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Advacancy-induced step bunching on vicinal surfaces
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Step bunching at the surface of a sublimating crystal Joule-heated by a dc electric current is investigated in

the presence of both adatoms and surface vacancies (advacancies). We show that the inclusion of advacancies
in the step fIow model of Burton, Cabrera, and Frank is crucial in order to reproduce the high-temperature
behavior of real Si(111) vicinal surfaces. This provides a complete qualitative picture of the morphologies
reported by Latyshev et al.

I
Surf. Sci. 213, 157 (1989)],and strongly supports the hypothesis of electromigra-

tion. Agreement with experiments is obtained only assuming that the force exerted on adatoms and advacancies

by the electric current is opposite to the latter.

Several observations were reported in the past concern-
ing step bunching on the Si(111) vicinal surface, when the
sample is heated by a dc electric current. The surface mor-

phology is seen to depend on the direction of the electric
current with respect to the step staircase, as summarized in

Fig. 1. According to Latyshev et aI. ,
' when the current di-

rection coincides with the direction of step motion during
sublimation (step-up current), step bunches appear in the

temperature range = 1300—1500 K, disappear in the range
=1500—1600 K, and again reappear above 1600 K (the
melting temperature of Si is about 1685 K). Reversing the
current direction (step-down current) leads to step bunching
only between =1500—1600 K, as sketched in Fig. 1.

This current-dependent behavior convinced experimental-
ists that electromigration of silicon adatoms was involved.
Electromigration is a well-known phenomenon in metals,
both in the bulk and at the surface. When an electric field is
applied to a metal sample, impurities and interstitials migrate
preferentially parallel to the field (not necessarily to its di-

rection). At the surface, electromigration is known to take
place even for metals deposited on silicon (111) (whose
7 X 7 reconstructed structure has metallic properties). '

Theory ' predicts that interstitials (to which adatoms can
be assimilated) should drift in the direction of the motion of
the electric carriers, due to transfer of momentum from col-
lisions with the carriers themselves. Thus, migration should
take place preferentially against the field direction (and
against the electric current) for conduction due to electrons.

Stoyanov proposed a simple but attractive model to de-
scribe the dc current-induced step bunching. It is based on
the Burton, Cabrera, and Frank step Aow model, with the
addition of two ingredients: (i) the adatoms are subject to an
electromigration (drift) force; (ii) steps are not perfect sinks
for adatoms, i.e., adatoms are absorbed and emitted by steps
at a finite rate. This model describes step bunching at low
temperature and for step-up current, and predicts step de-
bunching when the adatom diffusion length becomes of the
order of the average terrace size. In fact, when this occurs,
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FIG. 1. Temperature range of step-bunching instability for as-

cending and descending current. Thick lines represent unstable re-
gions.

surface diffusion is no longer able to couple neighboring
steps, which have no more tendency to bunch.

However, the model as it stands cannot account for reap-
pearance of bunches at still higher temperature. We address
this question in this paper.

Recent work ' has pointed to the role of advacancies in
surface dynamics near the melting point. The presence of
advacancies on sublimating silicon surfaces is confirmed by
the observation of advacancy islands. Thus it is necessary to
account for advacancies in the high-temperature regime, as
already suggested by Stoyanov. '

In fact, assuming, as it is reasonable, that the electric cur-
rent exerts on the advacancies a force opposite to that on the
adatorns, advacancies can be expected to cooperate in the
mechanism by which step bunching takes place, and to be
essential for the "reentrant" step bunching at high T. We
shall indeed show that incorporation of advacancies in a mi-
croscopic model of adatom electromigration allows for a
complete and even semiquantitative description of the ob-
served surface morphology as a function of temperature.
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The model of Burton, Cabrera, and Frank extended so as
to incorporate creation and recombination of adatom-
advacancy pairs and electromigration reads

Bc c DF Bc
D 2

——— ——Kc cr+Kcpcrp = 0,
Bz 7. k~T Bz

Expanding Eq. (1) to first order in c i = c —co and
o.

1
= o.—o.p, we obtain
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where c and o. designate the adatom and advacancy densi-
ties, respectively, cp and op their equilibrium values, D and
A are the adatom and advacancy diffusion coefficients, 7. is
the average residence time of an adatom before desorption, F
the electrornigration force, k&T the thermal excitation en-

ergy, and K is a kinetic reaction coefficient. Here, for the
sake of simplicity, we assume that adatoms and advacancies
are subject to the same electromigration force (in absolute
value).

The above equations are to be supplemented with kinetic
equations describing attachment at the steps. In an Onsager
picture these equations take the form

BC C C Cp+
Bz ( d (3)

Bar o o.—ap
Bz ( d,

where g=kaT/F, d=D/k, and d„=A/k„, each having the
dimension of a length. The quantities k and k, are the ad-
atoms and advacancies attachment-detachment kinetic coef-
ficients at the steps. We adopt the simplifying assumption—
which does not affect the main conclusion —that the step
kinetics are symmetric, that is, there is no Schwoebel effect
(see below). The + and —signs in Eqs. (3) and (4) hold for
the lower and the upper side of a step, respectively. Finally to
complete the description, the step normal velocity
is related to the mass currents J =[D(8c/Bz Fc/kaT)—
—A(8o/Bz+Fo/k&T)], o (J+ and J are the currents
from the lower and upper terraces, respectively) by

U„=A(J~ —J ) (5)

0, is the atomic area of the solid. The set of Eqs. (1)—(5)
completely describes step dynamics for straight steps.

This problem is nonlinear, for two reasons. (i) An obvious
nonlinearity stems from the adatom-advacancy reaction term.
(ii) There is a hidden nonlinearity which is peculiar to any
moving-boundary problem (a Stefan-like problem). This
nonlinearity can be accounted for rather easily, while the one
originating from Eq. (1) precludes a full analytical treatment.
However, before resorting to a brute-force numerical treat-
ment, we can gain some insight by assuming weakly out-of-
equilibrium conditions. That is, we assume that the actual
values o and c are close to their equilibrium values, o.

p and
cp. This is reasonable, because the evaporation rate is small
even at quite a high temperature. Quantitatively, this can be
expressed by saying that the adatom diffusion length before
desorption, x,= /D7, is at least as large as the terrace size
even at high T. '

where 8& = gD/Ko o, Y2 = gD/Kco, Y~ = gA/Kco, and

E4= /A/Ko. o. Note that the relation 8,83=/zE& holds.
The general solution of Eqs. (6) and (7) takes the form

C1 = Cp+ e ' and o.1 = o.p+ e ', where n obeys the fourth
order algebraic equation

~n
~ ———(x, +8, ) n+ ——8,2 -2 -2 2 -2

) iF ' i.

The four solutions can be written analytically or solved
numerically at convenience. Let n; (i =1, . . . ,4) label the
four solutions (which are, for the large set of parameters
explored so far, all real). Therefore the solution for c, and
o.

1 takes the form

4 4

ci= —co++ A;e ", oi=oo+g A;R;e ~', (9)

~D
P=g (e ' ' —1) ——R —~A;(Yo). (10)

Here we have written Yo in the argument of A; to remind
that they explicitly depend on Eo. Expression (10) is written

where the A s are integration constants, and 8;
= 82[n, —n;/g —(x, +8, )].

The four integration constants A; are determined straight-
forwardly from the four conditions at the step Eqs. (3) and
(4). Since this involves writing huge formulas, we have not
felt it worthwhile to list them in this brief exposition. Once
c1 and cr1 are known, we can determine the growth velocity
IEq. (5)] for an arbitrary configuration of the train (i.e., for
an arbitrary phase shift between two consecutive steps). This
results in a set of nonlinear evolution equations for the in-
stantaneous position of the steps (or equivalently the terrace
widths; see Ref. 17). This set of equations has a steady-state
solution where the steps are equidistant and move at a con-
stant speed. We investigate next the stability of this solution.
This can be accomplished by considering small departures
away from the steady-state solution, i.e., small fluctuations
of the terrace widths. The result can be cast into a relation
linking the wave vector of each fluctuation to its growth rate
in time. A positive growth rate signals an instability.

Explicitly, the step position is written as („=nYo
+ (oe"'+'"q, where co is the growth rate, q the wave vector,
and Yo the step separation in the steady-state regime. The
rate r0 can be cast in the form co=8//8/o, where P(YO) is
given by
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FIG. 2. The function P(Yp) as a function of Yp (Yp is measured
in atomic spacing unit). We have taken x, = eP ' I' l;
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for q = 7r/Yp (out-of-phase fluctuations of neighboring
steps), since this one is the most unstable mode (see Ref. 17).

Clearly, a positive slope of the function t/r(Ep) corre-
sponds to a step pairing instability. Note that this linear sta-
bility analysis only gives the instability threshold, but says
nothing on the long-term surface morphology, which is dic-
tated by the nonlinearities. To obtain this, one must numeri-
cally solve the full nonlinear problem, or perform simula-
tions.

If only adatoms are present, we find Stoyanov's result:
t/r(Yp) behaves as Yp at small Ep/x, , goes through a maxi-
mum for Yp-x, before it decays exponentially at larger
Ep. In other words we have step pairing at small Yp/x, ,
while for Yp)x, stability is restored. Since x, decreases with
temperature, Stoyanov's model accounts for the appearance
of step bunching at low temperature, and its disappearance at
higher temperature (when Yp)x, ). This model does not,
however, account for the reappearance of the instability
at still higher temperature, as reported in several
experiments.

The main outcome of the present study lies in the finding
that incorporation of adavacancies, which are most likely to
be active at high temperature, leads to the reappearance of
the instability at high temperature for step down force, or-
step-up current according to the electromigration hypothesis.
This is a new result, which contrasts with previous attempts
at the problem. ' Figure 2 shows the behavior of P(Yp) as a
function of Fp at increasing temperature. The function t/r'

(derivative of t/r with respect to Yp) is proportional to the
instability growth rate co. when it is positive ~ is positive
and this signals an unstable situation. An instability is sig-
naled by a positive slope. The presence of adavacancies re-
sults in a reappearance of a positive slope at large Yp (or
small x,—because only the ratio Ep /x, matters —which
means at higher temperature). A convenient way to look at
the figure is to fix a value of Yp, and following the vari-

FIG. 3. Growth rate as a function of temperature for a fixed
miscut (or a fixed interstep distance). Here we show two different
interstep distances Ep= 1000 (dashed line), and Ep = 430 (full line).
The sign of P' is the same as that of the growth rate of perturba-
tions (an instability is signaled by a positive sign). Other param-
eters, the same as in Fig. 2. The vertical unit is arbitrary.

ation of the sign of t/r'(Yp) at different temperatures. The
result is presented in Fig. 3. We see that at a miscut of
8' (/p=430 in atomic distances; the full line in Fig. 3) the
surface is unstable up to 1200 K, then it becomes stable until
T=1700 K, where it becomes unstable again. The region of
stability is larger than in experiments (where it spans ap-
proximately 100 K), but the disagreement is not dramatic. In

any case, it is clear that the model has many weak points: it
is only one dimensional, since we only look at the behavior
of the terrace size; it does not account for fluctuations, which
are likely to enforce the instability and to decrease conse-
quently the width of the region of stability. This is why we
have not tried very hard to find the best possible —nor even a
better —set of parameters for drawing Fig. 2. Note that the
result displayed in Fig. 3 shows also that at a temperature
below about 650 K the growth rate goes rapidly to zero (ac-
tually the behavior is exponential). This explains why step
bunching occurs only above a certain temperature, in agree-
ment with the general behavior in Fig. 1. Finally, when the
current direction is reversed, we obtain a complementary pic-
ture, i.e., stable intervals in the previous situation are un-

stable and vice versa.
Our results obviously support, and substantiate, the hy-

pothesis that adatom and advacancy electromigration is the
key ingredient for understanding step bunching of Si(111).A
coherent view is obtained by assuming that a force acts on
silicon atoms, which is opposite to the electric current. This
is in agreement with the semiclassical picture of the so-called
"wind-force effect": the conduction electrons transfer by
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collision their momentum to the surface atom, which feels
then a force directed along the electron drift "learly oppo-
site to the current.

The next step of the analysis is to deal with the subse-
quent development of the instability. This task requires a

nonlinear treatment. This is crucial in order to settle impor-
tant questions, such as the study of wavelength selection of
the bunches (when this notion has a meaning), and/or static
and dynamical statistical features of the surface morphology.
We hope to report along these lines in the future.

A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov, and S. I. Stenin,
Surf. Sci. 213, 157 (1989).

A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov, and S. I. Stenin,
Surf. Sci. 227, 24 (1990).

Y. Homma, R. J. Mcclelland, and H. Hibino, Jpn. J. Appl. Phys.
29, L2254 (1990).

"M. Ichikiwa and T. Doi, Appl. Phys. Lett. 60, 1082 (1992).
M. J. Ramstadt, R. J. Birgenau, K. I. Blum, D. Y. Noh, B. O.

Wells, and M. J. Young, Europhys. Lett. 24, 653 (1993).
H. Yarnaguchi, T. Okhawa, and K. Yagi, Ultramicroscopy 52, 306

(1993).
H. Yasunaga and A. Natori, Surf. Sci. Rep. 15, 205 (1992).
C. Bosvieux and J. Friedel, J. Phys. Chem. Solids 23, 123 (1962).

A. Ladder, Physica A 158, 723 (1989).
' S. Stoyanov, Jpn. J. Appl. Phys. 29, L659 (1990).

W. K. Burton, N. Cabrera, and F. C. Franck, Philos. Trans. R. Soc.
London Ser. A 243, 299 (1951).

' A. Pimpinelli and J. Villain, Physica A 204, 521 (1994).
A. Pirnpinelli and J. J. Metois, Phys. Rev. Lett. 72, 3566

(1994).
S. Stoyanov, H. Nakahara, and M. Ichikawa (unpublished).

' G. S. Bales and A. Zangwill, Phys. Rev. B 41, 5500 (1990).
C. Alfonso, J. C. Heyraud, and J. J. Metois, Surf. Sci. 291, L745
(1993).

B. Houchmandzadeh, C. Misbah, and A. Pimpinelli, J. Phys.
(France) I 4, 1843 (1994).


