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Magnetothermopower oscillations in a lateral superlattice
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We present a measurement of the magnetothermopower oscillations in a weak lateral superlattice potential
imposed on a high-mobility two-dimensional electron gas (2DEG). Our samples showed clear commensura-

bility as well as Shubnikov —de Haas oscillations in both the longitudinal resistance and the thermopower as a

function of magnetic field applied perpendicular to the 2DEG. We used a local electron-heating technique to
generate a temperature gradient across the superlattice. We find good agreement with existing theory.

In 1988 Weiss et al. reported a type of magnetoresistance
periodic in 1/B, imposed by a weak modulation of the two-
dimensional carrier density in a GaAs/Al, Ga, „As hetero-
structure. The modulation was induced by a holographic il-
lurnination of the sample with a separation of the inter-
ference fringes of 382 nm. Other techniques for making the

2,3superlattices were, however, soon developed. ' The ob-
served magnetoresistance oscillations were subsequently ex-
plained in terms of a commensurability relation

2R, = (n + 1/4) a,

between the superlattice period a and the cyclotron radius

R, =m pF/eB„of the electron, ' ' where B„are the magnetic
fields corresponding to maxima in the longitudinal resis-
tance. In the literature the magnetoresistance oscillations
have thus been referred to as either commensurability oscil-
lations or Weiss oscillations, after their discoverer. Theoreti-
cally the oscillations in p „(B)(i.e., current flow perpendicu-
lar to the stripes) are well understood in a semiclassical
picture proposed by Beenakker as guiding center drift reso-
nances of the cyclotron orbits, or in a quantum-mechanical

2,4,6-8
approach as a modulation of the Landau bandwidth, ' '

which also explains the much weaker oscillations observed
in pyyin p (B). The oscillations in p are found both experimen-
tally and theoretically to be 180' out of phase relative to the
dominating oscillations in p . Despite this early insight, the
effect has caused a continuous interest in recent years.

In this paper we present measurements of the diffusion
thermopower S (B)=6V (B)/3 T, of a high mobility two-
dimensional electron gas (2DEG) with a one-dimensional
lateral modulation. Theoretically it has been predicted that
the oscillations in the thermopower should be dominated by
the collisional contribution to the conductivity. This contri-
bution, which is also responsible for the more subtle oscilla-
t'ons in p has been calculated in a quantum-mechanical
approach using a hopping-type Kubo formula for transport in
the presence of a magnetic field. The theory predicts that
S =S and that the oscillations in the thermopowerxx yy ~

~ ~ ~

should be 90 out of phase relative to the oscillations in

Pxx .
In our experiment, the lateral modulation was imposed by

a surface NiCr/Au grating gate with a period of 400 nm,
shown as g2 in the inset of Fig. 3. The amplitude of the
modulation could be controlled by a gate voltage applied to
the grating. However, the most clear magnetoresistance os-

cillations were observed with the gate grounded, and the data
presented in this paper are thus obtained with g2 grounded.
In this case the potential modulation is induced in the piezo-
electric GaAs by elastic strain caused by different thermal

~ 10expansion coefficients in GaAs and the gate material as the
device is cooled down. The GaAs/Al„Ga, ,As heterostruc-
ture we used for our measurements had the 2DEG embedded
approximately 100 nm under the surface. Samples were illu-
minated with a red-light-emitting diode at temperatures be-
low 6 K before measurements commenced. Ungated samples
made from the same heterostructure had a carrier density of
3.5X 10 m and a mobility of 180 m /V s under full illu-
mination conditions. Gated samples usually had a somewhat

15 —2smaller carrier density, between 2.8 and 3.2X 10 m . The

aa-
c; ao-
A 9—

I I I I I I I I I I II I I I

0.38
0.32
0.26
0 3o I ~ & & ~~~ J—~~~ I J25—

x a5

ao I I I I ~ I I I I I I I I I

o.o o.a o.a o.v o.4

FIG. 1. Magnetoresistance (A) and second-harmonic ther-

mopower voltage (B).The two curves were obtained from the same

sample; however, the magnetic-field axis for the two curves has
been corrected for a small difference in carrier density that occurred
between the two measurements. The heating current used in the 2f
measurement was 1.2 p,A. The peculiar peak amplitude variation is
an artifact of this particular sample, but makes it easy to identify
each peak in the 2f signal. (C) The heating resistance measured
simultaneously with the Vzf curve shown in the lower panel. The
heating resistance was measured in a two-probe configuration with
a gate voltage Vg&= —0.1 V.
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FIG. 2. Electron temperature in the region under the heating
gate vs dissipated power in the heating resistance. The solid curve is
a best fit to Eq. (2), while the dashed curve is the best empirical
power-law fit. Inset (a) shows an example of a SdH relative-peak-
height dependence on temperature for a peak in the heating resis-
tance at B=0.65 T. The solid line is a exponential fit to the data
points. Inset (b) shows the peak-height dependence on heating cur-
rent for the same SdH peak.

magnetoresistance p, (B) was measured using a standard
phase-sensitive current-controlled measuring scheme with
the current passed between contacts a1and a2, and the volt-
age measured across either c1 and d1 or across c2 and d2
(the contact denominations refer to the inset of Fig. 3). The
width of the etched Hall bar in our devices was 20 p, m, while
the distance between two consecutive pairs of probes
(b, c,d) was chosen to be approximately 10 p,m, which is
shorter than the mean free path l in the 2DEG. For the un-

gated devices, I = 17.5 p, m. The lower trace shown in Fig. 1
is the measured magnetoresistance. The last maxima shown,
corresponding to n = 2 in Eq. (1), occurs at about 0.28 T in
the figure. For the best of our samples, peaks up to n = 19
were detected. The fast oscillations superimposed on the
commensurability oscillations in the high-field end of the
curve are Shubnikov —de Haas oscillations. The reason why
the n=1 peak is not shown will be explained shortly. The
thermopower measurements were done with the so-called
local-heating technique, where the temperature gradient was
induced by locally heating up the electron gas by a high
current. This technique works because the dissipated power
is quickly distributed among the electrons via the fast
electron-electron interaction rate before it is lost to the lattice
via the slower electron-phonon interactions. The electron
temperature will stabilize at a level were the dissipated
power equals the heat loss to the phonons. The advantage of
the technique is that only the temperature of the electron gas
is elevated while the lattice temperature remains
unchanged. This technique has been successfully used to
investigate the properties of other transport phenomena.
The upper trace in the lower panel of Fig. 1 is the measured
thermopower voltage (=S 3 T). This voltage was obtained

FIG. 3. Calculated electron-temperature-decay profiles along the
Hall bar depicted in the inset for various boundary conditions at
x=0, i.e., between probes b1 and b2. The curves have been calcu-
lated by Eq. (4) with y=3. The lattice temperature used in the
calculation was 0.35 K, the same as the bath temperature in the
experiment. The vertical dashed lines at 10 and 20 p, m mark the
distance to the voltage probes (cl,c2) and (dl, d2) respectively.
The probes a1 and a2 were used as current probes in a conven-
tional measurement of the longitudinal resistance R . The gate g2
was connected on the grating on the Hall bar, but grounded in our
experiments.

by passing an ac heating current II, between the contacts b1
and b2, and measuring the thermopower voltage as the
second-harmonic differential voltage response across con-
tacts c1 and d1 (or c2 and d2). The short distance between
the probe pairs was chosen for the imposed temperature gra-
dient to be sma11 enough in order to remain in the linear
response regime. The temperature gradient along the Hall bar
is a function of the dissipated power P =RI,I&, in the region
underneath gate g1. AT will thus be a function of the second
harmonic of the heating current. The continuous gate g1 was
used to partly deplete the 2DEG under the gate by applying
a negative voltage to g1 relative to one of the 2DEG current
contacts. This served two purposes. Firstly, it increased the
dissipated power; secondly, the dissipation could be confined
to a narrow region of the Hall bar underneath the gate. The
gate voltage and the heating-current levels were carefully
adjusted so that the two-terminal resistance b1-b2 was
dominated by the gated region and yet remained independent
of the heating-current level. V~& = —0.1 V was found to in-
crease the two-terminal resistance b1-b2 by approximately a
factor of 10.This allowed heating currents up to 1.5 p,A. The
heating resistance increased with magnetic field as shown in
the upper panel of Fig. 1, and the data had to be corrected for
this increase. For magnetic fields above approximately 0.4 T,
our phase-sensitive detection of the second harmonic broke
down, and the phase of the signal started to depend on mag-
netic field. We have thus limited our analysis to fields below
0.4 T. Hence the absence of the n = 1 peak. A first-harmonic
signal was also generated, as a consequence of the nonlocal
spreading resistance. This first-harmonic signal was roughly
a factor of 2—3 (depending on heating current level) larger
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than the second-harmonic signal at B=O and exhibited a
large positive magnetoresistance. The second-harmonic volt-
age response Vz& shown in Fig. 1 was obtained with a heat-
ing current of 1.2 p,A. It should be noticed that the commen-
surability oscillations in Vz& are 90 out of phase with the
oscillations in R, whereas the SdH oscillations are roughly
180 out of phase. Theoretically it has been predicted' that
the commensurability oscillations in the thermopower should
be 90 out of phase with the oscillations in p, i.e., in
agreement with our experiment, while the SdH oscillations
should be in phase for the two signals. We thus have a dis-
crepancy with the theory regarding the SdH oscillations. The
relative phase of the two measurements is, however, very
sensitive to the determination of the zero of the magnetic
field, which is subject to a small correction due to hysteresis
in the superconducting solenoid. Moreover, we had to scale
the magnetic-field axis for the two curves in the lower panel
of Fig. 1 due to small differences in carrier density of the
sample that occurred between the two measurements. We
have thus very carefully corrected the data for the above-
mentioned effects. It is also worthwhile to emphasize that no
effect caused by a nonlinearity of the heating resistance
could cause the observed phase relation between the com-
mensurability oscillations and the SdH oscillations. We thus
leave this discrepancy unexplained. We also note that the
heating resistance is smooth and monotonic in the magnetic-

FIG. 4. The measured magnetothermopower divided by electron
temperature for three values of electron temperatures. The curves
have been offset for clarity. The zero-field levels for the three
curves are —6.2, —7.5, and —6.7X 10 k&T, /e, respectively,
from top to bottom. The similarity between the curves indicates that
the measured thermopowers are proportional to the temperature.
One can vaguely see an earlier onset of SdH oscillations as tem-

perature is decreased. The commensurability oscillations are clearly
seen and marked with their respective index numbers on the top of
the figure. The data have been corrected for a magnetic-field depen-
dence of the heating resistance as seen in Fig. 1.

field regime depicted. The SdH oscillations in the second-
harmonic signal are thus not caused by SdH oscillations in-
duced in the temperature gradient by oscillations in the
dissipated power.

In order to extract the thermopower from the measured
second-harmonic voltage we now determine the temperature
difference between probes c1 and d1 induced by a heating
current passed between contacts b1 and b 2. This temperature
difference could not be measured directly, basically because
of the difficulties associated with measuring any tempera-
ture dependent quantity between each of the probe pairs
c1,c2 and d1,d2 independently and without imposing addi-
tional grounds to the current circuit bl, b2. However, the
electron temperature in the "hot" region between the current
contacts b1 and b2 could be measured. This was done by
exploiting the temperature dependence of the SdH oscilla-
tions in the two-terminal heating resistance R~(B) at mag-
netic fields higher than shown in Fig. 1. The important prop-
erty for the temperature gradient is the dissipated power,
which could be controlled either by the heating current or the
heating resistance. The SdH oscillations in the heating resis-
tance used to determine the electron temperature occurred at
magnetic fields above 0.5 T, i.e., above the range where the
thermopower measurements were done. However, we used
lower current levels in the electron-temperature determina-
tion to keep the dissipated power comparable with the ther-
mopower measurements. First, we recorded the SdH oscilla-
tions with a sufficiently low heating current for the electron
temperature to approach the lattice temperature. This was
done for various lattice temperatures. This set of measure-
ments served as a reference for subsequent measurements
with higher heating currents. An example of the reference-
peak-height dependence on lattice (bath) temperature is
shown in the inset (a) of Fig. 2. By comparing the peak
heights for the high current data [inset (b) of Fig. 2] with the
reference-peak heights, we were able to estimate the electron
temperature T,= T& in the hot region under the heating gate.
This determination is shown in Fig. 2. It should be noticed
that several SdH peaks could be used for this temperature
calibration, each corresponding to a different heating resis-
tance, and hence to different heating powers in the plot. The
dissipated power must equal the heat loss to phonons, which
empirically has been found to obey a characteristic power-
law dependence on electron temperature:

P=R„I = u(T~ Tr). — (2)

Experimentally y=3 has been reported repeatedly. We
find a reasonable although not perfect fit to our data with
y=3. This fit is shown as the solid line in Fig. 2. Theoreti-
cally it has, however, been found that y= 3 has no funda-
mental significance, but rather marks a transition between a
y=5 dependence at low temperatures and a y=2 depen-
dence at high temperatures. We thus use a power-function
fit (T,~P") with b =0.5 to represent the electron-
temperature dependence on dissipated power. In order to
estimate the electron-temperature difference between the
voltage probes, we have solved the one-dimensional heat
equation to find the electron temperature as a function of
the distance x from the hot region under the heating gate.
This was done assuming a phonon loss rate given by Eq. (2),
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and asserting the boundary conditions T,(x = 0) = Th,
T,(x=~)=TL, and dT, /dx~ =0. Furthermore, we as-

sumed that the power P =R~I& was dissipated within an area
of A =20X20 p, m . The differential equation for the heat
conduction then reads as follows:

d ~ dT~ n—K = (T~—T~)—,dx ( dx / A
(3)

where the heat conductivity K is given by Wiedemann-
Franz law: K=L o.oT, with the Lorentz number
L = vr ks/3e =2.45X 10 W A/K . After one integration,
Eq. (3) can be rewritten to integral form as

PT /TI
(20~—2 —y+y8 ) "d8,XT = 77

J Tp, /TI
(4)

where XT is the position where the temperature is T, . Equa-
e

tion (4) can easily be integrated numerically with

2+ /2T~ ~' =100 ~m
non/LA)

for y=3, Tt =0.35 K, and oo=(11 II), applicable to
the experimental conditions. In Fig. 3 we show plots of
(T, ,x) for various boundary values TI, /Tt at x= 0. The tem-
perature difference between the positions adjacent to the
voltage probes and the average electron temperature be-
tween the probes can then simply be evaluated from the plot
in Fig. 3 [or from Eq. (4) directly]. This gives temperature
differences of the order 0.25 K, and AT/Tt=0. 2 This.
analysis is off course based on too many assumptions to
give 100%o reliable values for the temperature difference.
However, we believe that the values we get are within 50%%uo

from the real values and do not change the conclusions
qualitatively. In Fig. 4 we have plotted the resulting
thermopowers as [5 (B)—5 (0)]/T, , with 5 (0)
= —(7 X 10 ~ 2 X 10 )k&T, /e. This zero-field value
compares favorably with what is expected for the diffusion
thermopower for a degenerate electron gas, namely,
5= —(ks /e)(ksT, /eF), which for our Fermi energies gives
5= —7.9X10 ksT, /e. It is also obvious from our data that
the thermopower has linear dependence on electron tempera-

ture as expected from theory. The amplitude of our oscilla-
tions is about a factor of 5 smaller than calculated in Ref. 13;
however, their thermopower oscillations are calculated for a
modulation amplitude of VO=0.5 mV. The modulation am-

plitude can be determined from the position of the maximum
of the positive magnetoresistance in p (B) T.he positive
magnetoresistance below 0.02 T is caused by electrons that
are forced to move in open (streaming) orbits along the

stripes because the magnetic Lorentz force ev+XB exerted
on them is unable to lift them over the potential barriers
imposed by the modulation. The maximum in the modula-
tion thus occurs at a critical magnetic held given by
e v BF, = 2 7erU„/a. Inserting B,= 0.018 T we get Uo = 0.26
mV. If we assume that the amplitude of the therrnopower
oscillations depends on V~, our data ought to be a factor of
about 4 smaller than in Ref. 13, which is in remarkably good
agreement with the reference.

In conclusion, we have measured the diffusion ther-
mopower in the linear response regime for a lateral superlat-
tice, and found commensurability oscillations. Our data are
in good agreement with theory with respect to both the tem-
perature dependence and the size of the effect. Concerning
the phase relation between the observed oscillations in the
magnetothermopower and the magnetoresistance we And an
unexplained (180') disagreement with the theory regarding
the SdH oscillations in Ref. 13. The existing quantum-
mechanica1 theory, however, appears rather complex, and
one could hope that a more physically appealing semiclassi-
cal theory could be developed for the thermal properties of
later superlattices. In fact, a semiclassical theory for the os-
cillations in p~Y based on small-angle scattering has very
recently been developed.
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