

~, + [(02 —(u2 +(u2)2+4(u2 (u, ]'~ and E~ = (m(u~)
For the real device, 0 80meV and ~ is considered
to be a few meV. Therefore, we may neglect u /0 as
compared with unity in the lowest order of w /0, and
we have

spectral density functions in the emitter and the well,
respectively. The tunneling matrix elements are given by

(2.i2)

where 4~(E; k) is the Fourier transform of P~(E; x),s2

= (mu ) i~2, and t is the one-dimensional Bardeen
transfer matrix element which is evaluated at some point
xo in the emitter barrier:

1 By (x) By, (x)
pe + gm (2.13)

y, (x) and y (x) are the wave functions associated with
the quantized x motion in the emitter and the well, re-
spectively. This parameter, however, determines the ab-
solute value of I and is nearly independent of V* and B.
We, therefore, assume that t is constant and independent
of V* and B.

Assuming a simple Lorentzian spectral function of
characteristic width I' in Eq. (2.11), we have

r2
(@. +,V. @ ), +q, f( o1.„1., ) ( . )

Ok„k, 0jk,

k~ is the Fermi wave vector in the emitter,
k2/(2M, ) + 20„and~~ = (j+ 2)~ + 20

The current I is mainly determined by two factors:
the energy matching condition, I'2/(As2& + I'2) (where

Le~k„ is the energy difference between the emitter and
the well, and is given by sI, +eV*—s~), and the tunneling
matrix elements along the y direction, 42(k„).The ap-
plied field B aKects the energy matching condition mainly
through the difference in the diamagnetic shifts in the
emitter and the well states, and the tunneling matrix
elements by changing their argument by eBL8.

where Io ——4et2L, /(I'E ) and we have restored the length
of quantum wire along the z direction, L . I' is a parame-
ter characterizing the energy broadening. 1 has a contri-
bution for the intrinsic widths I', and I' of the states in
the emitter and the well. Moreover, a contribution is also
expected from inhomogeneous broadening in the conduc-
tion band minimum along the length of the wire. The
current I depends on temperature through the distribu-
tion function f (c) and I'. In the following discussion, we
consider low temperature I(V) and use zero temperature
f (s) for simplicity.

When the Fermi energy e~ in the emitter is assumed
to be independent of magnetic field, Eq. (2.14) is reduced
to

"~ dk~ ) ~ w (k2 k2)1/2

2

p2
x4 (E 8; ky + eBb, s) + eV* —e~ 2+ I'2

(2.1S)
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*+ "+ (p. — B ) + -'mO, (z+ As) .
2m 2m 2m

(2.l6)

ei enfunctions areThe energies an d the corresponding eig

— 0, + " + (k, + eBAs) (2.17)

and

iky ik z (2 i8)4" z y z) = P;(L,;z+ As —X,) e ~ e'"",
ikyk x) y) z — i e)

with X, = [u)./(mO,')j(k, + eBAs).
For tne weh 11 the Hamiltonian is

1 2+ (p, —eBz)
2m 2m 2m

2 2 1 2 2+-mO x + 2m(u y2 (2.l 9)

f nctions are given byand the energies and eigenfunc
'

k2
( ) (~ ) 2Mr (2.20)

and
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tend to merge and form a single peak for appropriate I'
and e~. This is the origin of the background modulation
in the calculated curve, and corresponds to the stronger
peaks (see peaks labeled A E—in Fig. 2 in Ref. 26) ob-
served in the experiments (the detailed structure is dif-
ferent between the experimental and calculated curves
since ~ ) 0 for the actual device as will be discussed in
the next section), so we can associate the observed peaks
A, B, C, . . . , with n = 0, 1, 2, . . . , maxima. The spac-
ing in V' is larger than u /e and 2tu /e because the
peaks involving nth maximum appear for LE & 2nu

IV. EFFECTS OF FINITE CONFINEMENT

FIG. 3. Plots of probability density 4 (k„)versus k„for
laterally bound states in the quantum well for j = 0 15
(solid lines), the dispersion of the emitter states (broken line),
and the locus of the n = 1 maxima (dotted line). Also shown
(shaded) is the integration range for Eq. (2.15) for B = 0 T
and 10T. The horizontal axis is in units k = (mu )

~ .
There are N (= [j/2] + 1) maxima in C'~(k„) lying in the
range of k„(0 (or k„)0) labeled n = 0, 1, 2, . . ., for the
j = 15 curve.

high energy states have pronounced maxima in 4 (k&)
at a value k~ „(= [2m(j + 2)~ ]

~ ) and —k~,
As B is increased, these maxima are the only features
in 4 (k„)which remain within the integration range of

k~ + eBA—s & k„&k~ + eBAs for 4&.(k„). This is
true, for example, for states j = 0 11 at B = 10 T
(see Fig. 3). At this value of B tunneling through states
j = 6 11, therefore, results in one clear isolated peak
I(V) Afurth. er increase in B moves the integration
range beyond k~ „and the tunneling current through
the jth state falls to zero (this is true for j = 0 5 at
B = 10T, see Fig. 3). This corresponds to the high field
amplitude dependence of observed peaks. The shift of a
given peak to lower voltage is due to the difference in the
diamagnetic shifts in the emitter and the well.

The amplitude dependence for B = 0 is more compli-
cated, and it can be explained as follows. Peaks in I(V)
occur when the energy matching condition Es~g (V*)
0 is met. There are N (= [j/2] + 1) maxima in C .(k„)
lying in the range of k„&0 (or k„&0). There-
fore a given jth state will give rise to at most % peaks
in I(V). The voltage position of these K peaks, V.*

(n = 0, 1, . . . , N —1), is given by As~k. „(V*) 0 with

kz being the position of the nth maximum in C . (k„)
(see Fig. 3). These peaks correspond to the weak struc-
ture observed in the calculated curve. The voltage (V*)
separation is smaller than the corresponding level spac-
ing, u„for finite Fermi energy of c~ + ~, because
(k(~+i) „)) )k~„(implies V(*.+i) „—V*„&cu, /e.

The peaks in I(V) corresponding to the nth maximum
in C (k„)but &om different subbands (different index j)
tend to occur at approximately the same voltage. This
is because the locus of the nth maxima in (s, k„)space
(see Fig. 3 in which the locus of the n = 1 maxima is
shown as a dotted line) is approximately parallel to the
dispersion of the emitter states. Therefore, these peaks

A. Magnetic field parallel to the long axis (u & 0)

for B
~~

z, where k~; = (2m[a~ —(i + z)w, ])
(i + 2)~, + 20„s,= (j + 2)~ + zA, and

M;~(eBAs) = "4;(E, I„k„—eBAs)4~(E E;k„)2'
(4.2)

with E, = (m(u, )

B. Magnetic Beld perpendicular to the long axis
(~- & o)

For B
~~ y, the current is given by

(s,„+eV* —s,„.~~.) + I' ' (4.3)

withk~, = (2M, [s~ —(i+ z)(u,]),s;k = (i+2)ur, +
k, /(2M, ) + z A„ski, = (j + 2)(u + k, /(2M ) + 20
and

m~=, Z;y ~ E;ydy. (4.4)

C. Dependence of I(V) on emitter confinement

Figure 4 shows the calculated tunneling currents as a
function of effective applied voltage V* for various values
of w, (other parameters are the same as those for Fig. 2)

For finite emitter lateral confining potential (a, & 0)
the emitter states can be given analytically as for the well
states, and the current can be written as

p2—= —) ky, I. M, (eB&s).
IO 7l r;+ eV* —c. 2+ I'2

u
V ~

I'

(4 1)
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FIG. 5. Calculated plots of zero field tunneling cur-
rents as a function of effective applied bias AE for
I' = 1, 1.5, 2.0, 2,5meV (from bottom to top). The lateral
confining energy of the well, cu, is 3.5 meV, and that of the
emitter, u, is 1.5 meV.

0
10 15 20 25

not be clearly identified for I' + 1meV, an appropriate
finite F ( 1.5 meV) is essential for the qualitative agree-
ment between the experimental and the theoretical I(V)
For larger I', the stronger series of peaks is still observed
but the weaker series is no longer resolved for I' & 2 meV.
This should correspond to the observed temperature de-
pendence of I(V) (see Ref. 26) because we can expect
larger I' for higher temperature.

eV*/m

FIG. 4. Calculated plots of zero field tunneling cur-
rents as a function of effective applied voltage V for var-
ious values of lateral emitter confining energy u, (a).
ur, = 0, 0.5, 1, 1.5 meV and (b) u, = 0, 1.5, 3.5, 7meV (from
bottom to top). The lateral confining energy of the well, u
is 3.5 meV.

E. Dependence of I(V) on magnetic Beld

Figure 6 shows the calculated currents for finite ~,
as a function of LE in the presence of a magnetic field
perpendicular [Fig. 6(a)] or parallel [Fig. 6(b)] to the
long axis of the wire. The following parameters were

at zero field. For Id, ( ur [Fig. 4(a)], we find that the
I(V) changes gradually as ur, : the finite ~, makes the
stronger series clearer and weakens the smaller peaks,
and the spacing of the stronger series becomes shorter as
u, increases. These features are essentially understood
from the fact that I(V) has no peaks other than the main
resonance for u, u~, " and a detailed discussion about
the change in the I(V) will be given later. A further in-
crease in u beyond u, u results in a lower peak cur-
rent together with much weaker additional structure than
that for ~, ( w [see I(V) for u, = VmeV in Fig. 4(b)].
These features are consistent with the experimental I(V)
for reverse bias, where u, is considered to be stronger
than w~.

0
~ 5 I ~ ~ ~ I ~ ~ t ~ I ~

0 5 IO

I ~ ~ ~ I ~ I ~ i I I ~ ~ ~ I ~ s ~ ~ I ~

15 0 5 l0 15

AE/m

D. Dependence of I(V) on level width

Before studying the magnetic field dependence of I(V)
for finite ur„we discuss the dependence of I(V) on 1', be-
cause I' is the only parameter that we used as a fitting pa-
rameter. Figure 5 shows zero field I(V) for ~, = 1.5 meV
(Ref. 26) as a function of b,E [= eV' —2(O +~ —0, —
u, )] for I' = 1 2.5meV. Since the stronger series can-

FIG. 6. Calculated plots of tunneling currents as a function
of effective applied bias AE in the presence of a magnetic field
between u = OmeV (lowest curve) and u, = 20meV (top
curve) in 1 meV steps. The field is oriented normal to the
current direction and either perpendicular (a) or parallel (b)
to the long axis of the quantum wire. The lateral confining
energy of the emitter, ~„is 1.5 meV. AE = 0 corresponds to
an applied voltage which aligns the lowest levels of the emitter
and the well at B = 0. Parameters are discussed in the text.
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used for the calculation: 0, = 20meV, 0 = 80meV,
~, = 1.5meV, ~ = 3.5meV, c~ ——6meV, I' = 1.5meV,
and As = 200k. . There is no qualitative difference be-
tween Fig. 2 for u = 0 and Fig. 6 for u, = 1.5meV
except for the high field weak modulation observed for
perpendicular field B

~~
y.

Figure 7 shows I(V) for B = OT and B = 6T
(applied parallel to the long axis of the wire) together
with k~;M, . (eBAs) which corresponds to the contribu-
tion to the current &om individual transitions between
the ith state in the emitter and the jth state in the
well [see Eq. (4.1)]. For zero field, the peak corre-
sponding to peak A in the experimental data is found
to be composed of transitions between states with the
same index, i.e. , (i, j) = (0, 0), (1,1), (2, 2), and
(3, 3). We do not see any transitions for i ) 3, be-
cause there are only four levels below the Fermi level
in the emitter. The next sequence of transitions which
occur are (0, 2), (1,3), (2, 4), and (3, 5), in which the
change of index j —i = 2, followed by sequences for
which j —i = 4, 6, . . .. Note that for zero field only par-
ity conserving transitions are allowed [M;~(0) = 0 for

j —i = odd integer] and we do not observe transitions
for j —i = odd integer. The effect of broadening is to
merge these sets of transitions so that the peaks that are
most clearly resolved arise &om the sets of transitions
j —i = 2n (n = 0, 1, 2, . . . , ) for s~ & 2u corresponding
to the peaks involving nth inaximum in 4 (k„)in the
limit u, ~ 0 (both of them appear for AE & 2n~ ) and
peaks A I" in the e—xperimental data. The voltage (V*)

0.2

0.1

separation of these peaks is, therefore, 2~ /e. This re-
sult shows that additional strong peaks may be observed
in I(V) for zero field but these peaks cannot be directly
associated with resonant tunneling via particular quan-
tized levels in the well. The weak structure is originated
in the individual transitions and the voltage separation is
(ug —w, )/e except for the separation between the peaks
involving different n sequences.

For high magnetic Geld applied parallel to the long
axis of the wire B

~~
z, the parity conservation is bro-

ken. This may be seen from I(V) for B = 6T (Fig. 7)
which shows a series of peaks due to tunneling between
states with different symmetry. Among those peaks, the
peaks involving the transitions between lowest level in the
emitter (i = 0) and the jth state in the well for which
eBb,s k~ „(= [2m(j+ 2)oI ]i/2) are found to occur
strongly (this is true for j 5 at B = 6T, see Fig. 7).
This is because a high energy simple harmonic oscillator
state has a pronounced maximum in 42(k„)at k~.

The voltage (V*) spacing is, therefore, given by Id /e for
these stronger peaks.

The origin of the high field weak modulation observed
for perpendicular field B

~] y, which we do not observe for
= 0, can be explained as follows. Since each occupied

emitter subbands has a different Fermi wave vector k~;,
the subband has a different voltage threshold for resonant
tunneling. For finite u„for example, of s~/w, 4 as was
shown in Fig. 6, the difference can be well resolved and
seen as the high Geld weak modulation. We find that the
observed structure is mainly due to this difference in the
threshold voltage of each occupied emitter subbands to-
gether with weak modulation of a period of 2iLI /e which
originated in symmetry of the emitter and the well wave
functions along the y direction. We can, therefore, de-
duce the number of occupied emitter subbands form the
high field weak structure.

V. CONCLUSION
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FIG. 7. Calculated I(V) for B = OT and 6 T (applied par-
allel to the long axis of the wire) together with the quantity
k~;M~~ (eBAs) which is proportional to the current flowing
between the ith state in the emitter and the jth state in the
well. The transitions are classified by the pair of integers i, j.
For H = 0 T the stronger peaks comprise the sets of parity
conserving transitions j —i = 2n (n = 0, 1, 2, . . . ,) and have a
voltage (V') separation 2u /e, while the weaker structure
has a voltage separation ~ (u —cu )/e. At high field, parity
conservation is broken and the voltage separation u /e.

We have studied in this paper the tunneling current
from a quasi-two- (u, = 0) or quasi-one- (u, ) 0) dimen-
sional emitter state into a quantum wire under a mag-
netic field applied normal to the current direction. The
current has been calculated assuming simple harmonic
confining potentials within the transfer Hamiltonian for-
malism.

We have shown that peaks in I(V) due to lateral quan-
tum confinement may be unambiguously identified from
their dependence on a high magnetic Geld oriented per-
pendicular to the current and parallel to the long axis
of the quantum wire. This is due to the fact that the
pronounced maxima in the matrix elements of 42(k&) at
around the classical turning points are the only features
in 4.(k„)for higher energy states. On the other hand,
for a weak magnetic field, the matrix elements involved
have several pronounced peaks which result in the com-
plex behavior of I(V).

For a magnetic field applied perpendicular to the long
axis of the quantum wire, we have found that the high
field weak modulation arises &om the formation of 1D
subbands in the emitter. This may be used to deduce the
number of occupied emitter subbands. For zero field, two
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series of peaks has been identified: a strong series which
is due to a resonance over several well states, and a weak
series of peaks which corresponds to the individual peak
of the matrix elements 4 (k„)for ur, = 0, or individual
transitions between discrete emitter and well states for
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