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The modified augmented-plane-wave (MAPW) method is adapted for film geometry. Emphasis
is especially put on the choice of the trial functions to achieve high accuracy for the Bloch state
as well as for the self-consistent potential in the local-density approximation. Results obtained for
one-, three-, five-, and seven-layer Cu(100) films are found to be in good qualitative agreement
with other investigations. However, a more precise comparison with recent investigations shows
some deviations which are outside the range of accuracy characteristic for a method. At X and
M surface states are found which are more or less close to the experimental results. The density
of states and the electronic charge in the middle of the seven-layer film are only slightly difFerent
from the corresponding magnitudes in the bulk evaluated by use of the MAPW method with similar
computational parameters. With increasing nuxnber of layers the work function approaches the
margin of the experimental values. As the total energy of the films turns out to be proportional
to the number of layers a reasonable value of the surface energy could be given. For the electric
field gradient a value was obtained which is by about a factor of 3 smaller than its experimental
value. This is due to the fact that in the present calculation the effective potential is assumed to be
spherical within the mufBn-tin spheres.

I. INTRODUCTION

Theoretically, the (100) surface of transition and
noble metals has been investigated intensively. Al-
most all methods originally developed for calculating
the band structure of the bulk have been adapted to
films. Without being complete, this includes the pseu-
dopotential plane-wave method, the linear combination
of atomic orbitals (LCAO) method, the linearized
augmented-plane-wave (LAPW) method, the full-
potential linearized-augmented-plane-wave (FLAPW)
method, the linear combination of Gaussian-
type orbitals fitting-function (LCGTO-FF or FILMS)
method, ' and the film linearized mufBn-tin orbital
(FLMTO) method. The early investigations4 7 s were
based on heuristic potentials obtained either &om bulk
energy bands or by superposing relativistic atomic charge
densities. Most self-consistent calculations were per-
formed with muKn-tin potentials inside the film and a
potential varying only in the direction perpendicular to
the surface. Great progress has been achieved since the
advent of the FLAPW method, which like the LCGTO-
FF method ' allows for a potential without any shape
approximations. At present both methods are considered
to be standard for high-precision studies of surfaces.
Thus very surprisingly their applications to a Cu(100)
monolayer by Birkenheuer et al. gave energies of some
occupied states that dier by up to 18mRy and for the
Fermi energy by 27mRy. These deviations are outside

the margin of error characteristic for either method, say
3mRy, and are not small with regard to the width of
d bands in Cu. They demonstrate that at least one
scheme is less accurate. Therefore it is desirable to re-
peat these investigations using a scheme which allows
for even higher accuracy. The adaption of the modified
augmented-plane-wave (MAPW) scherne2i to the film
problem fits well for this purpose. Analogously to the
FLAPW and the FILMS schemes, it is a linear method
but it is more Qexible with respect to the trial functions
used to solve the eigenvalue problem. By an appropri-
ate choice of parameters characteristic for the basis set,
any degree of accuracy can be achieved. In addition, the
solutions of the eigenvalue problem are continuous and
differentiable everywhere and all eigenstates obtained by
this scheme are orthogonal to one another. No shape
restriction of the potential is necessary.

The second goal of the present investigation is to check
to what extent the electronic structure in the middle of
a film of moderate thickness is comparable with that of
the bulk. If such a comparison turns out to be satis-
factory the electronic structure near the boundaries of
the film and the surface of a semi-infinite medium hav-
ing the same crystal structure will be comparable, too.
This would be a very important result since up to now,
with some exceptions, ' no self-consistent calculations
have been published where the surface matching problem
has been treated in the sense described in the pioneer-
ing work of Appelbaum and Hamann, which requires
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that both the oscillating and the evanescent Bloch waves
corresponding to a certain wave vector parallel to the sur-
face have to be considered. Steps in this direction
have been made. But, for example, in the surface embed-
ding method self-consistency of the electronic structure
is obtained only for the upper two layers.

II. FORMALISM

As in the film LMTO method and the film LAPW
method, all space is partioned into three regions: (1)
touching muffin-tin (MT) spheres, centered on each nu-

cleus, (2) the interstitial region between the spheres,
and (3) the vacuum region (Fig. 1). As we have two-
dimensional translation symmetry the film is constructed
by a periodic repetition in space of an identical struc-
tural unit. Within the (100) film this unit consists of
an oblique column which is generated by repeating the
Wigner-Seitz cell along the principal lattice vector a3. Its
domain is defined by

1 1 d
(1)2' 2'

This partioning has the advantage that the radius of
the MT spheres has the same value, a/~8, as in the bulk.
In most other investigations ' a perpendicular column is
used with the result that the radius of the MT sphere is
considerable smaller, a/4. Then in all APW-like schemes
additional plane waves are necessary to describe the wave
functions outside the MT spheres. Outside the film, as
in other treatments, a perpendicular column is used on
both sides.

A considerable reduction of the numerical work is
achieved by considering (100) films with an odd number
of layers only. Thus we have both inversion and mirror
symmetry with respect to the plane z = 0, where the z
axis is chosen in the direction perpendicular to the sur-
face. No specific shape approximation of the potential is
assumed in the following treatment. But in the course
of the numerical work the potential is taken to be spher-
ically symmetric inside the MT sphere. In the case of
close-packed metals this shape restriction of the potential
has no significant inHuence on most physical properties.

This section describes the choice of the trial functions
used to solve the extremal problem of the Schrodinger
equation and the construction of the charge density and
of the efFective potential as well as the evaluation of the
total energy in the local-density approximation (LDA).

A. The basis functions

where a, are the primitive lattice vectors Inter 8titial r egion

ai ——(1, 1, 0), a2 = —(1, —1,0), as ———(0, 1, 1). (2)
2

' ' '
2

' ' '
2

d denotes the distance between the boundary planes and
a is the lattice constant. The area of the two-dimensional
Wigner-Seitz cell is A = ~ai x az

~

= a2/2 and the volume
of the column is V = dA.

In the interstitial region a basis function is defined, as
in the LAPW scheme, as a product of a two-dimensional
plane wave having the correct two-dimensional Bloch be-
havior and a one-dimensional symmetrized plane wave,

( p
f

k It + )
—e~l+II+

II
+

Here rI~ and z are the components of r parallel and per-
pendicular to the surface, respectively. + and —de-
note states which are, respectively, symmetric and an-
tisymmetric with respect to z reflection. k~~ is a two-

dimensional crystal momentum vector and K~~ is a two-
dimensional reciprocal lattice vector. In order to obtain
trial functions of great flexibility p~ is defined by

2~
p) ——l —,l = 0, 1, 2, . . . . (4)

VL

—d/2 d/2

FIG. 1. Schematic representation of the (001) film geom-
etry. The unit column indicated by full lines extends to
z = +oo. There are two boundary planes at z = +d/2.

If we choose A ) 1 these trial functions or their deriva-
tives with respect to z will not have a node at the bound-
ary. In their LAPW scheme Krakauer et al. saw this
point as they decided to test the efFect by choosing A ) 1
in future calculations. The optimal value of A is found
by requiring that the energy eigenvalues of the occupied
states remain almost stationary with respect to a varia-
tion of A. From Table I we learn that this value depends
sensitively on the number of layers. With these basis
functions the wave function in the whole film is given by
the superposition



51 ELECTRONIC STRUCTURE, SURFACE STATES, SURFACE. . . 17 137

Monolayer
Three layers
Five layers
Seven layers

A

2.828
1.500
1.375
1.300

TABLE I. Optimal values of A according to Eq. (4). film. The summation in Eq. (5) extends over a finite
number of K~~'s and pi's (see Sec. III).

2. Mufgn-tin spher e

As a result of the strong Coulomb singularity the wave
function @& +(r) shows strong variations near the nuclei.

A:)),+
Therefore we augment it, in the MT sphere centered at
R —pG3 p = (N ——I)/2, . . . , (N)/2, in the central
elementary column of the N-layer slab by the additional
sum

(5)

V is the volume of the elementary column within the where

x«e' "+ ~'+"''* &i* ([k((+It)(+pie ] ) ji()k +K +pie )r')

r' = r —R".

Unit vectors are denoted by the superscript 0. Yj are
real spherical harmonics and j~ are spherical Bessel func-
tions. The radial functions R,"& are the regular solutions
of the radial difI'erential equation

d R"i 2 dR"i l(l + I) „()d&2 & d& &2 sl sl

+Z.",R"., =O. (9)

V" is the spherical potential within the Mf sphere lo-

cated at R" which generally changes &om layer to layer.
To get a linear eigenvalue problem the energies E,"& are
determined by requiring that the logarithmic derivative
(dR, i/dr)/R, i at the surface of the 1VIT sphere be either
+1 or —1. The index 8 = 1, 2, ... counts these solutions.
The sums over K~~ and pi subtracted in Eq. (7) are noth-
ing else but the angular decomposition of the plane-wave
expansion (5) up to L. That means for l & L the @& + (r)")I~

consists of products of the radial functions R",
&

and spher-
ical harmonics. In contrast to the usual APW scheme the
angular decomposition of the plane waves (5) gives prod-
ucts of spherical harmonics and spherical Bessel functions
for I (l ( oo.

8. The exterior ot vacuuvn v egion

The basic function in the vacuum region is de6ned as
a product of a two-dimensional plane wave, as in the in-

Z 3 ( Z 2 ( Z i ( —Zo ( Z] ' ' 'ZPf ( Zgf+]&
2

(io)

which are assumed quadr atically spaced around the
boundary z = zo ——d/2 and

z„=d/2+ (ziv —d/2) n /N

A B spline S (z) consists of piecewise cubic polynomials
which are only nonzero on the support [z z, z +2] and
is normalized by requiring S (z z) = i.

Then a basis function in the vacuum region is defined
by

(r ) k() + K((, r ) = e' "'~+ " "' +~(z) )
C

As the basis function with w = N + 1 shows too strong a
decay for z ) z~ we define

(i +Ii ) is( — )
}I II ~

for z & ziv+i, where o. and P are determined by requiring
that the basis function and its first derivative be contin-
uous at z = z~. Note that the points z 3 z 2 and z
as well as z~+~ have no physical meaning. They have
only been introduced to have a unique definition of the
B splines at the boundaries. The splines with 4 & ~ & N
are called inner splines as they are zero for z & d/2 and

I

terstitial region, and a z dependent function. In order
to achieve a maximum amount of freedom for the wave
functions near the boundaries the z-dependence is de-
scribed by the so-chilled B splines. For that purpose
N + 5 distinct points are defined with
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z & z~. For an optimal choice of the parameters N and
z~ see Sec. III. The expansion coefBcients of such a basis
function will be denoted by iv(K~~, r). In the following it
will turn out to be advantageous that the trial function
consists only of finite sums. Thus no special considera-
tions are necessary to check their convergence.

(H„H„o
+ + + +

4
0 0 H„

1
C2 0

l r

B. The eigenvalue problem

Constraints guaranteeing the continuity of the
mave function

As in the MAPW scheme ' we require that the wave
function be continuous and di8'erentiable everywhere. On
the surface of the MT sphere we have

(Ai 0 0
OA, 0
0 O'A,

0
0
0

(-'l

o ~ , (18)
o p

0
oi &Z)

P P dIL
&~ (r~pw) =0 and

dr

t&L, ~m~&L, (14)

for p = (N ——1)/2, . . . , (K —1)/2 in the case of an
N-layer slab.

On the boundary z = d/2 each two-dimensional plane
wave within the slab joins continuously to the two-
dimensional plane wave in the exterior if we set

) v(K~~, p)) cos(p)d/2) = ) iv(K(~, r) S (d/2),

3 dS—) v(K~~, p~) p~ sin(pt d/2) = ) m(K~~, 7) (d/2)
Pl

(16)

in the case of even solutions. In the case of odd solu-
tions the sine and cosine are to be interchanged and the
minus sign on the left side of Eq. (16) is to be omitted.
Equations (14), (15), and (16) guarantee the eigenvalue
problem to be Hermitian. In total the number of con-
straints as a result of the requirement of continuity is
given by

~constr = 2 [~(~+ 1) + ~pvv

where Np~ is the number of two-dimensional plane
waves.

2. Variational pv ineiple

We proceed in the usual manner and make the expecta-
tion value of the energy stationary under the constraints
of normalization and continuity of the wave function and
its first derivative, as described by Eqs. (14)—(16). These
conditions are incorporated by means of Lagrangian mul-
tipliers E, a&", P&~, pg, —and hg . After a lengthy butLm& Lm& K(( &

straightforward calculation (for details, see Ref. 32) we
arrive at a secular equation which has the following form:

C. The electronic charge density

The evaluation of the electronic charge density accord-
ing to the Kohn-Sham scheme is straightforward, but
lengthy. For details, see again Ref. 32. At the end we
find that within the film it consists of two terms,

p(r) = p'(~3+ p"(r).
The first, p, comes from the superposition of plane waves
according to Eq. (5) and may be regrouped in the fol-
lowing way

p'(r) = ) p'Ir (z) Sg (r (2o)

where the submatrices H, generate the matrix element

( g
~

H
~ g ), the A; guarantee the normalization of Q,

and finally where the t-, force the wave function to be
continuous and differentiable everywhere. The vectors
v, A, tv, n, P, p, and b are shorthand notation for the

expansion coefficients v(K~~, p~), A",&, iv(K~~, 7 ), and for
the Lagrange parameters nE, P&", pg, and bg . Hi2Lm& Lm' K() '

and H~1 are zero in the case of spherically symmetric
warped muffin-tin (WMT) potentials which are not re-
stricted outside the MT spheres. Explicit expressions for
H, , A, , and c, have been given by one of the authors.

Equation (18) is a linear Hermitian eigenvalue prob-
lem. As described in Ref. 22 a reduction of the rank of
the eigenvalue problem is possible without destroying the
Hermiticity by eliminating twice as many equations as
the vector of Lagrange parameters o.&", P&", pg, andLm~ Lm& K)( ~

bK has components. The remaining eigenvalue prob-
lem is solved by use of standard Hermitian eigenvalue
routines, e.g. , by NAG, EISPACK, or IMSL, yielding for
fixed value of k~~ all possible eigenfunctions simultane-
ously. Due to the Hermiticity any two nondegenerate
solutions are orthogonal to one another within numer-
ical accuracy. That means even orthogonality between
core and highly excited valence states is fulfilled exactly.
In this respect the present formulation is superior to the
LAPW method where orthogonality is only guaranteed
for energies lying in a certain energy range of about 1 Ry.
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Sg (r~~) denotes a linear combination of two-dimensional
II

plane waves invariant under the symmetry operations of
the point group which leaves the atoms of the film invari-
ant, e.g. , the group C4v in the case of the (100) layer.
p - is a superposition of circular cosine-functions with

amplitudes obtained by summing over the k~~ vectors of
the irreducible wedge and over different bands according
to their occupancy.

The contribution p (r) is only nonzero within MT
spheres. It originates from the square of the P& 's and
the cross products of the P&" 's with the plane waves. By
help of the lattice harmonics K~ (r ) we get

(N —1}/2

) ( APW
p= —(N —1}/2

x ) p; (.') Ic, (.-"),
&=O,m

with the Heaviside step function O.
Again the density of multipole moments p& (I r R~ I)—

is obtained by summing over the k vectors of the irre-
ducible wedge and over the difFerent bands according to
their occupancy. The most leading moments are charac-
terized by the angular moments 3 & 2t with I as defined
in (6). p~(r) also contains contributions from the core
states which have been omitted in the eigenvalue prob-
lem. In each iteration this contribution has been recom-
puted. In the exterior of the film the charge density is
given by a superposition of two-dimensional plane waves
Sg (r)

p""'(r) =
(N —1)/2

) ) Z"b(r" R—"—Rii),
~=—(N —1}/2 8

(23)

is decomposed into the terms

p(r) + p""'(r) = p'(~J + p (r)+ p (r)
K( ) + Emerald(q (24)

p'(rqd'r = 4~
I&rAF

po" (r) r'dr, (25)

as well as all higher; multipole moments assumed to be
situated at B~

APW
P

p,
"(r) r'+'dr. (26)

p (z) is a homogeneous charge located at both bound-
aries of the layer chosen in such a way that the total
charge due to p, p, and p vanishes within the ele-
mentary column:

p'(~) + p (r) + p (z). d'r = o.
E,IR

pE '~ describes the charge density of the nuclei and com-
pensating charges and multipole moments.

which are all treated separately. B~~ represents the vec-
tors of the two-dimensional lattice. p (r) is obtained
from p~(r) by subtracting the point charge within each
MT sphere,

p (r) = ) pg (z) Sg (r) (22)
Ewald

( q
(N —1)/2

) ) —Z +q,"+) q,"D,
p= —(N —1}/2 R l=1

x b (r R" —R) —p (z)—. (28)
For d/2 &

I
z

I
& z~ p (z) consists of piecewise polyno-

II

mials up to degree 6. Again their amplitudes are found
by summing over the k of the irreducible wedge and the
different bands according to their occupancy. As a result
of Eq. (13) pg(z) decreases exponentially for

I
z

I
) z~.

D~ is a difFerential operator with respect to the compo-
nents of vectors r,

QV1 QV2 /VS
bV1 V2VS ~ V ~ V2 ~ VS V1+V2+VS)~&

OX O'X O'X
V1 V2 VS 1 2 3

D. The effective potential

Within the Hohenberg-Kohn-Sham formalism the
effective potential is given by a sum of the electro-
static potential U and the exchange-correlation potential
Vx~(r) = h Exc[pj/8 p(r) with the exchange-correlation
energy Exc of the electron gas with density p(rJ. Al-
though the electrostatic charge density looks the same as
that given by Wimmer et al. we use a different strat-
egy to evaluate the electrostatic potential by adapting
the method described by one of us to slab geometry.
Following this idea the total charge, which includes the
contribution of the nuclei of charge Z~ given by

(20)

where the o.„,„, , are chosen in such a way that D~ is
invariant against the symmetry operations of the point
group,

(30)

As a consequence of the above definition the mean value
of p

~ ' (r) over the elementary column vanishes.

The Coulomb potential due to p~ + p~ + p~

Due to the planar symmetry the corresponding elec-
trostatic potential V can be expressed by a superposi-
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V (r) = ) V (Kll, z) SK (z),
KII

(31)

tion of two-dimensional plane waves invariant under the
group of point symmetry operations mapping the slab
into itself.

which may easily be solved with the appropriate bound-
ary conditions for IzI; oo. As a result of the small
number of two-dimensional plane waves in the ansatz Eq.
(5) the series (31) is rapidly convergent.

where V (Kll, z) is defined by the inhomogeneous difFer-
ential equation

2. The Coulom, b potential due to p~

B2

=-4~" &' (.)+P (z)+&, (~)~„-, (32)

As all multipole moments of the charge density p van-
ish, this potential reads within the MT sphere situated
at RII+ R

7'
APWv'()=) ) ~ () ( )"'d" '

( )" ~
)l m 0 7'

= r —Rll —R", (33)

and is zero for r' =
I
r —Rll —R"

I
+ rApvv.

8. The contribution due to p+

It is suitable to treat the inHuence of the zero multipole contribution of Eq. (28)

Ewald( q
(N —X)/2

) ) (-z~+ q~)
P,=—(N —1)/2 R Il

xb(r —R" —Rll) —)() (z) (34)

separately. Outside the slab the corresponding potential VpP (r) may easily be expressed by the Fourier series

VEwald(rq ) eiK(( r)~ VEwald(z)
0 KII

KII

where

0, %II
——0

Ewald (z) = & 2vre ~(&—i)/2 ( gp + ) ) e—'K((.R e
—K((l —R

l
g. ~ 0

II

(36)

A denotes the area of the mesh spanned by the vectors aq and a2, and R~ the third component of R~. Due to
the factor e III ~ I this Fourier series is rapidly convergent apart from the planes where the nuclei are located.
Therefore inside the slab an adaption of Ewald's method to the slab geometry has been used. This is obtained &om
Eq. (B14) of Ref. 34 by integrating over the z component of k from —oo to oo using formula 3.954 of Ref. 35. Then
VOE ld(r) is expressed by a sum over both two-dimensional lattice vectors and reciprocal lattice vectors, both of which
are absolutely convergent.

(N —X)/2

V,E".ld(rq =" ) ) (—Z +& )
P,=—(N —1)/2 R

I11

er«(9I r —Rll —R" I) -,K ..- -F„.ld
KI

I

(37)

where
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2 —22
2me (N —&)/2 eEl,= (iv i)/2( Z + 0 ) zg erf('gzg ) + /—

Q K7/

V -' (z)= g ~e (lv —i)/2
g p ~ ~II~ z'z

p, @~II ~It p (~ i)/2(
—z" + cl") erfc

I
lyz„+ 2 I

e

( xi+eifc
I

—r)z + ~~

I
e II v e

277 )
z„= z —B,".

K~) $0,

VEwald( q 2 „Kl [(r —Rii —R") ]
g)

I
r R(( —R&—I'+i

(39)

Even in the case of the fcc (100) surface all terms with
1 & 1 are nonzero. For small values of / the sum over
the difFerent lattice vectors is slowly convergent if it is
convergent at all. Again, this difFiculty can be overcome
by an extension of the Ewald method to multipoles as
was done by Kornfeld. It is based on the fact that the
potential V& is alternatively given by

In Eqs. (37) and (38) erf and erfc are the error function
and the complementary error function, respectively and
q denotes the charge of the compensating charge density
p . By a proper choice of the parameter g a rapid con-
vergence of both sums in Eq. (37) is achieved. In the
MAPW scheme as in all other APW schemes it is advan-
tageous that the first sum in Eq. (37) is a superposition
of spherically symmetric potentials. An angular decom-
position of the second sum. may be obtained by adapting
the strategy of Ref. 36 to the slab geometry. The multi-
pole moments q&", p = —(N —1)/2, (K —1)/2, located
at the lattice sites of the slab produce the potential

E. The total energy

The Hohenberg-Kohn-Sham formalism yields the to-
tal energy per unit column as a sum of band energies up
to the Fermi energy E~ and the Coulomb energy of the
nuclei at the atomic sites minus a term that corrects for
double counting parts. Thereby, as was proven in Refs.
24 and 38, the infinite Coulomb energy of the electron
and the infinite correction to the Coulomb energy of the
electrons cancel each other exactly. Using this result we
obtain in the LDA

1
Ep ——2) E - O(Ey —E - ) ——

nkI
I

nA:I
I

(qv

z.——) Z" lim e +Vc „l(r) I

~.=R. ~~p g Ir R&I—
+ (exc[p] —vxc[p]) p(")" &. (43)

I

in Sec. IIC. The efFective potential V,tr(r) for the self-
consistent-field (SCF) calculation results from the sum of
the exchange-correlation potential vxc(r) and the total
electrostatic potential U(r).

VEwald( q 2
(N —1)//2

) ) ~,"D, (40)
(~ i)/2-

II

Both integrals are to be extended over the unit column.
The Coloumb potential Vc«l(r) is defined by

with the differential operator introduced in Eq. (29).
Thus we have only to apply D~ to the potential pro-
duced by monopoles situated at the lattice points. But
this potential is quite similar to the potential Vp (rg
treated above. As the corresponding expressions are
quite lengthy we will not list them.

Finally the total electrostatic potential is given by

(44)

VC „l(r") = —e') ) R —R~I-
RII

p(~ ) ds„

and the exchange and correlation energy is approximated
by

U(r ) = V'(r) + V (~) + ) V,
" ' (r")

&xc = p(r) exc[p(r)] d'r, (45)

with the asymptotic behavior

1=0
where axe is the exchange and correlation energy per
volume of a uniform gas with p(r) and

lim U(r~~, z) = 0.
ized

—+oo
(42) vxc = ~xc+ p

Gp
(46)

Exchange and correlation potential

For a given exchange-correlation potential vs this
contribution to the efFective potential can be calculated
at any point of the slab by use of the charge density given

The evaluation of the various contributions of Eq. (43)
follows closely the method described in Ref. 24. Besides
the total energy the magnitudes of the kinetic energy T
and of the Coulomb energy per unit column are rather
interesting. As the Coulomb energy U is simply given by



17 142 H. BROSS AND M. KAUZMANN 51

1U=—
2

p(r) Vc.„i(r) d'r the multipole expansion. Following Moruzzi et al. 129
quadratically spaced points

t', z.—) Z" lim e + Vc~„i(r) ) (47)
(=R(~o ( [r —Rl"

[ )
a direct evaluation of T can be avoided by use of the
identity

Eo = T+U+Exc.

III. COMPUTATIONAL DETAILS

The calculations were performed for Cu(100) films con-
sisting of one, two, fi.ve, and seven layers. As a conse-
quence of the odd number of layers, mirror symmetry
with respect to the fi.lm normal does hold. Hence the
wave functions must be either even or odd with respect
to the z —+ —z transformation. No reconstruction of the
film was assumed. That means that all MT spheres have
the same radius r~pgr = a/~8 = 2.4152 a.u.

r; = r,ipse~(i —1) /128 (50)

were assumed, which are also the break points of the
spline interpolations. This grid was the basis for the
evaluation of the Coulomb and the exchange-correlation
potential, of the efFective potential V,tr(r) and its Fourier
coefficients V,~(K~ ~), as well as the integrals contributing
to Ep Exc, and U. Exchange and correlation energy were
used in the parametrization of Hedin and Lundqvist
with the numerical parameters given by Gunnarson and
Lund qvist.

The present band-structure calculations were per-
formed with a potential V~ averaged over appropriately
chosen directions which are found by generalizing the
concept proposed by Bansil and in Refs. 50 and 51.
This simplifies not only the solution of the eigenvalue
problem but also the evaluation of V ~ and V . We
considered self-consistency achieved when the Fourier co-
eKcients of V ~ changed by less than 10 from iteration
to iteration. Then the iteration to iteration shift in total
energy was less then 10 p Ryd.

A. The Qlm-adapted MAPW band-structure
calculation

In order to compare our results with previous SCF
investigations of the bulk we have chosen analoguous
characteristics. That means four radial functions for
l = 0 and I = 1 three radial functions for l = 2, and
I = 2. Two-dimensional plane waves and the trigono-
metric functions defined by Eq. (3) are restricted by

IV. RESULTS

A. Band structure

The energy band structure along the three high-
symmetric lines I'-X, X-M, and M-I' of the two-

. 0

2

~

~ + Z +p«, I' &
~

—
I q .„, q .„=15.0. (49)gay

In a monolayer this requirement allows up to 22 two-
dimensional plane waves and six trigonometric functions.
For thicker Alms the number of two-dimensional plane
waves was kept the same whereas the number of trigono-
metric functions was increased as the p~'s decrease with
the film width. N = 9 B splines outside the film bound-
ary have been used with

~
z~ —d/2

~

= 3r&pw. This
guarantees the occupied states to be accurate at least up
to 1mRy. After elimination of the constraints the rank
of the eigenvalue problem was 360, 400, 500, and 600, for
the one-, three-, five-, and seven-layer fi.lms, respectively.
The Fermi energy as well as the charge density were
evaluated by an adaption of the Gilat-Raubenheimer-
method ' and the concept of special points to
layer problems. Within the irreducible mesh of the two-
dimensional Brillouin zone 20 different k~~ points were
considered.

2-

4

8-

B. The efFective potential

Inside the MT spheres the charge density was calcu-
lated in the form of a multipole and Fourier expansion,
where angular moments greater then 12 were omitted in

FIG. 2. Band structure for the Cu(001) monolayer along
the symmetric lines in the two-dimensional Brillouin zone.
Solid and dashed lines represent band structures which are
even or odd, respectively, with respect to z reQection. The
horizontal straight line shows the Fermi level.
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FIG. 3. Band structure for the Cu(001) three-layer film
along symmetric lines in the two-dimensional Brillouin zone.
Solid and dashed lines represent band structures which are,
respectively, even or odd with respect to z re8ection. The
horizontal straight line shows the Fermi level.

. 0

FIG. 5. Band structure for the Cu(001) seven-layer film
along the symmetric lines in the two-dimensional Brillouin
zone. Solid and dashed lines represent band structures which
are, respectively, even or odd with respect to z re6ection.
The horizontal straight line shows the Fermi level. Hatched
regions represent the projected band structure.

2-

4-

8-

—
1 0-

FIG. 4. Band structure for the Cu(001) five-layer film along
the symmetric lines in the two-dimensional Brillouin zone.
Solid and dashed lines represent band structures which are,
respectively, even or odd with respect to z reBection. The
horizontal straight line shows the Fermi level. Hatched regions
represent the projected band structure.

dimensional Brillouin zone is shown in Figs. 2—5 for
the monolayer, three-layer, five-layer, and seven-layer
Cu(100) slabs, respectively. Even states with respect to
z ~ —z reHection are plotted by full lines, those with
odd symmetry by broken lines. The horizontal dashed
line marks the Fermi energy. Due to spin degeneracy,
about 9.5 bands per layer below E~ are occupied, corre-
sponding to 19 valence and higher core electrons. With
increasing number of layers the various bands become
closer and closer and we can imagine how they merge
into a continuum in the limit of an infinite crystal. This
limit is the projected band structure displayed by the
hatching in Fig. 4 and Fig. 5. It was evaluated with the
help of the MAPW scheme using a self-consistent poten-
tial with similar computational parameters as in the case
of the layer problem. The white regions of the projected
band structure denote energies which are not allowed in
the bulk.

By comparing Fig. 4 and Fig. 5 we learn how the
number of bands within the hatched regions increases,
even and odd bands following each other almost equidis-
tantly. As a result of their lower number of nodes the
even bands are always energetically lower. It is remark-
able that most of the bands obtained for seven layers are
within the hatched regions and thus are allowed in the
bulk. Bands or parts of bands in the white regions cor-
respond to electronic states in the layer which may also
appear in a semi-infinite crystal, as we shall see in the
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next section.
Our result along I'-M illustrates clearly the hybridizing

of an sp band with the d bands. On the basis of this pic-
ture we can conclude that the width of the d bands in the
monolayer amounts to 200mRy whereas it approaches
the value of 300 mRy in the five- or seven-layer film, char-
acteristic for the bulk. This narrowing of the d bands,
also found in previous investigations, 5 ' is a result of
the fact that in a monolayer the d functions are allowed
to extend to the boundaries without any restriction.

The energy bands of the monolayer, Fig. 2, are
overall quite similar in shape to the results of previ-
ous investigations. However, in contrast to some older
calculations, ' ' all fully occupied bands are ener-
getically more distant Rom the Fermi level. This is espe-
cially true for the third even occupied band at M, which
Krakauer et al. and Smith and co-workers locate quite
close to the Fermi level. As in the recent work by Birken-
heuer et al. our calculations definitely exclude d-like
hole states in the case of the Cu(100) monolayer. Fi-
nally, in the older calculations the parabolalike band of
odd symmetry starting at —0.3Ry is missing. All these
difBculties may be a consequence of either the heuris-
tic potentials used in the older calculations ' ' or the
specific choice of the basis set to describe the Bloch func-
tions. Comparing with recent SCF investigations ' '

quite good agreement is obtained. This is explicitly
shown in Table II in which the energies at I' and M,
relative to the Fermi energy, are compared with those
obtained by Birkenheuer et al. using the FILMS and
FLAPW methods and by Wang and Freeman5 using the
self-consistent numerical basis set LCAO method.

In general the MAPW and FILMS method energies
are quite close; some of them differ by less than 10mRy
and the biggest deviation amounts to 27mRy, whereas
the deviations from the FLAPW results are quite large.
Roughly speaking the FILMS results are in between our
energies and the FLAPW energies. This is quite remark-
able since up to now the FLAPW scheme has been con-
sidered as a standard for high-precision studies of solid
surfaces. For the unoccupied states even greater differ-
ences occur. For example, the parabolalike band of even
symmetry starts at I in the FILMS and FLAPW results,

closer to the Fermi energy than in our case, whereas we
find the second unoccupied state of even symmetry atI lower by 100 mRy than in the investigation of Birken-
heuer et al. The band structure of the seven-layer film
displayed in Fig. 5 is in surprisingly good agreement
with the highly accurate SCF LCGTO results of Euceda
et al.'

B. Surface states

In a layer the definition of surface states is in some
respects, arbitrary because there is no sharp distinction
between original bulk states and new states created by
the formation of the surface. By comparing the two-
dimensional band structure obtained for an increasing
number of layers with the projected band structure, pos-
sible, surface states can be found. They are characterized
by curves in the forbidden part of the projected band
structure which remains quite stationary. In addition,
surface states localized within the width of the layer man-
ifest themselves by the fact that the curves of even and
odd states come quite close. This is certainly not true
for surface states having a quite long decay length in the
semi-infinite medium. In the case of a seven-layer slab
we observe such states located at X as well as at M.
At X there are three such doubly degenerate states lo-
cated at 300 and 2.3 mRy below and 244 mRy above E~,
where even and odd states are separated by 10, 0.1, and
10 mRy, respectively. In all these cases these differences
decrease with increasing number of layers, whereas the
mean value of both energies remains stationary. On an
enlarged scale the dispersion of the occupied state quite
near the Fermi energy as well as the experimental results
obtained by angle-resolved photoemission spectroscopy
are displayed in Fig. 6. Up to a constant shift of 2 mRy

0

TABLE II. Comparison of E~ and the valence band ener-
gies of the monolayer relative to E~ at I' and M obtained by
difFerent methods.

EF
QFr1

E EFI3
E. EF

r5
r4
M4

EMg
M1

Reference 20.
Reference 5.

MAPW
—0.400
—0.332
—0.189
—0.135
—0.083
—0.060
—0.205
—0.140
—0.091
—0.028

FILMS
—0.355
—0.338
—0.216
—0.142
—0.096
—0.083
—0.222
—0.149
—0.098
—0.053

FLAPW
—0.328
—0.366
—0.235
—0.153
—0.106
—0.094
—0.235
—0.163
—0.109
—0.062

LCAO
—0.362
—0.357

—0.2087

—0.0213

-4-
X X X

'I

—2 —t 0

)
X

FIG. 6. Surface-state dispersion of the state X close to
E~. Solid and dashed curves are theoretical results for even
or odd states, respectively. Crosses are experimental results
(Ref. 54). The shaded curve is the projected bulk continuum.
(k —A:~)~ in units of 10 2s/a. E —E~ in. units of 10 Ry.
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0. Layer 1. Layer 2. Layer 3. Layer 0. Layer 1. Layer 2. Layer 3. Layer

Vacuum 0 Vacuum

FIG. 7. Contour plot of the electronic charge density in
the (110) plane of the surface state at X. Each contour line
differs by a factor proportional to p .

theoretical and experimental results coincide. This ex-
cellent agreement is certainly due to the fact that in the
I.DA only the energies near E~ have a physical meaning.
Figure 7 showing the contour of the electronic charge den-
sity is further evidence for a surface state as the charge
density is only nonzero in the last two layers.

At M an almost degenerate state at 89mRy below

FIG. 9. Contour plot of the electronic charge density in
the (110) plane of the surface state near M 80 mRy below
E&. Each contour line difFers by a factor proportional to p .

E~ is observed with an energy separation of even and
odd states amounting to 17pRy. Shifted by 40mRy
to lower energies, the corresponding dispersion curve
agrees quite well with angle-resolved photoemission spec-
troscopy measurements (see Fig. 8). As we learn from
Fig. 9, showing again a contour plot of the electronic
charge density, this state is completely localized in the
last surface layer.

—.07
C. Density of states

—. 08

—.09

LL
—.10

LLI

Once self-consistency was achieved the density of states
was evaluated by use of 200 equally spaced k~~ points
within the irreducible wedge of the two-dimensional Bril-
louin zone to reduce unphysical structures. In Figs. 10—
13 the density of states per volume is displayed for the
four different layers considered. The dotted curves in
Fig. 12 and Fig. 13 are of the same magnitude as for the
bulk evaluated with similar computational parameters.

—.12
60-

—.13
.7 .8 .9 1.0 1, 2

20-

FIG. 8. Surface-state dispersion near M 80 mRy below' EJ;.
Solid and dashed curves in the theoretical result for even
or odd states, respectively. Crosses are experimental results
(Ref. 55). The shaded curve is the projected bulk continuum.
~kg

~

in units of 2vr/a. E —E~ in units of Ry.

0
—.6 4 —.3 —. 2 .0

E I Ry]

FIG. 10. Density of states for the Cu(001) monolayer.



17 146 H. BROSS AND M. KAUZMANN 51

60.
40.

LLj 40 LLj

~ 20

20-

0
—.6 5 —.3 —.2 .0 —.6 3 —.2

E [Ryl

FIG. 11. Density of states for the Cu(001) three-layer film.

E C. Ry 1

FIG. 12. Density of states for the Cu(001) five-layer film
(full line) and for the bulk (dotted line).

A ain we can see how the bulk behavior is approachedgain
asymptotically with increasing number of layers, start-
ing with the three-layer slab. However, the monolayer
shows a completely different behavior. First, the width
of the occupied states is smaller by about 100 mRy than
in other cases, as discussed in Sec. IVA. Secondly, for
certain energies the curve of the density of states is is-
continuous. This is a consequence of the reduction &om
three dimensions to two dimensions. Similar discontinu-
ities show in the other K(E) curves also, but their height
is reduced as we have normalized K(E) to unit volume.
The discontinuity about O.OSRy below E~ is a typical
example for such behavior. It is attributed to the surface
states about M discussed in the last section.

40-

20-

0—.6 5 4

E tRyj
.0

D. Charge density and Coulomb potential

According to the LDA the charge density obtained by
the self-consistent scheme has some physical relevance.
Figure 14 is the electronic charge density map of a seven-
layer Cu(001) film on the (110) plane for positive z val-
ues. Up to the top level the charge density is found to
be only slightly different from its value in the bulk. Even
in the top layer noticeable charges are seen outside the

FIG. 13. Density of states for the Cu(001) seven-layer film
(full line) and for the bulk (dotted line).

0010 . 000092

TABLE III. The work function of one-, three-, five-, and
seven-layer Cu(100) films and of a semi-infinite Cu(100) crys-
tal in units of eV.

Monolayer
Three layers
Five layers
Seven layers
LMTO-AS A
Expt. b

Expt. '
Expt.
Expt.
Expt. '

5.442
5.316
5.180
5.209
5.26

5.155 + 0.054
4.59 + 0.054

5.10 + 0.03
4.58, 4.76

4.77 + 0.05

Reference 26.
Reference 60.

'Reference 61.
Reference 62.

'Reference 63.
Reference 64.

FIG. 14. Contour plot of the total electronic charge den-
sity in the (110) plane of the Cu(001) seven-layer film. Each

5contour line difFers by a factor proportional to p .
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TABLE V. The value of the component of the tensor of
electric field gradient in the different layers of a seven-layer
film in units of 10 V/cm . .10

Layer 0
Layer 1
Layer 2

Layer 3

U„(10' V/cm )
0.822
0.429
0.338

—2.793
.08

the vacuum sides of the top layer both magnitudes are
considerably diferent from their bulk values.

More accurate investigations without shape restric-
tions of the potential are necessary to bring the leading
components of the tensor of the electric field gradient into
better agreement with recent experimental results. Due
to experimental uncertainties it is not clear whether such
corrections are also necessary to explain the experimental
value of the work function.
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