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Transmission of electromagnetic waves through thin metal films with randomly rough surfaces
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By means of perturbation theory and a computer simulation approach we study the transmission of p-
polarized electromagnetic waves through a thin, free-standing metal film. The illuminated (upper) sur-
face is a one-dimensional, randomly rough surface: the back surface is planar. The plane of incidence is
perpendicular to the generators of the rough surface. The film is sufficiently thin that the two surface
plasmon polaritons it supports in the absence of the roughness have distinct wave numbers q&(co) and

q2(co) at the frequency co of the incident wave. As a consequence, the angular dependence of the intensi-

ty of the incoherent component of the transmitted field displays satellite peaks at angles of transmission
9, that are related to the angle of incidence 0O by sinO, = —sin90+(c/tv)[q2(tv) —q&(cv)], in addition to
the enhanced transmission peak. Analogous satellite peaks are also present in the angular dependence of
the intensity of the incoherent component of the reAected field, in addition to the enhanced backscatter-
ing peak.

I. INTRODUCTION

In a recent paper by McGurn and one of the present
authors, ' the transmission of light through a thin, free-
standing, metal film, whose illuminated face was a one-
dimensional, randomly rough surface, while the back sur-
face was perfectly planar, was studied by means of
infinite-order perturbation theory. It was assumed that
the mean thickness of the film was sufIiciently thin that
an observable fraction of the incident light was transmit-
ted through it. At the same time the simplifying assump-
tion was made that it was thick enough that the two sur-
face plasmon polaritons supported by the film in the ab-
sence of the roughness were degenerate. The principal
result of this study was that the transmitted light
displayed the phenomenon of enhanced transmission,
viz. , a well-defined peak in the angular dependence of the
intensity of the incoherent component of the transmitted
light in the antispecular direction.

The existence of enhanced transmission was subse-
quently confirmed by the results of computer simulation
studies of the transmission of light through such metal
films. It was also observed experimentally.

However, the assumption that the mean thickness of
the film was large enough that the surface plasmon polar-
itons supported by it could be regarded as degenerate had
the consequence that another interesting consequence of
the multiple scattering of the surface plasmon polaritons
excited by the incident electromagnetic waves through
the random surface roughness was not obtained. This is
the presence of a satellite peak on each side of the
enhanced transmission peak. In this paper, by both a
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where k;„~~ and k;„~are the components of k;„parallel
and perpendicular to the mean interface, respectively,
while k„~~,and k„~are the corresponding components
of k„.The conditions (1.2) describe scattering into the
retroreAection direction, and this gives rise to enhanced
backscattering.

In transmission, we reAect the scattered wave in the
mean scattering surface (x3~—x3 where x3 is the unit
vector normal to the mean interface). The phase

perturbation-theoretic calculation and computer simula-
tion studies we demonstrate the existence of these satel-
lite peaks.

To understand the physical origin of the enhancement
of transmission into directions other than the antispecu-
lar direction, let us first consider a scattering system that
is more general than the metal film to which this paper is
devoted. Thus we consider the scattering of electromag-
netic waves from, and their transmission through, a
semi-infinite random medium. In the case of scattering,
to each multiple-scattering path ABCD [Fig. 1(a)j there
always corresponds a time-reversed partner 3'CBD', in
which the wave strikes the same scatterers, but in the re-
verse order. The phase difference between these two
paths is

b P =rttc. (k;„+k„),
where k;„andk„arethe wave vectors of the incident and
scattered field, respectively, while r~c is the vector join-
ing the scatterers 8 and C. Constructive interference
(b.P =0) occurs when k„=—k;„,or equivalently when

0163-1829/95/51(23)/17100(16)/$06. 00 51 17 100 1995 The American Physical Society



51 TRANSMISSION OF ELECTROMAGNETIC WAVES THROUGH. . . 17 101

difference between the multiple-scattering path ABCE
and its time-reversed partner A'CBE' [Fig. 1(a)] is then

bP =r~c.(k;„+k,*,),
where the vector k,*, is defined by

k,*,=k,*,iix, +k„i( —x3) .

(1.3a)

(1.3b)

In this case coherent interference (b,P=O) now occurs
when k,*,= —k;„,i.e., when

k„
ii

k;„
ii

and k i —k (1.4)

The conditions (1.4) described scattering (transmission)
into the antispecular direction, and this gives rise to
enhanced transmission.

Let us turn now to the case in which the scattering
system is a bounded random medium that supports N
guided waves, whose wave numbers at the frequency
of the incident electromagnetic wave ~ are b,P„=r~c(k;„+k,*,)+ ~r~c ~(k„—k ) . (1.6)

k, (co), k2(co), . . . , kz(co). In the case of scattering each
trajectory ABCD is now X-fold degenerate in the sense
that along the segment BC there are N "channels" with
different phase factors. The phase difference between the
multiple-scattering path ( ABCD) and its time-reversed
partner ( A 'CBD')„[Fig.1(b)] is

bP„=r~c(k;„+k„)+~r~c~(k„—k ) .

We see from Eq. (1.S) that constructive interference
(b,P„=O)can now occur not only for scattering into the
retroreflection direction (n =m, k„=—k;„),which is the
case for infinite and semi-infinite media where
k„=k =k, but also for scattering into other directions
k„W—k;„for which 5$„=0for some num.

The situation is similar in the case of transmission. The
phase di6'erence between the path (ABCE) and its
time-reversed partner ( A 'CBE')„[Fig.1(b)] is

(a)

B i

A.
' D'

cuum

metal
E(M}

In this case constructive interference (b.P„=O)now
occurs not only for scattering into the antispecular direc-
tion (n =m, k,",= —k;„),but also for scattering into other
directions k,',W —k;„for which b,P„=Ofor some num

Thus, on the basis of the preceding arguments, in the
scattering of electromagnetic waves from bounded struc-
tures that support two or more guided waves at the fre-
quency co of the scattered wave we expect to see satellite
peaks in addition to the enhanced backscattering peak
and the enhanced transmission peak in reAection and
transmission, respectively.

The system to be studied in this paper, a thin metal
film, supports two and only two surface plasmon polari-
tons at a given frequency for any thickness of the film, al-
though their wave numbers approach one another as the
thickness of the film becomes very large. If we denote the
wave numbers of these two surface plasmon polaritons at
the frequency co by q, (co) and q2(co), then the argument
just given predicts that the two satellite peaks occur at
transmission angles 0, given by

cuum

C
sin8, = —sin9O+ —[q, (co)—q2(co)],

Q)
(1.7)

n

\

C
etal film
E(m)

vacuum

(b) E'

FIG. 1. (a) Multiple-scattering sequences occurring in the
scattering of electromagnetic waves from, and their transmis-
sion into, a semi-infinite random medium, and their time-
reversed partners; (b) multiple-scattering sequences occurring in
the scattering of electromagnetic waves from, and their
transmission through, a bounded structure that supports several
guided waves, and their time-reversed partners.

where 00 is the angle of incidence. It is our intention to
verify this result.

In so doing we will also show that the enhanced back-
scattering peak that is known to be present in the angular
dependence of the intensity of the electromagnetic waves
scattered incoherently from a metal film whose illuminat-
ed surface is randomly rough while its back surface is pla-
nar, ' will also acquire two satellite peaks, at scattering
angles 0, given by

C
sinH, = —sinO()+ —[q, (co)—q2(co) ],

CO

a result that follows from Eq. (1.5).
The outline of this paper is the following. In Sec. II we

describe the free-standing metal film with a one-
dimensional, randomly rough surface whose scattering
and transmission properties will be studied in this work.
In Sec. III we derive the dispersion relations for the two
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II. THE SCATTERING SYSTEM

Let us consider a free-standing metal film defined as
follows (Fig. 2): vacuum in the regions x3 )g(x] ) (region
I) and x3 (—d (region III), and a metal characterized by
an isotropic, frequency-dependent, complex, dielectric
function e(co) in the region —d (x3 (g(x]) (region II).
The surface profile function g(x] ) is assumed to be a con-
tinuous, single-valued function of x „which is
di6'erentiable as many times as is necessary. In addition,
we assume that g(x ] ) is a stationary, Gaussian, stochastic
process defined by the properties ( g(x] ) & =0, and

( g(x ] )g(x ] ) & =5 W( Ix] —x',
I ), (2.1)

surface plasmon polaritons supported by such a film in
the absence of the roughness, and discuss the properties
of their solutions that will be needed in the calculations
that follow. The angular dependence of the intensity of
the incoherent component of p-polarized electromagnetic
waves scattered from and transmitted through the rough
film will be calculated perturbatively in Sec. IV, exactly
through terms of fourth order in the surface profile func-
tion. The same calculations will be carried out nonper-
turbatively in Sec. V, by a computer simulation ap-
proach for a film with a rougher surface than can be
treated by perturbation theory. Conclusions drawn from
the results of our calculations are presented and discussed
in Sec. VI. Appendixes in which certain results needed in
the body of this paper are collected conclude this paper.

g(x])= f g(k) exp(ikx, ) . (2.3)

The Fourier coefficient g(k) is also a Gaussian random
process that possesses the following statistical properties:

(g~k) & =0, (2.4)

(g(k)g(k') & =2~&(k +k')&'g( II I ), (2.5)

where the form of the power spectrum of the surface
roughness g (

I
k

I
) corresponding to the choice of 8'(

I x, I
)

in Eq. (2.2) is

g(lkl)=n'~ a exp( —k a /4) . (2.6)

III. SURFACE PLASMON POLARITONS

H(x; t) = (O, H3(x „x3I p]),0) exp( i cot) . —

Hz(x„x3Ico) is given by

(3.1)

Before going on to the case of a rough vacuum-metal
interface, we shall brieAy study the existence of eigen-
modes in the case of a perfectly Hat, free-standing metal-
lic film for which g(x] )

=—0. These modes, called surface
plasmon polaritons (SPP), play an important role in the
scattering theory addressed in this paper.

A surface plasmon polariton is described by a p-
polarized electromagnetic field whose magnetic vector
has the form

where the angular brackets denote an average over the
ensemble of realizations of g(x] ), and 5= (g (x, ) &' is
the rms height of the surface. In numerical calculations,
the Gaussian form

H2'"(x„x3la])=Ae 'exp —Pp(q, p]) x3+—

in region I, either

(3.2)

W( x, I ) =exp( —x ] /a ) (2.2) H2"'(x„x3I p]) =Be 'coshP(q, p]) x3+-iqx
&

d
(3.3a)

will be used for the surface height correlation function,
where a is called the transverse correlation length of the
surface roughness.

We will use throughout this paper the Fourier integral
representation of g(x] ),

X3

or

iqx I dH'2"'(x„x3lp])=Be 'sinhP(q, a]) x3+—

in region II, and

Hp (x] x3 la])= Ae 'exp Pp(q p]) x3+—

(3.3b)

(3.4)

X3= (XI )

in region III, where Pp(q, p]) =
I q

—(a] /c ) j' and
13(q,a])=

I q
—e(a])(a] /c )]' . In writing Eqs.

(3.2) —(3.4), we have explicitly exploited the symmetry of
the system with respect to the plane x3 = —d /2.

By imposing the boundary conditions at x 3 0

X3=- d

vacuum

H2 (x2, x3la])l, p
—H2 (x„x3lp])l p,

H, (x],x31~)l. =p
(i)

BX3 "3

(3.5a)

FIG. 2. The free-standing metal film studied in the present
paper.

H2 (x ] ex 3 Ia]) I. =p
E co BX3 3

to expressions (3.2) and (3.3a), and (3.2) and (3.3b), we are
led to the following equations, respectively:



Is r

TIC ~AVES THN OF ELECTROMAGNERAN SMISSIO 17 103

(3.6a) 0.8CO))+p(q ~) tanhP(q ~p(co)Po(q ~

CO)p( ~) cothP(q~~e(co)Po(q ~ (3.6b)
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and

ao(q, co)= '
2 1/2

CO
i q—

C

CO

q
c

2
- 1/2

2
CO CO

c c
(4.4a)

(4.4b)

according to the conventions depicted in Fig. 2.
Our aim is to obtain the equations satisfied by R (qlk)

and T(qlk) by introducing the magnetic field amplitudes
Eqs. (4.1)—(4.3) into the corresponding boundary condi-
tions at the film interfaces. First, we use the boundary
conditions Eqs. (3.5) at x3 = —d in order to express the
coefficients 2 (qlk) and B (qlk), appearing in Eq. (4.2), in
terms of the transmission amplitude T(qlk), with the re-
sult that

CO. -

a(q, co)= e(co) .
- —

qc2

1/2 3 (ql k) =f (q, co)T(qlk),

B (qlk) =f+ (q co)T (ql k)

(4.9a)

(4.9b)

Re[a(q, co)])0, Im[a(q, co)])0 . (4.5) where

The contributions to the mean differential reAection
and transmission coefficients from the incoherent corn-
ponents of the reAected and transmitted fields are given
in terms of the reAection and transmission amplitudes
R (plk) and T(plk) by

(
()R $ ~ cos O

BO,
'"' " L j 2m.c cosOo

x[(IR(plk)l &
—l(R(plk)&l ], (46)

(
BTp l ~ cos O]

BO,
'"' " L, 2~c cosOo

x [& I T(plk) I'& —
I & T(plk) & I'], (4.»

ao(q, ~)
f+(q, co) =— I+a(co) exp[+ ia(q, co)d] .a q, co

(4.10)

We now introduce Eqs. (4.1) and (4.2), with the help of
Eqs. (4.9), into the boundary conditions at x3=$(x) )

(thus involving the Rayleigh hypothesis ' ),

H',"(x»x3lco)l =g{ ) Hp (xiyx3Ico)l —
g( )

a (I)(x)»3 Ico)l =p

Hp (xiyx3 lco)lx —g(~ )

(n)

respectively, where L, is the length of the surface along
the x& axis. The angles of incidence, scattering, and
transmission are defined in the following manner:

where

—:[I+[/'(x) )] j
'i —g'(x, ) +

Q) CO
k =—sinOo, p =—sinO, =—sinO, ,c C C

(4.g)
is the normal derivative, and obtain

exp[ikx, iao(k, co—)g(x, )]+f R (qlk) exp[iqx, +iao(q, co)g(x) )]dq
2'

= f T(qlk) exp(iqx, ) [f (q, co) exp[ia(q, co)g(xi )]+f+ (q, co) exp[ ia(q, co)g(x—, )]],
27T

and

[g'(x) )k +ao(k, co)] exp[ikx, iao(k, c—o)g(x, )]—f R (qlk)[ —g'(x) )q +ao(q, co)] exp[iqx, +iao(q, co)g(x) )]
277

(4.1 1)

f T(qlk) exp(iqx, )[f (q, co)[ —g'(x) )q+a(q, co)] exp[ia(q, co)g(x, )]
1 ~ dq

+ f+(q, co)[ —g'(x) )q —a(q, co)] exp[ ia(q, co)g—(x, )]] . (4.12)

These integral equations can be decoupled in such a way that a single integral equation for either R (qlk) alone or
T(qlk) alone is obtained. In what follows, we use these decoupled integral equations to develop the perturbation calcu-
lations for reAection and transmission separately.

A. Re8ection

If we multiply Eq. (4.11) by

e '
[f (p, co)[g'(xi )p +a(p, co)] exp[ia(p, co)g(x i )] f+ (p, co)[ —g'(x i )p +a(p,—co)] exp[ ia(p, co)g(x—i )]],

and Eq. (4.12) by
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e(co)e ' [f (p, co) exp[ia(p, co)g(x, )]+f+(p, co) exp[ —ia(p, co)g(x, )]],
integrate both with respect to x &, and add the resulting equations, we are led to

f Mz(plq)R (qlk)=N~(plk),

where the functions Mz (pl q) and Nz (pl@) are defined by

(4.13)

M~(plq)=f (p, co) e(co)ao(q, co) —a(p, co) —[e(co)q+p] I[ao(q, co)+a(p, co)lp —q]
ao q, co +a p, co

+f+(p, co) e(co)ao(q, co)+a(p, co) —[e(co)q+p] I[ao(q, co) —a(p, co)lp —q],
ao q, co —a p, co

(4.14)

N~ (plk) =f (p, co) a(p, co)+e(co)ao(k, co)+ [p +e(co)k] I [a(p, co) —ao(k, co) lp k]—

f+ (p,—co) a(p, co) —e(co)ao(k, co)+ [p +e(co)k] I [—a(p, co) —ao(k, co)lp —k],p —k
a(p, co)+ao(k, co)

(4.15)

andI(ylQ) is

I(ylQ)= f dxie
' 'e' (4.16)

D~(k, co) =5+(k, co)+ ' b. (k, co), (4.19)a(k, co)

e co ao k, co

with

D+ (k, co)
Ro(k, co) = (4.18)

where

Equation (4.13) constitutes a single integral equation for
the reAection amplitude that is the analog for the prob-
lem studied here of the reduced Rayleigh equation for the
scattering amplitude obtained by Toigo et al. for the
scattering of a p-polarized plane wave incident from the
vacuum side on the one-dimensional, randomly rough
surface of a semi-infinite metal. ' We could base a small
amplitude perturbation calculation of R (qlk) on it, in a
manner similar to what was done in Ref. 10. Instead, we
modify Eq. (4.13) by employing the formalism of many-
body perturbation theory calculations. First, we postu-
late that the reAection amplitude R (qlk) obeys the fol-
lowing expression:"

R (plk) =2~5(p —k)Ro(k, co)

2iGO(p—, co) U~(plk)GO(k, co)ao(k, co) . (4.17)

Ro(k, co) is the Fresnel coefficient for the scattering of p-
polarized electromagnetic waves from a free-standing me-
tallic film with both metal-vacuum interfaces planar and
parallel, namely,

6+(k, co)=f (k, co)+f+(k, co) . (4.20)

The function Go(k, co) is the Green's function for the
above-mentioned planar metal film, and can be shown to
be given by

Go(k, co) = l

ao(k, co)D (k, co)
(4.21)

= Vz(plk)+ f U~(plq)Go(q, co)V&(qlk),

(4.22b)

where Vz (plk) is the reliection potential. By introducing
Eq. (4.17) into Eq. (4.6), the contribution to the mean
difFerential reQection coe%cient from the incoherent corn-
ponent of the rejected Geld can be rewritten in terms of
the reAection transition matrix as

The reAection transition matrix Uz(plk) is postulated to
satisfy the equations"

Uit(plk)= Vg(plk)+ f" "' V, (plq)G. (q, ~)U~(qlk)

(4.24)

T '3

cos6}ocos'+, lGO(p, co)l'[( lU&(plk)l'& —l( U~(plk) & l']fG, (k, co)l' . (4.23)

Therefore, we need to calculate Uz(plk) with the help of the preceding formulation and the integral equation contain-
ing the information provided by the boundary conditions.

By using Eq. (4.17) in Eq. (4.13), the equation satisfied by Uz (q l k) is obtained:

M~ (pl k)RO(k, co) N~ (pl@)—f q M&(plq)GO(q, ~)U, (ql k) =2'
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It turns out to be more convenient to work with the refiection potential Vz(qlk) as defined in Eqs. (4.22). If we replace
U~ (ql k) in Eq. (4.24) by the right-hand side of Eq. (4.22b), we obtain

f" M, (plq)GO(q, ~)v~(qlk)+ f" f" "~,(plq)GO(q, ~)U~(qlr)Go(r, ~)V, (rlk)

iaaf~ (p I k)R o(k co ) &~ (pl k)

2i ao(k, co)GO(k, co)
(4.25)

On employing Eq. (4.24) in the second term on the left-
hand side of Eq. (4.25), and Eqs. (4.18) and (4.21), the
equation satisfied by the refiection potential Vz(qlk) is

finally obtained:

v,"'(plk) =—

v,'"'(plk)—

a' "(plk),
e(co)

g f q A'" "'(plq) v'"'(qlk)
e(a))„,—~ 2~

(4.34a)

f" "' &(plq)v, (qlk)=&(plk» (4.26) g~"~(plk), n &2,
e(co )

(4.34b)

where

~(plk) =-,'[~.(plk)D (k, ~)—M, (plk)D+(k, ~)] .

(4.28)

Equation (4.26) constitutes the basis of our perturbation
theory calculation in reflection.

We seek V~ (pl@) as an expansion in powers of the sur-
face profile function g(x i ),

v~(plk)= g v~"'(plk),
n=1

(4.29)

where the superscript denotes the order of the corre-
sponding term in g(x, ). Similarly, we expand A (plq)
and B(plq), Eqs. (4.27) and (4.28),

A(plq)= g A'"'(plq),
n=0

(4.30)

&(plq)= g &'"'(plq),
n=0

(4.31)

with the help of the expansion of I(pig), Eq. (4.16), in
the form

I() lg)=y '1', g(g), (4.32)

where

A (plq)=
1

2iao(q, co)

D+ (q, co) —2
~z (p I q)

+
N~ (p I q)— (4.27)

D q, co

where we have used the results that

3' '(p q) =2m6(p —q)ie(co),

a"'(plk) =0 .

(4.35)

(4.36)

Since, for our purpose, it suffices to consider terms of
V~ (pl@) through third order in g(x, ), it is evident from
Eqs. (4.34) that we only need the terms up to second or-
der in the expansion of A (plq) [Eq. (4.30)], and up to
third order in the expansion of B (plk) [Eq. (4.31)].These
terms can be easily calculated from Eqs. (4.14), (4.15),
(4.27), (4.28), and (4.32). By making use of these results in
the recurrence relation, Eqs. (4.34), the three leading
terms in the expansion of Vz (pl k) are obtained:

v'"(plk) =U'"(plk)g~ "(p —k),

v~ '(plk)= f" q
U~ '(plqlk)

2K

Xg "(p —q)P "(q —k),

(4.37a)

(4.37b)

V~"(plk) = f f g"U(plql lkr)g "(p —q)

XP (q r)g "(r —k), —

(4.37c)

where we have introduced the functions U~i '(pl k),
Uii '(plqlk), and Uz '(plqlrlk). These functions are
displayed in Appendix A, and their properties that ensure
the reciprocity of the reflection potential in each order in
g(x, ) are discussed: V'"'(plk) = V'"'( —kl —p).

Our aim is to calculate the mean differential reflection
coellicient as given by Eq. (4.23), which depends in turn
on the transition matrix Uz(plk). Therefore, we expand
U~ (plk) in powers of g(x, ),

p"'(g) = f dx, e 'p(x i ) . (4.33)
U, (plk)= y U„'"'(plk),

n=i
(4.38)

By introducing Eqs. (4.29)—(4.32) into Eq. (4.26), and
then equating in the resulting equation terms of the same
order in g(xi ), we obtain the following recurrence rela-
tion for the [ Vz'"'(p

l
k ) j:

and use Eqs. (4.22a) and (4.29) to express the [ U~"'(plk)]
in terms of the [Vz'"'(plk)]. It is found that the three
leading terms are given by
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U(1)—V(1)
R R

U(&) —V(2)+ V(1)G V(1)
R R R 0 R

U(3) = V(3)+ V(&)G V(1)+ V(1)G V(&)
R R R 0 R R 0 R

+ VR(1)GO VR(1)GO VR(1)

(4.39a)

(4.39b)

(4.39c)

bution, and IR ', IR ', and IR' ' give the contribu-
tions of fourth order in g(x &

) from, respectively, the
ladder term, the maximally crossed term, and the contri-
bution arising from the products of the terms containing
UR" and UR '. These contributions are given as functions
of uz", uz ', and uz ', Eqs. (Al) —(A5), in Appendix B.

where the notation is such that a product of VR"' terms
means integration with respect to the inner argument. Fi-
nally, the incoherent contribution to the mean di6'erential
reAection coefficient is obtained by using Eqs.
(4.37)—(4.39) in Eq. (4.23). Upon considering the statisti-
cal properties of the Gaussian random process g(x, ),
Eqs. (2.4) —(2.6), and keeping terms up to fourth order in
g(x, ) in the resulting expression, we are led to

BR@ 2 Q)

gg incoh ~s s~o I GO(p ~ & ) I

7T C

X [I" "(plk)+I' ' (plk)

B. Transmission

By multiplying Eq. (4.11)by

[ao(p co)+pg (x
& )] exp[ lpx ] +i ap(pqcg)g(x ~ )]

and Eq. (4.12) by

exp[ ipx—&+iao(p, co)g(x
& )],

integrating both with respect to x1, and adding the re-
sulting equations, we obtain the following single integral
equation for the transmission amplitude T(plk) alone:

+I' ' (plk)+I~ '(plk)]

X IGO(k, co)l (4.40)

In Eq. (4.40), Iz" "(p k) yields the second-order contri-

: "'M pqTqk=X pk

The functions Mz (p I q) and NT(p I k) are given by

(4.41)

f (p, ~) pMT(plq) = e(co)ao(p, co) —a(q, co)+ [e(co)p +q] I [ao(p, co)+a(q, co) lp
—

q ]e co ao p, co +a q, co

f+ (p, ~) p+ e(co)ao(p, co)+a(q, co)+ [a(co)p +q] I [ao(p, co) —a(q, co)lp —q], (4.42)
e Q) au p, co —a q, co

NT(pl k) = ao(p, co)+ao(k, co)+ I[a,(p, co) a,(k, co)l—p —k],p2 k2

ao p, co —ao k, a)
(4.43)

where I (y I Q) has been defined in Eq. (4.16). Equation (4.41) is the analog for the problem being studied here of the re-
duced Rayleigh equation for the amplitude of the transmitted field when a p-polarized plane wave is incident from the
vacuum side on a one-dimensional, randomly rough surface of a semi-infinite metal. '

Let us rewrite Eqs. (4.42) and (4.43) by making use of the equations

I(ylg) =2~5(g)+iyJ(ylg),
iyg(x& )

J(ylg)= J dx&e

(4.44)

(4.45)

with the result that

MT(p I q) =2~5(p q)ao(p, ~)D (p—, ~)

+i [f (q, co)[ao(p, co)a(q, co) pq) J [ao(p, co)+—a(q, co)lp —qj
. e(co) —1

e co

f+(q, co)[ao(p, co)a(q, co—)+pq]J [ao(p, co) —a(q, co)lp —q]]
=2~5(p q)a, (p, ~)D (p, co—) iM,'(plq)—

NT(plk) =2~5(p —k)2ao(k, co) .

(4.46a)

(4.46b)

(4.47)

Proceeding in the same way as in Sec. IV A, we intro-
duce the formalism of many-body scattering theory by
postulating that the transmission amplitude T(plk) is of
the form

T(plk) =2~5(p —k)TO(k, co)

—2iGO(p, co)UT(plk)GO(k, co)ao(k, co) . (4.48)

To(k, co) is the Fresnel coefficient for the transmission of
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2
To(k, co) = (4.49)

p-polarized EM waves through a free-standing metal film
with planar, parallel interfaces,

3
c) Tp 2 co

cos 8, cosOo I Go (p co ) I

x[& I
U (plk)l'& —

I& U (plk) &I']

X IGo(k, co)l (4.51)

Go(k, co) is the Green's function defined in Eq. (4.21), and
UT(plk) corresponds to the transmission transition ma-
trix, which is in turn postulated to satisfy

In order to obtain the integral equation satisfied by
UT(plk), we substitute Eq. (4.48) in Eq. (4.41) with the re-
sult

UT(plk)= VT(plk)+ f VT(plq)Go(q, ~)UT(qlk)

(4.Soa)

J 2™T(plq)Go(q,~)UT(qlk)

MT(pl@) To(k, co) —NT(plk)

2iao(k, co)Go(k, co)
(4.52)

= VT(plk)+ J q UT(plq)Go(q, ~)VT(qlk),

(4.50b)

where VT(plk) is the transmission potential. Then the
contribution to the mean dift'erential transmission
coefFicient from the incoherent component of the
transmitted field, Eq. (4.7), depends on UT(plk) through
the equation

It what follows, instead of following the procedure used
in Sec. IV A, we rewrite Eq. (4.52) with the help of Eqs.
(4.21), (4.46b), (4.47), and (4.49), thus arriving at

UT(plk&=MT(plk)+ J MT(plq)Go(q, co)Ur(qlk) .

(4.53)

Consequently, on comparing this equation with Eq.
(4.50a) it follows that the transmission potential is given
in the closed form

VT(plk) =MT(p k)

(f (k, co)[pk —ao(p, co)a(k, co)]J[ao(p, co)+a(k, cv)lp —k]
E(co)

+f+ (k, co)[pk +ao(p, co)a(k, co)]J [ao(p, co) —a(k, co) lp
—k] j .

This simplifies notably our perturbation theory calculations, for it is straightforward to show that the expansion

(4.54)

Vz-(plk) = g Vz'-"'(plk)
n=1

(4.55)

leads, with the help of Eqs. (4.32) and (4.44) to

Vr'"'(plk)=i" '
g "'(p —k)[f (k, co)[pk —ao(p, co)a(k, co)][ao(p, co)+a(k, cv)]") e(co) —1 ~„)

E CO

+f+(k, co)[pk+ao(p, co)a(k, co)][ao(p, co) —a(k, cv)]" 'j (4.S6a)

—:vT"'(p
I
k)P"'(p —k) .

Therefore, keeping in mind that the three leading terms in the expansion of the transition matrix

(4.56b)

U, (plk) = y U,'"'(plk)
n=1

(4.57)

are related to the corresponding terms in the expansion of VT(plk) [Eq. (4.56)] through expressions formally equal to
Eqs. (4.39), we can write & BT /B8, &;„,h through terms of fourth order in g(x

&
) in the form

3

2cos 8, coseol Go(p~co) I

X[IT' "(plk)+IT ' (plk)+IT ' (plk)+I&-' '(plk)j IGo(k, co)l (4.58)
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The superscripts of the functions IT ", IT ', IT
and IT' ' have the same meanings as those for the func-
tions IR ', I ' IR2 'c and IR' . In fact, the
functions I(1-1), IT(2-'2)L, IT(2-2)c, and IR(' ') are given by
expressions formally identical to those defining the func-
tions IR' ", I' ' I' ' and IR ', obtained by re-
placing u~", u~ ', and uz" in Eqs. (Bl)—(B4) by uT", uT ',
and uz' ', respectively, defined in Eqs. (4.56).

C. Results

%'e now present results of numerical calculations of
( BR~ /Be, );„„hand ( BT~ /BO, );„„i,on the basis of the
perturbation-theoretic analysis described above which
has led to Eqs. (4.40) and (4.58). In particular, we choose
a silver film whose upper vacuum-metal interface is a
one-dimensional random surface (cf. Sec. II) with rough-
ness parameters 6=5 nm. and a =125 nm. The wave-
length of the p-polarized incident plane wave is A. =457.9
nm. For these choices for the values of 6, a, and A, , the
conditions 5/A, «1 and 5/a «1 are well satisfied. The
condition of small rms height stems from the fact that
5/A. is the small parameter in the perturbative expansion
of the scattering coefficients, whereas |i/a « 1 (condition
of small rms slope) ensures the validity of the Rayleigh
hypothesis. ' ' Since the wavelength corresponds to a
frequency below the value of co /v'2 for silver, according
to the discussion in Sec. III the metallic film supports two
SPP whose wave numbers q1 and q2 are obtained from
the dispersion relations (3.6a) and (3.6b), respectively; as-
suming that the mean thickness of the film is d =35 nm,
the wave numbers thus obtained are q, =(co/c)1.028 and
q2 =(co/c)1. 194.

In Fig. 4, the results for the angular dependence of the
contributions to the mean differential reAection and
transmission coefficients from the incoherent components
of the rejected and transmitted field, respectively, are
shown for normal incidence. In addition, the contribu-
tions coming from second-order terms alone and from the
fourth-order terms alone are included. In reAection, Fig.
4(a), a well-defined backscattering peak is observed at
0, =0; in addition, two sharp satellite peaks symmetri-
cally placed at 0, =+9.6' are present. Likewise, in
transmission, two similar satellite peaks are seen in Fig.
4(b) at angles 8, =+9.6 on each side of the antispecular
transmission peak at 0, =0. All these peaks stem from
the fourth-order contribution, whereas the second-order
contribution is structureless. It has been shown in the In-
troduction that the existence of degenerate eigenmodes in
a random bounded medium may lead to the appearance
of satellite peaks in the angular distribution of the inten-
sity of the scattered field; the condition for the phase
coherence of the multiply scattered trajectories mediated
by eigenmodes with diferent wave vectors in the case
that the bounded medium supports two guided waves
with wave numbers q, (co) and q2(co) at the frequency co

of the incident plane wave predicts that these peaks
should occur at scattering angles 8, given by Eq. (1.8).
Our system supports two degenerate SPP whose wave
numbers, shown above, determine very accurately the po-

sitions of the satellite peaks in Fig. 4(a) through condition
(1.8), thus confirming the explanation given for the oc-
currence of such peaks. A similar argument has been ap-
plied in the Introduction to predict the existence of satel-
lite peaks in the angular distribution of the intensity of
the incoherent component of the transmitted field, at
transmission angles given by Eq. (1.7), in agreement with
the results presented in Fig. 4(b). It should be noted that,
when q, (co) =q2(co), Eqs. (1.8) and (1.7) lead to enhanced
backscattering and enhanced antispecular transmission,
respectively.

Furthermore, we can split the fourth-order term in Fig.
4 into three components: ladder, maximally crossed, and
(1-3). This is done in Fig. 5. As expected, the peaks ap-
pear only in the maximally crossed contribution, both in
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cg 0.002

CQ

0.001

0.000
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FICx. 4. Contribution through fourth order (upper solid
curve} in the surface profile function to the mean di6'erential
scattering coe%cient from the incoherent component of the
scattered field for p-polarized electromagnetic waves of wave-
length A, =457.9 nm incident at 6jo=0' on a free-standing silver
film of mean thickness d =35 nm. The dielectric constant of
silver at that wavelength is e= —7.5+ i 0.24. The one-
dimensional, randomly rough, upper vacuum-metal interface is
characterized by the parameters 5=5 nm and a =125 nm. The
second-order (dashed curve) and fourth-order (lower solid
curve) contributions are also included. (a) Reflection; (b)
transmission.
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I ~ / I I f I 1 f ~ I f I I f ~ I

0.004 - 8,=0o (a)

r exsection and transmission, for this contribution ac-
counts, indeed, for the interference effects between every
doubly scattered trajectory and its time-reversed partner.

In order to observe the angular shift of those satellite
peaks predicted by the conditions (1.8) and (1.7), we plot
in Fig. 6 (BR~/B8, );„„hand (BT&/88, );„„„asin Fig. 4,
but for 8~=5'. Equations (1.8) and (1.7) give the following
values for the positions of the peaks: 0, , =4.5 and
—14.7', which coincide with the angles obtained from
the results shown in Figs. 4—6.

We should also mention the fact that, as Figs. 4 and 6
reveal, the total integrated contribution of second order
in g(x &

) is substantially larger than the total fourth-order
contribution, thus supporting the applicability of our per-
turbation theory for the roughness parameters considered
here. Also, note that the total incoherent scattered ener-

gy is about 10 times larger than the total incoherent
transmitted energy, both calculated up to fourth order in

g(x, ).

V. NUMERICAL SIMULATION RESULTS

In this section we present Monte Carlo simulation re-
sults for the reAection and transmission of p-polarized
EM waves from the same scattering system studied in
Sec. IVC (see Fig. 2). The numerical procedure em-
ployed here corresponds to that applied in Ref. 2 to stud-
ies of the transmission of electromagnetic waves through
thin metal films. Basically, the method consists of con-
verting the scattering integral equations into matrix equa-
tions by means of a quadrature scheme that truncates the
surface at a length l. that is then divided into N equally
spaced points. This is done for each realization of the
random surface profile numerically generated by the
method described in Appendix A of Ref. 14 in accor-
dance with the assumed statistical properties (cf. Sec. II).
Finally, (BR /B8, );„,h and (BT„/B8,);„„&are obtained
as averages of the results obtained from X realizations of
the random surface. The p-polarized incident wave is as-
sumed to be a Gaussian beam the half-width of whose in-
tercept with the plane x3 =0 is g.

We would like to point out that, due to computational
difficulties, no numerical simulation calculations have
been carried out for the set of parameters used in obtain-
ing the perturbation-theoretic results shown in Figs. 4—6.
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FIG. 5. Same as Fig. 4 but only for the fourth-order contri-
bution (upper solid curve), including separately the ladder
(dashed curve), crossed (lower solid curve), and (1-3) (dotted
curve) terms.
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FIG. 6. Same as Fig. 4 but for 00= 5 .
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There are two sources originating such difficulties. First,
despite the large number of realizations over which the
averages are made, the statistical noise can be of the or-
der of or larger than the contribution from the incoherent
scattered field to the mean differential reflection
coefficient when the total incoherent scattered energy is
considerably smaller than the total coherent scattered en-
ergy, as is the case for 5/A, ((1. (The same applies in
transmission. ) Second, the diffraction of SPP at the sur-
face edges may lead to unwanted effects because the SPP
can propagate large distances on weakly rough sur-
faces. ' Nevertheless, the numerical simulations provide
rigorous results for rough surfaces for which the pertur-
bation theory is inapplicable.

In what follows, we focus on a silver film with a ran-
dom surface whose roughness parameters are 5=15 nm
and a =100 nm. The wavelength of the incident beam is
A, =394.7 nm. The values of the numerical parameters
are L =12.6 pm, g =L/4, N=400, and N =1500. The
contributions to the mean differential reflection and
transmission coefficients from the incoherent components
of the scattered and transmitted field, respectively, are
shown in Fig. 7 for an angle of incidence t9O=O' and the
mean film thickness d =48 nm. The vertical lines mark
the positions of the satellite peaks as predicted by the
conditions (1.8) and (1.7), with the use of the values of
q, (co) and q2(co) obtained from Eqs. (3.6):
q&(co) =(co/c)1. 073 and q2(co) =(eo/c)1. 267. In addition
to the enhanced backscattering and antispecular
transmission peaks at 0, =0, =0, we observe two satellite
peaks at 0, , =+11.2', which coincide very accurately
with the expected positions. In order to make sure that
those peaks do not appear due to either the statistical
noise or the subsidiary maxima associated with enhanced
backscattering and antispecular transmission phenomena
at normal incidence, we could vary either the angle of in-
cidence or the mean thickness of the film, keeping the
roughness parameters fixed. The first solution has been
demonstrated to be unfeasible, at least in reflection, as re-
gards a scattering system consisting of a dielectric film
on a perfectly conducting substrate; the reason is the
rapid disappearance of the peak at 0, =0 on moving 0O

away from normal incidence. On the other hand, varying
d produces a change in the wave vectors qi (co) and q2(co)
of the SPP which should in turn modify the positions of
the satellite peaks following Eqs. (1.7) and (1.8). This is
shown in Figs. 8 and 9 for a mean thickness d =59 and
68 nm, respectively: In the former case q i (co)
=(co/c)1. 092 and q2(co)=(co/c)1. 217, whereas in the
latter case q, (co)=(co/c)1. 104 and q, (co)=(co/c)1. 193,
so that the peaks now appear at 0, , =+7.2' in Fig. 8 and
at 0, , =+5.1' in Fig. 9, both in reflection and transmis-
sion, confirming our former reasoning. In this respect,
note that the widths of the enhanced backscattering and
antispecular transmission peaks are not altered by the
change of d (see Figs. 7 —9), since we have not changed
the correlation length a (which determines their widths
through the ratio A, /a). '

Finally, it should be pointed out that the numerical
simulations, unlike the perturbation theory calculations
of Sec. IV, take into account all orders of scattering.

Therefore, this affects the values of the wave vectors of
the SPP, which were worked out on the assumption of a
metal film with planar parallel interfaces (cf. Sec. III).
Nevertheless, since the values for qi(co) and q2(co) thus
obtained permit accurately predicting the positions of the
satellite peaks encountered in the numerical calculations
through Eqs. (1.7) and ( l.8), it is evident that the
difference qz(co) —q, (co) is not substantially modified by
the presence of roughness for our choices of 5 and a.

VI. CONCLUSIONS

In this paper, we have found features in the angular
dependence of the intensity of incoherently scattered and
transmitted electromagnetic waves in a system consisting
of a free-standing silver film with a randomly rough il-
luminated surface. The mean thickness of the film must
be such that, in the absence of roughness, it supports two
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FIG. 7. Computer simulation results for the differential
scattering coefficient for the scattering of a p-polarized beam
from a one-dimensional random surface on a free-standing silver
film of thickness d =48 nm. 00=0, 5=15 nm, a =100 nm,
A, =394.7 nm, e= —4.28+i0.21, L =12.6 pm, g =L/4,
X =400, and N~ =1500. The vertical dashed lines indicate the
scattering angles at which the satellite peaks occur according to
Eq. (1.7) and (1.8). (a) ReAection; (b) transmission.
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degenerate SPP which have, at a given frequency of the
incoming beam, sufticiently different values of their wave
numbers. Under these conditions, we observe two satel-
lite peaks about the enhanced backscattering peak in
reflection, and two satellite peaks about the enhanced
transmission peak in transmission; the positions of these
peaks are predicted by Eqs. (1.8) and (1.7), respectively,
which result from a simple argument based on the phase
coherence condition for multiply scattered trajectories
mediated by degenerate SPP. Two approaches have been
used to calculate the contributions to the mean
differential reQection and transmission coefficients from
the incoherent components of the refl.ected and transmit-
ted field, respectively. On the one hand, a perturbation
theory up to fourth order in the surface profile function
g(x, ) has been developed which corroborates the oc-
currence of such peaks in the maximally crossed, double
scattering contribution. On the other hand, numerical
simulations have been carried out showing the existence
of the satellite peaks without the constraints of small rms
height 5/A, and small rms slope v'25/a, required for the
validity of the perturbation-theoretic calculations. ' '

From a methodological standpoint the single integral
equations (4.13) and (4.41) for the scattering and

transmission amplitude derived in this paper should sim-
plify future perturbative studies of the reflection and
transmission of electromagnetic waves through free-
standing films whose illuminated surface is rough, which
could be dielectric films capable of supporting more than
two guided waves, as well as metal films. These equa-
tions, and the many-body perturbation-theoretic formula-
tion of the scattering and transmission problems based on
them presented here, could also serve as the starting
point for an infinite-order perturbation theory calculation
of the intensities of the scattered and transmitted fields,
as was done in Ref. 7. Finally, we note that although
Eqs. (4.13) and (4.41) were obtained on the assumption
that it is the illuminated surface of the film that is the
randomly rough surface, while the back surface is planar,
the same approach can be used to obtain analogous equa-
tions in the case that the illuminated surface is planar,
while it is the back surface that is randomly rough.
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APPENDIX A

The functions vz"(plk), vz '(plqlk), and v~ '(plqlrlk)
appearing in Eqs. (4.37) are given bp

v~"(pl k) = e(co) —1

E(co)
pkb, +(p, co)b, +(k, co) ' — ' 6 (p, co)A (k, co)

a(p, co)a( k, co)
(Al)

vz' '(plqlk)= — [a(p, co)[pk —ao(k, co)]b, (p, co)h+(k, co)
2 e(co)

+a(k, co)[pk —ao(p, co)]6+(p, co)b, (k, co)]

+ Go(q, co) pq k[1 b+—(q, co)]b+(p, co)b+(q, co)b+(k, co)
e(co) —1

&(co)

a(p, co)a(q, co)a(k, co) a(q, co)
&

e(co)
ao q, co — ' b, q, co

e co

Xb, (p co)~ —(q co)b. —(k co)+q—b'+{q co) b —{q co) ao{qa(q, co)

e(co)

X [pa(k, co)b, +(p, co)b, (k, co)+ka(p, co)h (p, co)b, +(k, co)) ', (A2)

v~~ "(p
l ql rlk) = ——1 e(co) —1

6 e(co)
b, +(p, co)b, +(k, co) 2E(co) — 3—co pk 1

2 @co
(p+k )

2

1 2 2 CO CO
2 — p k +2@(co) pk —2e(co)

E(co ) C2 C4

2
+b, (p, co)b, (k, co)a(p, co)a(k, co) —1+ (p +k )+2pk —2

2 e(co ) C2

[Go(q, co)u &z(plqlk)+Go(r, co)u&2( —kl —rl —p))

3
e(co) 1—

Go(q, co)Go(r, co)u», (plqlrlk) .
e'(co)

(A3)

In addition, the following functions have been defined in Eq. (A3):

u, 2(plqlk)= iq [a(p, co)a(—k, co)b, (p, co)h (k, co) pkA+(p, co)b, +(k, co)—]

+pqa(k, co) [b,+(q, co) —1][qk —ao(q, co)]A+(q, co)h+(p, co)b.+(k, co)

+a(p, co)a(q, co) ao(q, co) — ' b, (q, co) [qk —ao(k, co) ]5 (q, co)b, (p, co)b, + (k, co)

+ ao(q co) b —(q co) b+(q co)
a(q, co)

X [a(p, co)a(k, co)[qk —ao(q, co)]h (p, co)b, (k, co)+pq [a (k, co) —qk]h+(p, co)h+(k, co)], (A4)
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u», (p(q~r~k) = p—q r k[1 b,—+(q, co)][1 b—, +(r, co)]b, +(p, co)A+(q, co)h+(r, co)b, +(k, co)

+a(p, co)a(k, co)b, (p, co)b, (k, co) ao(q, co) — ' b, (q, co)
a(q, co)

e(co)

a(q, co)a(r, co) ' a(r, co)
(q, co)h (r, co) qrb—+(q, co)b, +(r, co) ao(r, co) — ' b (r, co)

+pqrk ' ' b, +(p, co)b, (q, co)b, (r, co)b, +(k, co)a(q, co)a(r, co)

E co)

+qrb, +(q, co)b. +(r, co) pqa(k, co)[1 b, +(q—, co)] ao(r, co) ' —b, (r, co) b, +(p, co)h (k, co)
a(r, co)

E co

+rka(p, co)[1 b+—(r, co)] ao(q, co) — ' 5 (q, co) 6 (p, co)h+(k, co) .a(q, co)

E co

ao(q, co) — ' b, (q, co) ao(r, co) — ' b, (r, co)
a(q, co) a(r, co)

X [pqa(r, co)a(k, co)h+(p, co)A+(q, co)b (r, co)b (k, co)

+rka(p, co)a(q, co)b (p, co)b, (q, co)b, +(r, co)b, +(k, co)] . (A5)

It should be noted that some lengthy algebraic manipulations have been performed in order to write Uz", v~ ', U~
' in the

forms presented above. In this way, upon recalling that ao(q, co), a(q, co), Go(q, co), and b+(q, co) are even functions of q,
it is straightforward to show that the functions U~ ', vz ', and vz ' satisfy the following properties, respectively:

va"(plk) =v~"( —kI —p), v~"(p lqlk) =v~"( —kI —
ql

—p), v~"(plqlrlk) = v& '( —k
I

—rl —
ql

—p) .

These properties ensure the reciprocity of the three leading terms in the expansion of Vz (p~ k), Eqs. (4.37).

APPENDIX B

The contributions to (c)R&/c)8, );„„hthrough terms of fourth order in the surface profile function, Eq. (4.40), are
given by

Iz" "(p~k)=5 ~vz"(p~k)~ g(~p —k~),

~~' " (plk)=&'f g(Ip —ql)g(Iq —kI)[lv~"(plqlk)l'+2«[v"'(plqlk)'v& '(plq)GO(q, ~)v~"(qlk)]

+
I
vg" (p I q) Go(q, ~)v~"(ql k) I'],

(81)

(82)

r,"-'"(plk) =S'f" g(lp —ql)g(lq —kl)4 dq

X [v&"(plk+p —qlk)'va"(plqlk)+2«[vg'(plk+p —qlk)*v~"(plq)GO(q, ~)v&"(qlk)]

+«[vz'"(p~p+k —q)'Go(p+k —q, co)*u~ '(p+k —q~k)'uz"(p q)GO(q, co)uz"'(q~k)]J, (83)
r

"(plk)=2&'g(lp —kI) «v~"(plk)' f" [g (lp —ql)[v~"(plqlplk)+v~"(plqlp)GO(p, ~)v&"(plk)

+vR"(plq)GO(q co»~ '(qlplk) + u~"(plq)GQ(q co»R"(qlp)GO(p co»~"(pl k)

+v~"(plqlk —p +qlk)+ v~"(plqlk —p +q)GO(k —p +q, co)v~"(k —p +qlk)

+uz"(piq)GO(q, co)u„' '(qik —p +qik)

+vz~"(p~q)GO(q, co)u& '(q~k —p +q)GO(k —p +q, co)vz"(k —p +q~k)]

+g(Iq —kI)[v& '(plklqlk)+v&"(plklq)GO(q, ~)v~"(qlk)

+v&"(plk)GO(k, ~»~"(klqlk)+v~ '(plk)Go(k, ~)v~"(klq)GO(q, ~»~"(qlk)] j ', (84)

where the functions vz", Uz ', and vz ' are given in Appendix A.
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