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Frenkel-Kontorova model with a nonconvex. transverse degree of freedom:
A model for reconstructive surface growth

Oleg M. Braun
Institute of Physics, Ukrainian Academy of Sciences, $6 Science Avenue, UA 2M-022 Kiev, Ukraine

Michel Peyrard
Laboratoire de Physique de t'Ecole ¹rmale Superieure de Lyon, $6 Allee d'Italic, 6986$ I yon Cedez 07, France

(Received 18 November 1994)

We study the ground state (GS) of a generalized Frenkel-Kontorova model with a nonconvex
transverse degree of freedom. The model describes a lattice of atoms with a given concentration in-
teracting by exponential repulsive or Morse-type forces. The lattice is subjected to a two-dimensional
substrate potential which is periodic in one direction and nonconvex (Morse) in the transverse di-
rection. The model exhibits transitions from the trivial (linear) GS to a GS with escaped atoms
when the amplitude of repulsion or the concentration of atoms increases. The results are used to
describe reconstructive crystal growth which occurs when the growth of the second atomic layer
leads to a reconstruction of the underlying first layer, and the "complicated exchange-mediated
difFusion mechanism" recently observed in molecular-dynamics simulations [J.E. Black and Zeng-Ju
Tian, Phys. Rev. Lett. 71, 2445 (1993)j.

I. INTRODUCTION

In the past decade, the heterogeneous crystal growth of
artificial layered materials has been a subject of intense
studies because, besides its fundamental interest, it has
important applications for microelectronics. Depending
on the parameters of the pair substrate-growing crystal,
the growth can occur through three mechanisms: first,
by the Frank van der Mer—ive (layer-by-layer) mechanism,
second, by the Vollmer- Weber mechanism (when sepa-
rate islands of three-dimensional crystals start to grow
from the very beginning), and third, by the Stranski
Krastanov mechanism (when the first layer grows by the
first mechanism, while the second and subsequent lay-
ers grow by the second mechanism). i However, precise
experiments show that in some systems the growth is a
more complicated process. For example, for a lithium
film growing on the (112) surface of tungsten or molyb-
denum the growth of the second layer leads to a recon-
struction of the underlying first layer. '

The growth process is generally investigated in the
framework of lattice-gas type models, such as the Ising
model for studying the growth of the first layer, and the
solid-on-solid (SOS) model for investigation of thin film
growth. In particular, a generalized SOS model allows
us to simulate all three growth scenario mentioned above.
However, the lattice models are oversimplified, because
they assume that incoming atoms have to be placed only
at fixed points (lattice sites) defined by the substrate.
As a result, these models cannot describe a possible in-
commensurate structure of the first layer and, moreover,
they cannot explain more complicated growth scenarios
involving crystal reconstruction.

In more realistic models the substrate is considered
as the source of a potential which is periodic along the

surface, and the incoming atoms are allowed to shift
from the minima of this potential. The best known
model of this type is the Frenkel-Kontorova (FK) model, s

where a chain of interacting atoms is subjected to a
one-dimensional sinusoidal potential. The FK model
was successfully used to describe misfit dislocations and
commensurate-incommensurate transitions in the first
adsorbed layer [see Ref. 7 and references therein].

The standard FK model assumes that the mean in-
teratomic distance along the chain varies only in a small
range, so that the interatomic potential may be expanded
in a Taylor series, keeping the square terms only. This
harmonic approximation simplifies greatly the analyti-
cal studies, but it is sometimes rather crude. To model
the growth of a film, a natural variable of the system
is the atomic concentration or the dimensionless "cover-
age" 0 = N/M (where N is the number of atoms and
M is the number of minima of the substrate potential).
In actual experiments, 0 can vary in a very wide interval
&om 0 = 0 to 0 1 during the growth of the first layer,
and becomes 0 ) 1 during the growth of the second and
next layers. In this case, the harmonic approximation
for the interaction potential V;„,(r) becomes unrealistic,
and a more realistic (i.e., anharmonic) function for the
interatomic potential has to be used.

Another serious restriction of the classical FK model
is that it assigns a single degree of &eedom for an atom,
because the atoms are allowed to move only along the
chain. This assumption is realistic when we are con-
sidering quasi-one-dimensional systems, such as a sub-
monolayer film adsorbed on a furrowed crystal surface at
low coverage 0 & 1. But when 0 increases so that the
atoms begin to use the repulsive branch of their interac-
tion potential, at some critical amplitude of the repulsion,
the atoms start to shift in the direction perpendicular to
the chain. To describe this situation, we must allow the
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atoms to move in two or three directions (i.e., along the
chain as well as in the transverse directions). Such a gen-
eralization of the FK model to describe atoms mobile in
a furrow was proposed first in Ref. 9 and then studied
in Refs. 10—12. The substrate potential was modeled by
a two-dimensional function, sinusoidal along the chain
and parabolic in the transverse direction. It was shown
that, with increasing interatomic repulsion, the trivial
(linear) ground state (TGS) of the system is transformed
to a "zigzag" ground state (ZGS), where the nearest-
neighboring atoms are displaced in opposite transverse
directions. Then the ZGS evolves into more complicated
structures if the repulsion continues to rise.

The aim of the present work is to modify the zigzag-
FK model in order to describe crystal growth near the
0 1 coverage and above, to study in particular the pro-
cess leading to the formation of the second layer. This
requires two essential modifications of the model. First,
the potential in the transverse direction can no longer
be treated as parabolic, because the transverse degree of
freedom describes now the atomic displacements perpen-
dicular to the surface of the substrate. When an atom
moves away from the surface the transverse potential has
to tend to a constant, the "vacuum level" for an atom
taken away f'rom the surface. As the potential must also
exhibit a minimum at the surface level to describe the
sticking of the overlayer on the substrate, the transverse
potential must be nonconvex, and this will lead to a more
complicated model behavior than for the parabolic po-
tential. For the sake of concreteness, we will use the
Morse potential for the transverse substrate potential.
Second, the purely repulsive interatomic potential used
in the previous studies must also be modified to include
an attractive branch at large distances, so that the in-
teratomic potential has to be modeled by a nonconvex
function too, for example, by a Morse-type potential.

To simplify the investigation, we will generalize the
model in two steps: we study first the model with a re-
pulsive interatomic interaction (exponential for the sake
of concreteness), but with a Morse transverse potential
due to the substrate, and in the second step, we introduce
also the nonconvex potential for the interatomic interac-
tion.

The paper is organized as follows. The model, the
choice of its parameters, and the numerical method are
described in Sec. II. The case of an exponential inter-
atomic repulsion is studied in Sec. III, while a more
realistic model with a Morse-type interaction is investi-
gated in Sec. IV, where the process of the growth of an
overlayer is considered more precisely. Finally, Sec. V
concludes the paper by some discussion of the results.
Although the model is presented with a special emphasis
on crystal growth, it should be noticed that the general-
ization of the Frenkel-Kontorova model that we discuss
here is also of general interest, because the standard FK
model has been the basis for many studies in nonlinear
sciences.

II. THE MODEX

The displacement of an atom is characterized by two
variables: x describes its motion parallel to the surface

and y describes its deviation orthogonal to the substrate.
For the potential perpendicular to the surface, let us take
the Morse function,

which goes to the finite limit es (known as the adsorption
energy) when y —+ oo. The parameter p determines the
anharmonicity and it is related to the frequency w„of
a single-atom vibration in the normal direction by the
relation

at = 2p eg/I, , (2)

m being the atomic mass. Contrary to the parabolic po-
tential studied previously, the function (1) is noncon-
vex, i.e. , it has an inHation point at y = y;„g = p ln2,
so that ~,z(y) = V„"(y) ) 0 for y & y;„f, but ~,ir(y) & 0
at y) y;„f.

To model the substrate potential along the surface,
we will use the function proposed by Peyrard and
Remoissenet,

1 (1+ s) [1 —cos(2~x/a, )j
2 1 + s2 —2s cos(2mx/a, )

Here, c, is the activation energy for diffusion of a single
atom, a, is the period. of the substrate potential along
the chain, and the parameter s (~s~ & 1) describes the
shape of the potential. The frequency w of a single-
atom vibration along the chain is connected to the shape
parameter 8 by

2m cs2

with
ma2

In the following, we use a system of units where a, = 2m,

e, = 2, and m = 1, so that uo ——1.
The total potential energy of a single atom near the

substrate is written as

V,„b(x, y) = V (x)e ~ " + V„(y).

The exponential factor in the first term of the right-hand
side of Eq. (5) takes into account the decrease of the
inHuence of the surface corrugation as the atoms move
away from the surface, so that V,„b(x, y) ~ eg, when

y + oo. Note that this factor is important because it
results in a nonlinear mixing of x and y modes.

Thus, the substrate potential depends on four param-
eters: the adsorption energy cp, the frequencies ~ and
u&, and the coupling parameter p'. In general, the former
three parameters may be measured experimentally for a
given adsystem. Considering the case of metal atoms ad-
sorbed on a metal substrate such as, e.g. , the Li-W(112)
adsystem studied in Ref. 2 or the Li-Mo(112) system
investigated in Ref. 3, in our calculations we will take
a, = 2.73 A. , which is the distance between the wells along
a furrow on the W(112) surface, e, 0.1 ev, eg 3 eV,
and u~ & coy ~ 10 cm, which are typical values for
these systems. ' Returning to our system of units and
taking for the sake of concreteness w = 1.5 and w„= 2,
we get e~ = 60, p = 0.183, y;„f = 3.80, and s = 0.2 (such
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a choice was discussed in Ref. 15) As for the parameter
p' which is not critical for the present study, we will take
p' = 2p = 0.366 for the sake of concreteness.

As shown in Refs. 9—12, the transverse degree of free-
dom comes into play when the atoms start to use a re-
pulsive branch of the interatomic interaction. In order to
study our model qualitatively, let us first investigate the
case of exponential interatomic repulsion,

V;„,(r) = Vo exp( —Por),

where Vo is the amplitude and Po determines the typical
range of the interaction. In order to prevent the atoms
from escaping to infinity as Vo increases, we must impose
Po ) p; we have chosen Po ——2p = 0.366.

As discussed above, to study a realistic model, we have
to take into account that the atoms attract each other at
large distances. Consequently, to simulate the process of
growth of the second layer, we have to add to the function
(6) an attractive branch, so that the total interatomic
potential will take the form

V,„,(r) = Ve ~" —V'e (7)

where p' & p and V' & V. Adding to Eq. (7) an ap-
propriate constant, the function (7) can be rewritten in
a generalized Morse form as

(8)

where e is the interatomic bonding energy of a molecule
adsorbed on the surface, r is the molecule's equilibrium
distance, and the exponents P and P' are related to the
&equency u of interatomic vibration by the relation

= e pp'.

If we put P' = —P, the potential (8) reduces to the stan-
dard Morse form. Having in mind the application of our
model to the lithium film, we have chosen r 3.04 A

(the interatomic distance in lithium metal), or r = 7 in
our system of units. The energy of interaction between
two adsorbed metal atoms usually lies within an interval

0.1 —0.5 eV, or e 2 —10 in our system of
units. We have chosen the value c = 6 for the calcu-
lation presented below. As for the exponents P and P',
the standard Morse choice, which works quite well for a
Bee molecule, turns out to be inappropriate for the prob-
lem under investigation, because the chemically adsorbed
atoms are partially ionized. This reduces significantly
the strength of the interatomic bond so that the attrac-
tive branch of the interatomic potential is much weaker
than in a free molecule. On the other hand, the repulsive
branch is significantly stronger than for a free molecule,
because it is now caused by an overlap of atomic cores.
This situation leads to a strong ineiluality p' « p, how
ever these parameters are not easy to derive from ex-
perimental data. After several attempts, we have Finally
chosen P = 1.9 and P' = 0.19, which provide interesting

results in agreement with experimental observations as
discussed below. However, we cannot say categorically
that this is the only parameter set which has this prop-
erty. Moreover, our choice of parameters does not claim
at a detailed quantitative interpretation of the experi-
ments, because the model is still oversimplified for a real
system of adatoms. In the spirit of the FK model, we
have tried to design the minimal model able to describe
the phenomena of interest, particularly the reconstruc-
tion of the growing crystal. This phenomenon involves a
rather subtle balance between different interactions. This
is why the "minimal model" has to be much more com-
plicated than the standard FK model to capture these
effects.

The main goal of the present work is to find the se-
quence of the ground state configurations when the con-
centration of atoms is increased, while all other model
parameters are Fixed. In order to control the coverage of
adatoms, we impose periodic boundary conditions, tak-
ing a fixed number of minima of the substrate potential
(we have used M = 16) and varying the number X of
atoms (K was changed from 14 to 32). For each N the GS
configuration as well as the nearest metastable states are
searched for with a standard molecular-dynamics (MD)
algorithm. Namely, we are starting from an appropri-
ate initial configuration and allow the atoms to relax to
a nearest minimum of the total potential energy of the
system. Thus, the computer algorithm reduces to the
solution of the equations of motion, which follow from
the potentials (5) and (6) or (8) with an artificially in-
troduced viscous friction. As was explained in Refs. 10
and 11, for the model under investigation, we have to
take into account the interaction of a given atom with
all the other atoms. Obviously, in computer simulation,
we can include only the interaction with a finite number
of neighbors. Therefore, we have to introduce a cutoff
distance r* (we have chosen r* = 9.5a, ) and account
only for the interactions between the atoms separated by
distances lower than r' as usual in MD simulation.

Contrary to the case of the standard FK model for
which, the appropriate initial configuration can be deter-
mined analytically although a complete solution cannot
be obtained, guessing the "correct" initial configuration
in the present study is difBcult. The following methods
help to find it. First, we start from the simpler model of
the exponential interatomic interaction (6), and investi-
gate its behavior when the amplitude Vo of the repulsion
increases. The knowledge of the phase diagram of this
system is then used for the case of a Morse interaction.
Second, we start from different "reasonable" initial con-
figurations, and then compare the energies of the result-
ing final configurations. Finally, we use Langevin equa-
tions of motions instead of the Newtonian ones, i.e., we
introduce some nonzero temperature T, which allows the
system to overcome small barriers around a secondary
minimum (we have used T 0.01 in our energy units at
the beginning of simulation). Then T is decreased slowly
to zero in the final stage of the calculations. Although
all these tricks cannot guarantee that we obtain the true
GS configuration, they at least help to find it with a high
probability.



51 FRENKEL-KONTOROVA MODEL WITH A NONCONVEX. . . 17 161

III. REPULSIVE INTERATOMIC INTERACTION

A. The 8 = 1 case

was studied previously for the FK model with noncon-
vex interatomic interaction. Let us introduce the energy
of the sl excitation as

x) = la„ y2~ = y+, y, ~+, ——y, l = 0, +1, . . . . (10)

The critical repulsion V can be obtained from a lin-
ear stability analysis of the trivial ground state. An
analysis restricted to nearest-neighbor interactions gives
a,w„= —4V, '„t(a,), so that for the exponential repulsion
(6), we obtain

V„= ((u„a, /4P) exp(Pa, ).
With the parameters chosen above, Eq. (11) yields V„
171.

For a parabolic transverse potential V„(y) the displace-
ments are symmetric, y+ ——y = yp., they increase when
Vp is raised above V, , and at some second critical value
of Vp the ZGS is transformed into a more complicated
GS structure. But for a nonconvex transverse potential
such as the Morse potential (1), where y+ & yo & y, the
scenario may change if the displacement y+ approaches
to the inflection distance y;„g, i.e. , when y+ & y;„p. A
qualitative understanding of the behavior of the system
can be obtained by fixing all the atoms but one at the
minima of the substrate potential, and considering the
total potential energy as a function of the transverse dis-
placement of the atom which is left free,

Let us begin from the simplest case of the commensu-
rate 0 = 1 structure with the exponential repulsion (6)
between the atoms. As shown in Ref. 9, at small mag-
nitude of the repulsion, Vp ( V, the GS of the chain
is trivial (TGS), because all atoms occupy the minima
of V,„b(x,y), so that the atomic coordinates are simply
xt = la, and y~ = 0 (l = 0, +1, . . .). But with increas-
ing Vp, at Vp ——V the TGS evolves into a zigzag ground
state (ZGS), where nearest-neighboring atoms are shifted
transversely in the opposite directions, so that they have
the coordinates

&.I = El —EP,

Vit(r) = V,]e (i4)

where P,~ Po and V, ~
& Vo, the escaping of new atoms

will finally be suppressed. The density of sl excitations
(i.e., the atoms in the "second layer" ) is determined by
the competition between the energy gain (13), due to
the negative creation energy of the sl excitation and the
energy loss owing to positive energy (14) of repulsion
of the sl excitations. The period a, l of the sl structure
follows from the equation Vj~(a, l) + s,~

= 0, or

a, l
--—P, ln( —s,(/V, I).

This analysis shows that, with increasing Vp, at Vp

V„;t, the system with exponential interatomic repulsion
undergoes a first-order phase transition from the trivial
(or zigzag) ground state to the configuration with "es-
caped" atoms, and then an infinite series of second-order
phase transitions, in which the period of the sl super-
structure decreases from infinity to 2a, (so that the cov-
erage 02 of atoms in the second layer increases from 0
to 1/2).

where Ep is the energy of the trivial or zigzag GS and
El is that for the configuration with one escaped atom.
The dependence of c,l on Vp is plotted in Fig. 1 which
shows that, below some critical value of the repulsion,

Vo ( V „.t (for our choice of parameters V„;t —162),
the energy of the sl excitation is positive, so that the
sl configuration corresponds to a metastable state. On
the other hand, for Vp ) V„,.~, the energy of creation of
the sl excitation becomes negative, and the system might
tend to create as many escaped atoms as possible. But
because two escaped atoms repel each other according to
an exponential law,

V(y) = V„(y) + 2V ) e ~~i' 'l +" .
l=l

(i2)

It is easy to check that for small Vo the function (12) has
a single minimum at y = 0. For large Vp, it has a single
minimum at some y ) 0, but there exists an interval of
Vo values, Vi ( Vo & Vi', for which the function V(y) has
two minima simultaneously. Thus, with the increase of
Vp, the chain can undergo a first-order phase transition,
forcing out one of its atoms to a "second layer. "

The scenario remains qualitatively the same if we take
into account the displacements of other atoms and adjust
their positions in the presence of the escaping atom, al-
though the numerical values of Vi and Vl' will, of course,
be difI'erent. For the chosen parameters of the model, the
numerical calculations give Vl = 152 and Vl 177.

Let us denote this state with an escaping atom and
the corresponding shift of its neighbors as the "second-
layer" (sl) excitation. Now, we have a situation which

0, 0

—0.1

150 160
V0

170 180

FIG. 1. The energy of the "second-layer" excitation e, &
ver-

sus Vp.
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FIG. 2. The maximal transverse atomic displacement as
a function of Vo for the model with exponential inter-
atomic repulsion. GS corresponds to the configuration with
Oq ——n/16, so that the period of the superstructure of "es-
caped" atoms is a, ~

= 16a, /n. Full curves correspond to the
ground state configurations, and broken curves correspond to
metastable states.

The results of the numerical calculations are presented
in Fig. 2, where we have shown the maximum atomic
displacements in the transverse direction as a function of
Vo. Because of the finite size of the model system (16
atoms), the first state that we can observe corresponds
to O2 ——1/16, and then O = n/16 could, in principle, be
found. In the parameter range that we have investigated,
we have observed only the transitions from the TGS to
the superstructure with O2 ——1/16 (a,i = 16a,), then to
the structure with O2 = 1/8 (a,i = 8a, ), then with O2 ——

3/16 (this structure is not perfect because 3 and 16 have
no common divisors), and then to O2 ——1/4 (a,i = 4a, ).

B. The 8 & 1 case

In order to understand crystal growth on a surface,
we must investigate now the properties of the system
with increasing atomic coverage. Let us erst consider the
simplest situation where we have added one extra atom
to the O = 1 coverage, i.e. , O = 17/16 for our system with
16 potential wells.

For the standard FK model with only one degree of
freedom, the extra atom has no other choice but lying in
line with the others. Due to the periodic substrate poten-
tial, the atoms do not distribute evenly on the available
length. On the contrary, the FK model exhibits in this
case a localized defect, where one well is occupied by two
atoms, and. the atoms in the neighboring wells are slightly

disturbed from their equilibrium position. This is the so
called dislocation or kink. When the interatomic inter-
action is very strong, this defect disturbs the atoms over
many lattice spacings and can be described in the contin-
uum limit as a soliton of the sine-Gordon model. In this
extreme case, the defect can move freely in the lattice.
For narrower defects, which is the case for crystal growth,
the kink has some minimum-energy con6.guration which
can be either with two particles situated symmetrically
in one well (i.e. , the center of the kink lying in the middle
between two sites X~ = 1/2) or with one particle exactly
on the top of the potential (i.e., the center of the kink be-
ing exactly on one particle, X~ = 0). For the sinusoidal
potential (s = 0), the minimum energy configuration cor-
responds to the case X~ = 1/2. When s deviates from
0, the case X~ ——0 may become favorable, and when
the interatomic interaction increases, the favorable kink
position 's alternatively X~ = 0 and X~ = 1/2.

This well known picture for the standard FK model
may not be correct for crystal growth, where the extra
atoms have the freedom to start forming a second layer.
This is the situation that we want to investigate in this
section with our generalized FK model.

The kink structure for the generalized FK model with
the parabolic transverse potential was studied in. Ref.
10. In this case with increasing Vp, at a critical threshold

Vo
—V„(V ( V„), the atoms in the kink region cre-(a) (A:)

ate a zigzag structure, while the atoms far from the kink
region remains in the TGS. With further increase of Vp,
the transversal atomic displacements increase too, and
at Vp ) V, when the background structure changes to
the ZGS, the atomic displacements in the kink region are
still the largest. (Note that in the ZGS there exist two
kinds of kinks, the so-called "massive" and "nonmassive"
ones. But this is not important for the problem un-
der investigation; in the present study we are interested
in the "massive" kinks only. ) Similarly to the scenario
described above for the 0 = 1 case, one of the atoms,
namely, the one with the maximum transversal coordi-
nate, may escape to the second layer at some Vp ——Vk,
when this coordinate becomes close to the inBection point
y;„i. Such a configuration can be designated as the (k+sl)
configuration, because it involves simultaneously a kink
and the formation of the second layer. It is metastable
within the interval Vk & Vp ( V t and becomes the

minimum-energy configuration for V„,, ( Vp ( VA', ~

For our choice of parameters we have found Vy = 47,

VI,
' 175, and Vcrit
The scenario looks similar to the one that we described

for the 0 = 1 coverage: the generalized FK allows the
formation of a second layer of atoms. The main differ-
ence lies, however, in the magnitude of atomic repulsion,
which is necessary to form this layer. It is significantly
decreased in the presence of extra atoms (Vy = 47 in-
stead of Vi —152), because those atoms contribute to
the formation of kinks in the core of which particles es-
cape more easily. The same picture holds for coverages
higher than 17/16. More generally, for O ) 1, in the
standard FK model the ground state consists of an ar-
ray of kinks with a density that increases with 0. In the
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FIG. 3. The saine as Fig. 2 for O = 18/16. GS2 corresponds
to the configuration with two (k+sl) excitations, and GS4, to
iour "escaped" atoms, or the (2A, +4sl) configuration.

generalized FK model with a nonconvex potential in the
transverse direction, each kink acts as a nucleation site
for the formation of the second layer, because it evolves
into a (k+sl) configuration when Vo increases. These
transitions occur one by one through an infinite series
of superstructures within a narrow interval of Vp values,
and stop at some point Vo = V„,.t (V„,.t & V„,.t). The
physics of the resulting structure is quite clear: when the
interatomic repulsion is large enough, the extra atoms
prefer to occupy the second layer.

Then, with further increase of Vp, at some Vp ——V2 the
atoms belonging to the background of the first layer start
to escape and form sl excitations. Because these excita-
tions repel each other, these new escaped atoms emerge
just in the middle between the kinks. Such a configu-
ration is metastable in a range V~ & Vp & V„,~, and
then corresponds to the minimum-energy configuration
at V„,.~ & Vp & V2. We have checked this scenario numer-I

ically for O = 18/16 and found that the value V2 for which
atoms in the background start to escape is V2 148 and
these excitations become stable for V„;t 159. The(2)

results are shown in Fig. 3. These values should be com-
pared with the values Vi 152 and V„,t 162 found for(1)

the 0 = 1 coverage. They are lower because, for 0 ) 1
the presence of the extra atoms induces the formation of
kinks, which not only promote the escaping of atoms in
their core, but also modify the background state.

These results are interesting because they illustrate
some subtle efFects in surface growth. Consider a system
such that the magnitude of the interatomic repulsion is
in the range V„,t & Vp & V„,t, and assume that 0 is in-
creased regularly by atomic deposition to grow new layers
on the surface. For 0 = 1, the minimum-energy config-

uration corresponds to having all the atoms in the first
layer (Oi ——1, O2 ——0), because Vo & V„,t. For O = 17/16,(i)

Oi ——1 and O2 ——1/16, i.e. , the extra atom has formed a
second layer. But if one more atom is added by going to
O = 18/16, the minimum-energy configuration is achieved
for Oi ——14/16 and O2 ——4/16, i.e. , the addition of one
atom has induced the extraction of turo atoms from the
first layer. This reconstruction effect is indeed very sen-
sitive to the choice of interatomic potentials, but this is
not surprising because it is a usual property of structural
transformation. It is interesting that the generalized FK
model with a nonconvex transverse potential, although
it is still rather simple, can show such a phenomenon.

IV. THE MORSE INTERATOMIC POTENTIAL

Let us now consider the more realistic case of a gen-
eralized Morse interaction (8) between the atoms. As
mentioned above, the model parameters P = 1.9 and
P' = 0.19, which can only be roughly estimated from
available data, have been selected to provide qualitative
agreement with experiments. We have been helped, in
this selection, by the understanding obtained from the
simpler case of a purely repulsive interaction described
in the previous section.

The mechanism of surface growth has been investi-
gated by chosing a given interaction potential and vary-
ing the coverage. As before, we consider a system with
M = 16 minima of the substrate potential. The number
of adatoms has been varied from N = 16 to N = 32 in
order to get coverages in the range 1 & 0 & 2. For each
coverage, we have been looking for the absolute minimum
or local minima of the energy in order to determine the
stable ground state and possible metastable states. As
the study of the previous section has shown that the sta-
ble or metastable states are not always the states with
a maximum number of atoms in the first layer, we have
considered in each case several initial configurations for
the relaxation. The first initial condition assumes sim-
ply a full coverage of the first layer, i.e. , M atoms in
the first layer and N —M in the second layer. A second
initial state puts only M —1 atoms in the first layer, giv-
ing a partial coverage Oi ——(M —1)/M, and the others
N —M + 1 atoms in the second layer. We also started
from M —2 or M + 1 atoms in the first layer.

The numerical calculations exhibit some interesting
features of the epitaxial growth. For high overall cov-
erage O = K/M with N ) 22, all the initial states con-
verge to the same final configuration, which corresponds
to a completely filled first layer (Oi ——1). At lower cov-
erages (16 & 1V & 21), there exist two stabLe final con-
figurations. They are shown in Fig. 4. The first class
of configurations (a—f in Fig. 4) have a full coverage of
the first layer (16 atoms), while the second class of con-
figurations (g—l in Fig. 4) has only 15 atoms in the first
layer (Oi ——15/16 = 0.94). We did not find any stable
configuration with less than 15 or more than 16 atoms in
the first layer. Figure 5 shows the energies of the two
sets of configurations found in the range 16 & N & 21.
For the lowest coverages N = 16 and N = 17, the ground
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state configuration corresponds to a completely filled first
layer (Oi ——1), but in the range 18 ( N ( 21 it is, on
the contrary, the partially filled first layer (Oi ——15/16)
which is the most stable, i.e. , the configuration in which
the first layer has an empty site (antikink).

Thus, the model exhibits the reconstructive growth
scenario that we had foreseen in the simpler case of a
purely repulsive interaction. At 0 ( 1, the incoming
atoms fill the first layer. In the interval 1 ( 0 ( 1.1, new
incoming atoms occupy the second layer. Then, within
the interval 1.1 ( 0 ( 1.35, the incoming atoms continue
to fill the second layer but, at the same time, they stimu-
late the escaping of atoms from the underlying first layer
to the second layer, causing the reconstruction of the
structure of the growing film. Finally, for 1.35 ( 0 ( 2,
the escaped atoms are pulled back to the first layer, and
the film continues to grow in a usual way, new incoming
atoms being placed over the completely filled first layer.

To describe the atomic structure of the second layer,
we have to recall that two kinks in the FK model interact
by two mechanisms. First, there is always an "indirect"
kink-kink interaction. This interaction is due to the dis-
turbance of the background chain caused by a kink. This
perturbation, which decays away from the center of a
kink, is felt by the second kink. The "indirect" interac-

tion is always repulsive (at least for a convex interatomic
interaction) and may be approximately described by an
exponential law V;„~;„,t(r) oc exp( —r/d) as r —+ oo, is

where d is the kink width (i.e. , d measures the extension
of the region perturbed by the kink). In fact, the "indi-
rect" interaction is nothing else than the usual elastic in-
teraction between two local defects. In a one-dimensional
FK model, this interaction is exponential and can be es-
timated &om the continuum limit because it corresponds
then to the soliton-soliton interaction of the sine-Gordon
model. In a real three-dimensional model, the interaction
between defects decreases according to the dipolar law
V;„g;„,&(r) oc r s. o'2i Second, if we take into account
the interaction between all the atoms of the chain, which
is the realistic situation, there always exists a "direct"
kink-kink interaction, simply because each kink contains
one extra atom, and these atoms interact according to the
potential V;„t(r). Thus, the total kink-kink interaction is
a superposition (approximately a sum) of the "direct"
and "indirect" interactions. For the model with expo-
nential interatomic repulsion (6), the two contributions
of the kink-kink interaction are repulsive so that the total
interaction is indeed repulsive. Consequently, the atoms
in the second layer tend to fill it uniformly, creating a su-
perstructure with an interatomic distance that is as large
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I"IG. 4. Atomic configu-
rations for the model with
the generalized-Morse interac-
tion (8). M = 16, r = 7,

= 6, P = 1.9, and P' = 0.19.
The number of substrate poten-
tial minima is M = 16, the cov-
erage is 8 = N/M and is in-
creased by increasing the num-
ber N of adatoms from 16 to
21. In this range of coverage,
for each N, the system has two
stable configurations: the first
ones (a—f) are obtained with
a full coverage of 16 atoms in
the first layer, while the second
class of configurations (g—l) has
only 15 atoms in the first layer.
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FIG. 5. The energy per atom E/K versus N for the config-
urations of Fig. 4. The points connected by the full curve
correspond to the Hi = 1 case (the configurations a—f in
Fig. 4), and the points connected by the broken curve, to the
Hi ——15/16 configurations (the configurations g—I in Fig. 4).

as possible. However, for the model with the Morse in-
teratomic potential (8) that we consider here, the total
kink-kink interaction at distances larger than the equi-
librium distance r of the Morse potential, r ) r, is the
result of a competition between the "indirect" kink-kink
repulsion and a "direct" attraction. Thus, depending on
the parameters of the model, the resulting interaction be-
tween the atoms in the second layer may or may not have
a minimum. It is clear that if a minimum exists at some
distance rI„ the atoms in the second layer will tend to be
organized into clusters (islands) with a mean interatomic
distance close to rI, . For our choice of parameters, the
kink-kink total interaction potential has a minimum for
rI, & r and this explains the formation of the clusters in
the second layer as shown in Fig. 4. It is important to
notice that this formation of clusters, often observed in
experiments, is made possible by the attractive branch of
the interatomic potential. It would not have been possi-
ble with the simpler model studied in Sec. III.

Besides the reconstructive growth, the generalized FK
model studied here exhibits two other interesting phe-
nomena. The first is connected with the exponential fac-
tor exp( —p'y) in the right-hand side of Eq. (5). As this
term introduces a coupling between the x and y displace-
ments, the atoms in the first monolayer, which are dis-
placed from the minima of the substrate potential in the
x direction, should additionally be forced in the transver-
sal direction. It is easy to see that if an atom is shifted
by» (b,x & m) along the chain from the corresponding
minimum of V,„b(x,y), at the same time it is submitted
to a force in the y direction, which shifts it in the normal
direction of the quantity,

D = (D2~2 + Di Oi )/(02 + Oi ) ~ (17)

and in the case of Dk &) D2 and LE k~T, we will have
D &) D2. It is interesting that such a diffusion mecha-
nism in which an atom from the second layer penetrates
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FIG. 6. The corrugated atomic structure
for 8 = 7/8 = 0.875. Notice that the displacements in the
y direction have been exaggerated to show clearly the corru-
gation.

As a result, a submonolayer structure (8 ( 1), which
may be considered as an antikink superstructure with
the period a, /(1 —8), should be corrugated in the nor-
mal direction with the same period as is shown in Fig. 6.
Although this effect is quite trivial, it would be inter-
esting to observe it experimentally with, e.g. , the STM
technique, because the amplitude of corrugation gives the
value of the coupling parameter p'.

The second. efFect has been observed, when we were
studying the 9 = 17/16 atomic configurations as the pa-
rameter r of the generalized Morse potential (8) was
varied within the interval 5.7 & r & 7. As described
above, for each value of r, we started &om two dif-
ferent initial configurations: the first with 61i ——1 and
82 ——1/16 (one atom in the second layer), and the sec-
ond with ei ——17/16 and 02 ——0 (all atoms in the first
layer). Calculations show that the oi ——1 final config-
uration always corresponds to the GS, but within the
interval 6.1 + r + 6.6 the Oi ——17/16 configuration
(i.e., with a kink into the first atomic layer, see Fig. 7)
exists also as a metastable configuration. The energies
of these two configurations as functions of r are plotted
in Fig. 8. If we denote by LE the difference in energies
of these two configurations, then a4 a nonzero tempera-
ture T the concentration of kinks in the first layer (owing
to insertion of atoms from the second layer) may be es-
timated as 0@ —02 exp( AE/kriT)—, where ez ——1/16
for our case. This situation could have significant physi-
cal consequences, because previous investigations of the
zigzag-FK model have shown that a kink in the first layer
is usually much more mobile [i.e. , its motion is character-
ized by a lower activation (Peierls-Nabarro) barrier] than
a kink in the second layer. Thus, if D2 is the diffusion
coefFicient for the atomic motion in the second layer, i.e. ,
for atoms moving over the filled first layer and Dk is the
kink difFusion coeKcient in the first layer, the average
chemical diffusion coefhcient can be estimated as
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FIG. 7. A metastable con6guration with one atom inserted
into the first layer. 0 = 17/16, r = 6.3, e = 6, P = 1.9, and
P' = 0.19.

into the first layer and forms there a kink, which then
runs for a large distance before an atom from the kink
region will escape back to the second layer, was recently
observed in a full molecular dynamics simulation.

V. DISCUSSION

—18.0

—18.5
6.0 6.2 6.4 6.6 6.8

Because the model studied in the present work is char-
acterized by a large number of parameters, we have tried
to choose them in an appropriate way to describe real
physical objects, for example, a lithium Glm adsorbed
on the furrowed (112) surface of tungsten or molybde-
num, which were studied experimentally in Refs. 2 and
3. However, we must be careful in drawing conclusions re-
garding the experiments, because the model is still over-
simplified. First, the parameters of an interaction poten-
tial of chemically adsorbed atoms depend significantly
on the distance between the atoms (owing to their mu-
tual depolarization), as well as on the distance from an
adatom to the surface (i.e. , the parameters for the first
adsorbed layer have to be distinguished from those for the
second layer) and, moreover, in a general case the inter-
action has a much more complicated form than the sum
of two exponential functions (8). In particular, the inter-
action can be anisotropic. Second, in a realistic model
the atoms have to have three degrees of freedom and the
growing layers have to form two-dimensional arrays of
atoms. Consequently, the model studied in the present
work cannot claim to reach a detailed agreement with the
experiments. ' However, the present model does predict
effects that may explain the experimental results men-
Honed above. Further theoretical investigations should be
based on two-dimensional models, but the understanding
gained in the present work might be helpful in studying
these models. The model that we have considered here
can be considered as a minimal model in the sense that
all its characteristics are necessary to describe typical ex-
perimental results in epitaxial growth.

(i) We need to consider at least one displacement along
the surface and one orthogonal to the surface, hence the
x and y coordinates.

(ii) We must introduce the periodic potential, due to
the atoms of the surface, as well as the potential in the
transverse direction, which is responsible for the adsorp-
tion of the adatoms, hence the substrate potential (5).

(iii) The transverse potential must be nonconvex in
order to observe atoms escaping from the first layer, al-
lowing reconstructive growth.

FIG. 8. The energies of the GS Hi = 1 configuration (full
curve) and the metastable Hi = 17/16 configuration (broken
curve) as functions of r . 0 = 17/16, e = 6, P = 1.9, and
P' = 0.19.

(iv) Finally, the interatomic potential must include
both a repulsive part to limit the coverage of the first
layer, and an attractive part to allow the formation of
atomic clusters in the second layer.

In spite of the limitations of a minimal model, the
present work has shown that for a certain (but realis-
tic) choice of the parameters, the generalized Frenkel-
Kontorova model with a nonconvex transversal degree
of &eedom describes reconstructive crystal growth. The
calculations have shown, in particular, that the sequence
of the ground state configurations, when the coverage 0
increases above the value 0 = 1 exhibits a "sl-excitation-
stimulated" first-order phase transition, so that at 0 ( 0'
and at 0 & 0" the GS configuration corresponds to a
completely filled erst layer, while within the interval
9' & 0 & 0" (where 8' ) 1, but 8" & 2), the GS struc-
ture corresponds to a partially filled first layer. Such a
sequence of structures of adsorbed atoms was observed
in the experiments (Refs. 2 and 3), for the lithium film
on the furrowed (112) surface of tungsten and molybde-
num correspondently. Besides, the model studied above
also predicts that a submonolayer film at 0 & 1 should
be corrugated. This eKect may be checked by the STM
technique.

Finally, for a certain choice of the parameters, the
model investigated in the present work describes a
new diffusion mechanism, the "complicated exchange-
mediated diffusion mechanism, " which has been recently
discovered in molecular-dynamics simulations of the Cu-
Cu(100) adsystem.
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