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By means of the renormalization approach we study the localization properties of a one-dimensional
system of 5-like potential barriers, whose heights are modulated incommensurately with respect to their
separation. We show how to distinguish different types of localized states present in the spectrum. Our
study shows that in the case of slowly varying potential heights, the Lyapunov coefficient of exponential-
ly localized states approaches zero linearly in correspondence to energies where a transition to power-
law localized states is present. A second transition to extended states is then observed. The conse-
quences on the transmittivity of the system are described.

I. INTRODUCTION

Great attention has been devoted recently to the study
of quasiperiodic potentials. Their main feature is the lack
of translational invariance; this is realized, for instance,
by assigning randomly fluctuating values to the site ener-
gies of the lattice, adopting one of the two following
schemes. The Grst is to choose a quasiperiodic sequence
of values for the site energies according to a given
inflation rule (for instance, Fibonacci, Thue-Morse, or
Rudin-Shapiro inflation rules), and the second is to super-
impose another periodic potential to the periodic energies
of the lattice whose periodicity is incommensurate with
the lattice constant. The main purposes of these studies
are a clear analysis of the electronic spectrum, with a
deGnition of its absolutely continuous part, singularly
continuous part, and pure point part, as well as a descrip-
tion of the localization properties of eigenstates.

A possible way to treat these types of potentials is in
the frame of tight-binding models, where we assign to the
discrete lattice site a single energy (or more, according to
the number of orbitals on the site) and hopping interac-
tions between adjacent sites. Here we consider the prob-
lem of equally spaced potential barriers of 5 functions
with variable heights. If these heights are chosen ran-
domly, the model can be taken as a starting point for the
study of the properties of a one-dimensional disordered
system, and it has been exploited mainly in the case of the
presence of a static electric Geld. This variation of the
classical Kronig-Penney model can be a useful tool to in-
vestigate quasiperiodic sequences, incommensurate
potentials ' and, in particular, the properties of quasi-
periodic superlattices. '

In this work we focus on the problem of equally spaced
potential barriers of 5 functions whose heights are as-
signed according to the incommensurate potential:

V„=Vo cos(Qn")

with Q =2~a, a irrational number and v)0. In the

case v=1 this potential has been widely studied in the
tight-binding approximation (Aubry model' ); in the case
v(1 the heights of the 5 functions are asymptotically
slowly varying, while for v& 1 this potential simulates the
properties of a disordered system. We use this potential
in the case v & 1, and v= 1 with an appropriate choice of
the number a, to give a simple description of the energy
spectrum of a one-dimensional crystal which can present
extended as well as different kinds of localized states. In
particular we put in evidence the presence of exponential-
ly localized and power-law localized states in separate en-
ergy regions; this determines two transitions: from ex-
ponentially localized to power-law localized states and
from power-law localized to extended states. This occurs
at the edges of every energy band of the system.

The paper is organized as follows. In Sec. II we show
how the renormalization approach can be exploited to
distinguish different kinds of localization of eigenstates.
In Sec. III we give a detailed description of the spectrum
of the incommensurate Kronig-Penney model through
the Lyapunov exponent y(E) and the transmission
coefticient, devoting particular attention to transitions be-
tween different regimes of localization. In Sec. IV we
show some examples of exponentially localized states and
power-law localized states. Section V contains the con-
clusions.

II. POINCARE MAP FOR THE KRONIG-PENNEY
MODEL AND RENORMALIZATION APPROACH

A. Discrete Schrodinger equation for the
Kronig-Penney potential

Let us consider the Schrodinger equation for an elec-
tron traveling in a one-dimensional crystal with potential
barriers of 5 functions:

1 d +g V„5(x —na) %(x)=EV(x),
dx
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where V„ is the heights of the 5 barriers and a is the
space between them; in the following, the energy will be
given in atomic units and the lengths in units of a =1. A
simple and efficient method to study the progressive
scattering by the 5-function potential barriers has been
provided by Bellisard et al. ' Their procedure can be
summarized as follows: the eigenfunction of the
Schrodinger equation (2} between the (n —1)th and nth 5
in a plane wave with coefficients A„and 8„:

%(x)=A„e' "+B„e ' " (n —1&x &n) .

The conditions of continuity of the function and of the
discontinuity of its derivative across each 5 provide re-
.cursive relations for the wave functions calculated on
three consecutive 5-function positions, which can be put
in the matrix form

r

&
—

+V sin&E

where %„=%(x=n). We are thus left with the solution
of an equivalent discrete Schrodinger equation:

X tN I 0(—E), (6a)

"(E)=aN(E)+ t(E),
)

t (E),s(N —2)(E)
(6b)

1t( FN)(E)=to(FN) 1(E) — t(E)
E —s„(N:,2)(E}

t (eff) (E) (6c)

By progressive elimination of the sites 1, . . . , N —1 of
the lattice defined by Eq. (4), Eqs. (6) allow us to obtain
two fundamental quantities: the normalized energy of
site 0, so( ')(E), and the effective ~~t~~~~t~o~ toN)(E} b
tween sites 0 and N. For the knowledge of the electronic
properties of the system it is useful to calculate eoN "(E)
because it directly gives the matrix element Goo(E) of the
Green function of the system through the relation

tion of the renormalization approach to the system de-
scribed by Eq. (3) leads to the following recursive trans-
formations

s(N —1)(E} e(N —2)(E}+t(eff') (E) 1
0 0 O, N —1

t (E)(u„+i+ u„ i )+a„(E)u„=Eu„, (3) G(~(E)=1/[E —
e() "(E)] .

where

2 cos( ~E ) 2 cos( v'E )

It can be shown' that for each solution of Eq. (3), with
conditions (4), there is a unique solution of Eq. (2) with
%„=u„. Thus the band structure derived from Eq. (3) is
identical to the original solution of the Kronig-Penney
model: allowed energy bands corresponding to itinerant
solutions of the form 4„-e' "are determined by the con-
dition ~g(E) ~

& 1, where

V„sin(&E )
g(E) =cos(~E)+

2v'E
(5a)

g(E)=cos(k) .

Forbidden energy regions corresponding to nonsquare in-
tegrable solutions of the form (p„=e~" (q real) are found
for ~g(E) ~

& 1; in this case it holds that

~g(E)~=cosh(q) .

For the tight-binding problem (3) the renormalization ap-
proach' can be usefully exploited. Moreover, also the
transfer-matrix technique' is easily used to investigate
the transmission properties of a sample of the system.

B. Localization properties and renormalization approach

Through the calculation of the Green function, the re-
normalization approach allows us to investigate the most
important physical properties of the system, such as the
energy spectrum, the density of states, and so on. Here
we are interested in the localization properties of the
slowly varying incommensurate Kronig-Penney model
described by the tight-binding equation (3). The applica-

On the other hand, the most significant quantity for
the study of the localization properties of the eigenstates
is the energy-dependent hopping effective interaction
toN'(E). Its physical meaning is in fact the effective in-
teraction between sites 0 and ¹ this can remain different
from zero or rapidly decreases to zero during the renor-
malization in the case of travelin or localized states and
gaps, respectively. Therefore toN gives a nonambiguous
criterion for distinguishing the two situations. Given the
total equivalence between the tight-binding Eq. (3) and
the Schrodinger Eq. (2) for the Kronig-Penney problem,
this criterion can automatically be applied to the wave
functions of our system.

From the quantitative point of view, toN'(E) allows us
to calculate the Lyapunov coefficient y(E} through the
asymptotic relation'

y(E) = »m ——»lt(')N (E}I

1

w ~N (7)

The general expression (7) can be evaluated for any ar-
bitrary energy E. In correspondence with extended states
we obtain y(E) =0; in correspondence with exponentially
localized states decreasing as e ~, the I,yapunov
coefficient y(E) provides the inverse localization length
of the wave function. In particular, y(E) can also be
evaluated within forbidden energy gaps where no state is
present.

Here we show that the effective hopping interaction
to('N)(E) can also be usefully exploited for the determina-
tion of power-law localized states, i.e., when the ampli-
tude c& of the wave function decreases as N; in this
case the power cr is available from the asymptotic rela-
tion

lnfcN f

cr = —hm
N ln(N)
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Starting from the infinite one-dimensional lattice, we can
decimate the sites between n = —~ and n =0, between
n =0 and n =X, and between n =%+1 and n =+~.
We arrive to a renormalized equivalent lattice of only two
sites, 0 and X, and the corresponding effective Hamiltoni-
an can be written in the form

eo(E) + eL (E)
Heff(E) (eff)(E)toe

(eff)(E)

sx«)+ sz «)
where with sl (E) and ez(E) we have indicated the con-
tributions to the effective self-energies of sites 0 and X
given by the renormalization transformations in the re-
gions —ao &n &0 and N &n &+ ~, respectively. From

H, ff(E), by a direct inversion of [E H—,ff(E) ], we can ob-
tain the Green-function matrix elements Goo(E), Gzz(E),
and Go~(E) of the original system. Moreover, if E, is an
eigenvalue of H, ff(E), and we choose the energy E much
nearer to it than to any other eigenvalue, it is easy to
show that the amplitude cz of the wave function 4, of
H,z, at the site X, is simply related to the off-diagonal
matrix element of the Green function by

cx(E)= Gox(E)

for E —E„where c& = ( %',
~
N ) and co = {0',

~
0 ) . The re-

lation between Go&(E) and to'„'(E) is given by

—t,'ff'(E)

[E—eo(E) —sL (E)][E—e~(E)—s~(E)]—[to~ (E)]
t (eff)(E)

Goo(E)[E—sx«) —sR «)]

and, for E-E„
t(eff)(E) ~c ~2

Gox{E)- [E—s~(E)—c,„(E)]E E, —

thus it follows that, if E-E„
co(E)

induc„(E) (

ln(N)

ln(t' '(E}(
ln(N)

ln ~co(E) ~

—in ~E, —s~ (E)—s~(E) ~

ln(N)
(9)

This means that there is a tight connection between the
asymptotic behaviors of ln

~
cz(E)

~
/ln(N) and of

ln~tz&'(E)~/ln(N). Therefore this latter quantity can be
used to individuate with great precision the transition be-
tween different kinds of localization. The advantage of
this procedure derives from the fact that the behavior of
to&'(E) can be studied, for each energy, by means of a
systematic iteration of the Eqs. (6) starting from the site
X =0 independently from the spatial position of the lo-
calized eigenstate. However, because the quantity ln(N)
approaches infinity very slowly, the precise value of the
power o. for the localization of the state can be deter-
mined just taking into consideration the coefficients c& of
the wave function, through Eq. (9).

III. BEHAVIOR OF THE LYAPUNOV COEFFICIENT

The solution of the Schrodinger equation (2) when the
heights or 5 functions are all equal to Vo is well known.
It can be described as a sequence of energy bands
(separated by gaps} with the lower forbidden gap edges

Since s& is a bounded quantity, it is clear that in~cd
~
/N

and ln
~
r 0'„'{E)

~
/N have the same asymptotic limit,

coherently with the result contained in the form (7} for
the Lyapunov coefficient. From the above relation we
obtain

I

fixed at energies E =n m, and higher edges at energies
depending from the strength of the (positive) potential
Vo. The situation for the forbidden zone edges is re-
versed for negative Vo.

The problem we are interested in is to find how the
properties of the electronic spectrum are modified when a
dependence of the heights V„ from the site number n is
imposed. This can be realized, for instance, by assigning
random values to V„, as in the Anderson tight-binding
model of disordered systems. In this case it can easily be
shown that the functional dependence of localization
lengths of the eigenstates can be interpreted with the law
given by Thouless, ' with the correction near E =0 given
by Kappus and Wegner. Another way to realize an
aperiodic version of the Kronig-Penney model is to assign
the form of potential (1) to the heights V„. We can
remember that if the site energies of a one-dimensional
lattice in the tight-binding model are assigned according
to potential (1), its electronic spectrum presents very in-
teresting characteristics. ' ' In the case v) 1 the poten-
tial is asymptotically rapidly varying, and in the case
v & 2 it is, from the point of view of the localization prop-
erties of eigenstates, a pseudorandom potential. If v= 1,
the main characteristic of the band structure is the deep
fragmentation (the gaps form a Cantor set) depending on
the value of a. From the point of view of the spatial lo-
calization of eigenstates, for v=1 no mobility edge is
present; in fact for Vo & 2 the states are all extended, and
for Vo )2 they are all exponent&ally localized. In the case
when v& 1 the spectrum presents (when Vo &2) extended

and exponentially localized
states for

( 2 —Vo ) & (E ( &
~
2+ Vo (

with a behavior of the
inverse localization length that is a linear function of the
energy near the mobility edges located at
E =+{2 —Vo ). ' ' ' For this reason we have decided
first to investigate the Kronig-Penney model with the
heights of the 5 functions modulated according to poten-
tial (1) and 0&v&1. To simplify the analysis we now
consider the case of repulsive barriers V„)0 for any n.
For this reason we have slightly modified potential (1) in
the following form:
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FIG. 1. Schematic representation of the potential barriers of
5-function form. In the background is plotted the periodic se-
quence of barriers with constant height Vo=5; in the fore-
ground are shown the barriers with heights modulated accord-
ing to potential (10), Q =1.2, v=0.7, and V0=2. S. Energies are
in atomic units.

V„=Vo [1+cos( gn ) ] . (10)

The potential we are considering is shown schematically
in Fig. 1, where VO=2. 5; the modulated 5 functions are
superimposed on the periodic Kronig-Penney model,
where all the heights are equal to 5. A first characteriza-
tion of the localization properties of the energy spectrum
can be obtained from the behavior of the Lyapunov
coefficient. In Fig. 2 we compare the plot of y(E) for the
incommensurate Kronig-Penney model [potential given
by Eq. (10)], with Vo=2. 5 (full line), and for the usual
periodic model (dashed line). The numerical results for
y(E) within the forbidden energy gaps of the periodic
Kronig-Penney model perfectly agree with the values ob-
tained from Eq. (Sb), i.e., with
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FICx. 2. Behavior of the Lyapunov coefficient as a function of
energy in the periodic Kronig-Penney model (heights equal to 5;
dashed line) and in the aperiodic model [Eq. (10) of the text; full
line] with Vo =2.S, Q =1.2, and v=0. 7. Energies are in atomic
units.

In the picture we reproduce the first two allowed bands
[where y(E)=0] and the beginning of the third one. It
can be seen that the Lyapunov coe%cients in the two sit-
uations are almost coincident in correspondence with the
left borders of the forbidden energy gaps of the periodic
case, which are independent of V„, and are located at
E„=n ~ . Instead, in correspondence with the right bor-
ders of the gaps [whose positions depend from the values
of V„] a significant difFerence exists, and a linear behavior
of y(E) is observed.

We have seen from Fig. 2 that the intervals of energy
where y(E) is difFerent from zero in the periodic (corre-
sponding to gaps) and aperiodic systems (corresponding
to exponentially localized states) are practically coin-
cident. The case where y(E)=0 is more ambiguous in
the incommensurate model because it does not necessari-
ly correspond to extended states, but also to a localiza-
tion weaker than the exponential one. In the incommens-
urate Kronig-Penney model, we encounter a transition
from extended to power-law localized states when we ap-
proach the region of exponentially localized states from
the side of extended states. This occurs, of course,
around the edges of each gap of the system. With respect
to the single connected band of the tight-binding model
with the same site energies and all interactions equal to a
given constant, here we have a system with an infinite
number of bands, where the density of states is not
symmetrical with respect to the center of each band;
therefore we also expect that the distribution of the
different kinds of localized states will be asymmetrical at
the borders of the gaps. We can control the transition be-
tween the different kinds of localization, for different
values of the energy E without explicit calculation of
wave functions, using the method presented in Sec. II by
renormalizing the equivalent lattice, starting from the
origin. When we approach the borders of a gap of the
periodic case from the extended states regions, in the in-
commensurate case we observe that the quantity—in~ to(&'(E)

~
/ln(N) as a function of N begins to oscillate

around constant values different from zero: this is the
sign of the presence of power-law localized states. These
values increase when we approach the zones of exponen-
tially localized states: the sign of the transition toward
this stronger form of localization is the linear behavior of
—in~to&(E)~/ln(N) with ¹ This transition is shown in
Fig. 3(a), where we have taken into consideration the re-
gion of localized states at E —18. We have found that the
intervals containing power-law localized states are in gen-
eral rather wide: for energies corresponding to the first
gap (right border) of the periodic Kronig-Penny model, in
the incommensurate case we observe the transition from
exponentially localized states to power-law localized
states at E-3.47 and the transition to extended states at
E-3.55; in correspondence with the second gap of the
periodic case (left border) we have, in the incommensu-
rate case, a transition from extended to power-law local-
ized states at E-8.60, from power-law to exponentially
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FIG. 4. Behavior of the Lyapunov coeKcient as a function of
energy (in atomic units) for a periodic Kronig-Penney mode1

[Eq. (1) of the text with Q =sr, Vp =5, and v= 1; dashed line]
and for an incommensurate model [Eq. (1) of the text with

Q =3. 1415, Vp = 5, and v = 1; full line].

IV. DIFFERENT KINDS OF LOCALIZATION
OF EIGKNSTATES AT THK METAL-INSULATOR

TRANSITION
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FIG. 3. (a) Change of the behavior of the ratio—ln~t~~'(E)
~
/ln(N) in correspondence with the transition from

exponentially localized states (linear behavior) to power-law lo-
calized states (plateau) when the values Vp=2. 5, Q =1.2, and
v=0.7 are chosen. We observe that this transition occurs in
correspondence with the beginning of the band of the periodic
case (E = 17.74). (b) Change of the behavior of
—1n(transm. )/1n(N) when the extended state energy range is ap-
proached.

localized states at E-9.87, and (right border) a transi-
tion to power-law localized states at E—17.75 and a
transition to extended states at E —18.20. We can also
control these transitions by means of the transmission
properties of our system. For instance, from Fig. 3(b) we
can see that at E —18 the quantity —1n(transm. )/In(X), as
a function of N, oscillates around a constant value,
different from zero, and the transmittivity decreases, ac-
cording to a power law, approaching zero. When we ar-
rive at E —18.20 the extended nature of eigenstates deter-
mines an oscillating behavior of —1n(transm. )/1n(N)
around the value zero.

We conclude this section by observing that if we assign
Vo a negative value (attractive barriers), the role of the
borders of the forbidden energy gaps is inverted, so that
in the incommensurate case the values of y(E) are
modified at energies near the left borders of the forbidden
gaps of the periodic case. If we consider the modulation
potential in form (1), we can observe the two e8'ects com-
bined. In fact, for v= 1, if we assign Q a value very near
m we realize a slowly varying aperiodic modification of
the situation of alternating positive and negative heights.
The results when Q =3. 1415 are shown in Fig. 4.

In this section we want to underline some characteris-
tics of the wave functions of localized states, 1ooking for a
connection between their spatial behavior and the spatial
distribution of the potential barriers. The central point is
that the incommensurate potential breaks the translation-
al invariance of the system by a well-defined analytic law;
thus the spatial distribution of the barriers can be easily
visualized [Fig. 5(a)].
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FIG. 5. Comparison between the distribution of potential
barriers for the incommensurate model [Eq. (10) of the text with

Q =1.2, Vp =2.5, and v=0.7] from N-1700 to N-2400 and
the plot of induc„~ for a series of exponentially localized states at
energies corresponding to the second forbidden gap of the
periodic Kronig-Penney model. The energies (in atomic units)
of the series are E—12, 14, 15, 16, 17 for plots (a), (b), (c), (d),
and (e), respectively.
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FIG. 6. Profile of a power-law localized state corresponding
to the values V0=2. 5, Q =1.2, and v=0. 7 in the potential of
Eq. (10) and E =17.88 (atomic units).

FIG. 7. Behavior of the logarithm of transmittivity as a func-
tion of the length N of the sample for three energies near E=m.

(E=9.896, 9.8696, and 9.870, in atomic units) and V0=5,
Q = 1.2, and v= 2.5 in the potential of Eq. (1).

In the case of exponentially localized states we expect
to obtain a linear behavior of the envelope of the plot of
ln~c&~ as a function of n in the asymptotic region
(N~ ao ). The plots shown in Fig. 5(b) confirm this con-
jecture. If we look at the deep structure of the wave func-
tions we can observe an alternation of oscillating and
linearly decreasing parts for induc~~ . A qualitative inter-
pretation of this kind of structure can be given from the
correspondence between the decaying parts of 1n~c~~
(which are a sign of the scattering process suffered by the
electron) and the presence of 5 functions in space, and
also from the correspondence between the oscillating
parts of in~ c& ~

(absence of scattering efFects) and the lack
of effects of the 5 functions. To illustrate this point, in
Fig. 5(a) we show the structure of the potential barriers in
a zone of the system from N-170 to N-2400; in
correspondence, in Fig. 5(b) we present a series of eigen-
states at various energies, chosen from E—9.9 to
E—17.8. In practice we obtain that ~c&~ has exponen-
tially decreasing behavior in the regions where the elec-
trons feel scattering from the potential barriers, otherwise
they are oscillating. The global envelope of the wave
function is thus exponential. By comparison with Fig.
5(a) we observe that, as we approach the band edge, re-
gions without scattering centers increase in size with
respect to regions with scatterers, and correspondingly
the width of the plateaus with oscillating ~c~~ values also
increases.

The envelope of a power-law localized state is of course
very different. We show an example in Fig. 6, which cor-
responds to the value E =17.88, where a power-law lo-
calized state is present [see Fig. 3(b)].

Let us finally consider the Kronig-Penney model with
randomly distributed heights of 5 functions, a model used
also to analyze transitions from exponentially to power-
law localized states in the presence of electric fields. We
can analyze this case through the localization and
transmission properties of pseudorandorn Kronig-Penney

model realized with potential (1) and v) 2. We find that,
like in the random case, the value of y(E) is different
from zero for any value of E, except for E =n ~; more-
over the transmittivity, at these energies, is equal to 1, as
a confirmation of the extended nature of these states. It
can be interesting now to investigate the behavior of the
transmittivity of finite samples of the system in the ener-

gy regions E —n ~ .
Our numerical results for the transmittivity show that

if we go very near the values E =n ~, the transmittance,
as a function of n, ceases to be exponentially decreasing
and also approaches zero with a slower law for very long
samples (N = 10 ). In Fig. 7 we compare the behavior of
the logarithm of transmittivity for energies approaching
E=m . We can see that for energies differing of the order
of -5 X 10 from ~ the transmittivity decreases almost
exponentially; for E =9.8696 the decreasing rate is
slower.

V. CONCLUSIONS

In this paper we have studied the localization proper-
ties of an incommensurate Kronig-Penney model in the
tight-binding framework, exploiting the renorrnalization
procedure. We have observed that exponentially local-
ized states appear at energy intervals corresponding to
forbidden gaps in the periodic case; a correspondence be-
tween the spatial structure of the wave function and the
spatial distribution of the 5-function barriers has been
suggested. For each band of the spectrum, power-law lo-
calized states are present between exponentially localized
and extended states; this confirms similar results for in-
cornmensurate tight-binding models. Correspondingly,
a power-law behavior of the transmittivity as a function
of the length of the sample can be observed. Finally, we
have studied the pseudorandom form of the incommensu-
rate potential showing that around the energy values
E =n m the decreasing rate of the transmittivity is
slower than exponential.



17 354 RICCARDO FARCHIONI AND GIUSEPPE GROSSO 51

See, for instance, T. Schneider, D. Wurtz, A. Politi, and M.
Zannetti, Phys. Rev. 8 36, 1789 (1987); Q. Niu and F. Nori,
Phys. Rev. Lett. 57, 2057 (1986); Z. Cheng, R. Savit, and R.
Merlin, Phys. Rev. 8 37, 4375 (1988); M. Dulea, M.
Johansson, and R. Riklund, ibid. 47, 8547 (1993).

J. B.Sokoloff, Phys. Rep. 126, 189 (1985).
M. Ya. Azbel, Solid State Commun. 37, 789 (1981); M. Ya.

Azbel and P. Soven, Phys. Rev. Lett. 49, 751 (1982).
4C. M. Soukoulis, J. V. Jose, E. N. Economou, and P. Sheng,

Phys. Rev. Lett. 50, 764 {1983);F. Delyon, B. Simon, and B.
Souillard, ibid. 52, 2187 (1984); J. V. Jose, G. Monsivais, and
J. Flores, Phys. Rev. B 31, 6906 (1985);F. Bentosela, V. Grec-
chi, and F. Zironi, ibid. 31, 6909 (1985).

5M. Kohmoto, Phys. Rev. 8 34, 5043 {1986).
C. S. Ryu, G. H. Oh, and M. H. Lee, Phys. Rev. 8 48, 132

(1993).
7P. K. Ghosh, Phys. Lett. A 161, 153 (1991).
Y. Avishai and D. Berend, Phys. Rev. 8 45, 334 (1982).
J. B.Sokoloff and J. V. Jose, Phys. Rev. Lett. 49, 334 (1982).
DC. de Lange and T. Janssen, Phys. Rev. 8 28, 195 (1983).
G. Wahlstrom and K. A. Chao, Phys. Rev. 8 38, 11793
(1988).
A. Salat, Phys. Rev. A 45, 1116(1992).
R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K.
Bhattacharya, Phys. Rev. Lett. 55, 1768 {1985).

4S. Aubry and G. Andre, Ann. Isr. Phys. Soc. 3, 133 (1979).
J. Bellissard, A. Formoso, R. Lima, and D. Testard, Phys.
Rev. 8 26, 3024 (1982).
B.Simon, Adv. Appl. Math. 3, 463 (1982).

' See, for instance, the review article by P. Giannozzi, G. Gros-
so, S. Moroni, and G. Pastori Parravicini, Appl. Num. Math.
4, 273 (1988), and references quoted therein.

' A. Douglas Stone, J. D. Joannopoulos, and D. J. Chadi, Phys.
Rev. B 24, 5583 (1981).
R. Farchioni, G. Grosso, and G. Pastori Parravicini, Phys.
Rev. 8 45, 6383 (1992).
R. de Kronig and W. G. Penney, Proc. R. Soc. London Ser. A
130, 499 (1931).

~tD. J. Thouless, in Ill Con-densed Matter, Proceedings of I.es
Houches Summer School, Session XXXI, edited by R. Balian,
R. Maynard, and G. Toulouse (North-Holland, Amsterdam,
1979), p. 1.

~ M. Kappus and F. Wegner, Z. Phys. 8 45, 15 (1981).
S. Das Sarma, Song He, and X. C. Xie, Phys. Rev. Lett. 61,
2144 (1988);Phys. Rev. 8 41, 5544 (1990).

24R. Farchioni, G. Grosso, and G. Pastori Parravicini, Phys.
Rev. 8 47, 2394 (1993); J. Phys. Condens. Matter 5, 813
(1993).
I. Varga, J. Pipek, and B. Vasvari, Phys. Rev. 8 46, 4978
(1992).


