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Photoexcitation of electrons in double quantum wells is studied as a function of level splitting,
duration of the light pulse w„, and light frequency. Dynamics of transitions between the upper
states of the valence band and the tunnel-coupled pair of conduction-band states is considered in the
collisionless approximation. The nonmonotonic temporal dependence of the photoexcited electron
concentration (the saturation value of this concentration determines the time-integrated interband
photoluminescence intensity) is obtained for the times t r„. Transition from the nonperiodic (at
t 7„) to the periodic (at t )) r„) behavior of the dipole moment oscillations is described.

I. INTRODUCTION

Electronic properties of tunnel-coupled double quan-
tum wells (DQW's) are currently studied in various
experiments, including time-resolved photoluminescence
spectroscopy as a most common and direct method. For
a detailed description of such experiments, it is necessary
to study optical excitation of DQW's under a subpicosec-
ond laser pulse pumping, and to describe coherent phe-
nomena just after the excitation, when a nearly collision-
less regime of electron density evolution is realized. The
difference between such coherent phenomena in DQW's
and analogous phenomena in bulk, ' superlattice and
single quantum well samples is caused by the fact that
the pulse duration v„can be comparable with the pe-
riod of coherent oscillation in DQW s, which is equal
to 2vrh/AT, where AT is the energy splitting between
the DQW's levels. Characteristics of the optical pump-
ing in DQW's (such as amplitude and phase evolution
of the electron density matrix) considerably depend on
the correlation between these two time constants. For
this reason, examination of the coherent optical excita-
tions in DQW's is a subject of interest. Investigation
of the coherent phenomena in DQW's has been done in
several experiments. The coherent submillimeter-wave
emission caused by the interwell dipole moment oscilla-
tions has been observed in Ref. 6. The optical pump-
probe measurements of phase coherence of such oscilla-
tions have been done in Refs. 7, 8. Another pump-probe
experiment has revealed coherent oscillations of the light
transmission in DQW's.

Theoretical analysis of the coherent photoexcitation in
DQW's has been done in a few papers. In Ref. 8, a model
of three discrete levels (without longitudinal motion)
has been used for the explanation of the pump-probe
experiments. ' Recently, some numerical results, which
take into account the longitudinal motion of the pho-
toexcited carriers and Coulomb interaction between them
have been reported. However, dependence of the pho-
toexcited electrons concentration and DQW's dipole mo-

ment on the light frequency and splitting of the tunnel-
coupled levels has not been studied in detail.

In this paper, we present an analytical calculation of
the density matrix evolution in DQW's under the spa-
tially uniform excitation by the ultrashort laser pulse.
YVe examine optical transition of the electrons from the
left quantum well (QW) valence band state to the pair
of tunnel-coupled conduction-band states (see Fig. 1).
We consider a collisionless approximation, assuming that
both pulse duration and coherent oscillations period are
small in comparison with the dephasing times caused
by diferent scattering mechanisms. When the optical
pumping frequency is close to the interband transitions
edge, and the spectral width of the pulse 5/w„ is smaller
than the optical phonon energy, the fast dephasing due

FIG. 1. Band diagram and photoexcitation scheme of the
asymmetric double quantum wells.
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to the optical phonon emission is not important and the
regime of electron density evolution is indeed close to col-
lisionless (such a regime has been observed in the above-
mentioned experiments ). Considering low pumping
intensities, we neglect all kinds of nonlinearities, such
as the influence of the laser electric Geld on the elec-
tron states, nonlinearities due to saturation phenomena
(Moss-Burstein effect), nonlinearities due to Coulomb in-
teraction of carriers, and so on.

We consider the electron density matrix, which slowly
varies during the time 2m/ur (here ~ is the laser light &e-
quency). Evolution of this density matrix is described
by a 2x2 matrix quantum kinetic equation containing
a non-Markovian generation term. In a collisionless ap-
proximation, this equation is transformed to a balance
equation for the total electron concentration nz and to
a system of balance equations for the components of the
"isospin density vector" nq. This system is analogous to
the Bloch equations in the theory of magnetic moment
evolution. A z component of the isospin density vec-
tor describes oscillations of the DQW's dipole moment,
which is connected with the evolution of the x, y com-
ponents. On the other hand, temporal evolution of the
electron concentration in the left QW determines the in-
tensity of interband photoluminescence.

The paper is organized as follows. In Sec. II, we de-
scribe a transformation from the general equations of the
Kane's band model for DQW's to the model that takes
into account two tunnel-coupled electron levels and a sin-
gle hole level (Fig. 1). In Sec. III, the balance equations
for nq and nq are derived. The solution of these equations
in a collisionless approximation is presented in Sec. IV,
V, where n& and nq are expressed through the two-time
integrals. Subsequent numerical calculation of these inte-
grals is done within a model of the Gaussian-shaped laser
pulse, i.e., with the assumption that the pumping inten-
sity is proportional to exp[ —(t/7„) ]. The evolution of
the concentration and dipole moment is discussed. Con-
cluding remarks are done in the last section, and the
Appendix contains the evaluation of the interband pho-
togeneration rate for the quantum kinetic equation from
Sec. III.

II. MODEL OF DOUBLE QUANTUM WELLS

To describe the electron and hole states near the ex-
trema of the conduction and valence bands, we start from
the 8x 8 Kane's matrix Hamiltonian,

p2
II = +v P+U(z),

2mhh

where I is the three-dimensional electron momentum
operator, the diagonal matrix U(z) describes variations
of the conduction- and valence-band energies along the
growth axis OZ, v is the nondiagonal velocity matrix,
and mhh is the heavy-hole mass. In the type I het-
erostructures, when the band ofFsets at the interfaces are
small in comparison with the band-gap energy, one can
consider independent equations for the envelope wave
functions of the electron and hole states [in a similar

way to the single QW (Refs. 12 and 13)]. The spin-
degenerate electron states are described by the colum-
nar envelope wave function, where the first and second
components (only these components are important near
the conduction-band extremum) are determined by the
effective-mass Hamiltonian,

p2
+ U.(z), (2)

where p is the 2D momentum, 4 is the level splitting
(in the absence of tunneling), T is the tunneling matrix
element, o; are Pauli matrices, e is the electron energy
corresponding to the middle point between the tunnel-
coupled levels. Introduction of this Hamiltonian and ex-
pressions of A and T through the DQW's parameters
are given in Refs. 14. The matrix part of the Hamil-
tonian (3) describes an additional (in comparison with
the single QW case) degree of freedom, connected with
a possibility of an electron wave packet motion between
the wells. According to (3), the spectrum of the tunnel-
coupled electron states is given by the expression

s, (p) =s, +
p2

2m. 2

where AT = gAz+ (2T)2. At 4 = 0 (tunneling reso-
nance), the electron wave functions are symmetrical and
asymmetric superpositions of the l and r orbitals. At
4 ) 0 (E ( 0), the upper-energy state ("+") is local-
ized mostly in the l (r) well, while the lower-energy state
("—") is localized mostly in the r (I) well.

Hole states in the valence band of DQW's are described
by the I uttinger 4x4 matrix Hamiltonian. Spectrum of
the ground hole states in DQW's can be obtained ana-
lytically in the approximation of strongly difFerent light-
and heavy-hole masses mph « mhh, see Ref. 15. In this
paper, we consider asymmetric DQW's, where tunneling
resonance of the electron states is achieved by applica-
tion of the transverse electric field (see Fig. 1). In such
a field, the hole levels originating from difFerent wells are
separated enough in energies, and we need only the l
QW hole state to describe edge photoexcitation. Near
the valence-band extremum, the spectrum of the two-
dimensional ground hole state is given by

where m, is the electron effective mass and U, (z) is the
conduction-band potential energy. In the following, we
restrict ourselves by the consideration of a pair of tunnel-
coupled electron states of the DQW's, when the envelope
wave functions of Hamiltonian (2) can be represented as
a superposition of two orbitals. Such orbitals describe
ground states in the left (l) and right (r) QW's and are
denoted in following as ]l,), ~r, ), respectively. In the ba-
sis of I and r orbitals (so-called "isospin" representation),
Harniltonian (2) transforms into 2x2 matrix Hamilto-
nian,

p2
+ ac + —oz + Toe)2m. 2
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where ch is the hole level energy, and mh is the two-
dimensional (2D) hole mass, which is comparable with
the light-hole mass under the condition m~h && mhi, (see
Ref. 16). The envelope wave function for this state is
expressed through the l QW hole orbital ~l~).

Transitions between the electron and hole states, due
to interaction with the laser radiation are described in
the dipole approximation by the following perturbation
Hamiltonian,

ba, e ' '+H. c. ,
ie

hH, = —E vw(t),
(d

(6)

((l ]E v[lh)[ = 'P (l, [lh) Ez/2,

where E is the laser electric field amplitude, and io(t)
is the envelope form-factor of this field, which is slowly
varying in time compared with the optical frequency u.
This perturbation Hamiltonian is obtained in the usual
way from Eq. (1), by a substitution of the kinematic mo-
mentum p —eA(t)/c [A(t) is the vector potential], in-
stead of p and the neglection of the terms proportional
to A /mhg and p A/mhh, which describe only intraband
motion. Probabilities of optical transitions between the
ground valence-band state in l QW and a pair of the
tunnel-coupled conduction-band states are proportional
to the nondiagonal (with respect to the band index) ma-
trix elements of the perturbation Hamiltonian:

0"'+. -'+T'- p: =G" +I::
Ot h 2

(1O)

Here, I„'~ describes the collision-induced relaxation of the
conduction electrons, and G„q describes electron genera-
tion,

dr exp [Ar —i (Aw —(„)r]

i
xylo(t+ r) exp —

~

—o' + To
~

r P~ + H.c.
5 (2

Eqs. (8), (9) to the three-level model described in the
previous section: a single valence-band state in l QW and
a pair of tunnel-coupled states in the conduction band.
We assume that the laser intensities are small compared
with the saturation intensity, and the valence band is
fully occupied. In such conditions, the generation term
Gq should be calculated with pq+„P„, where P„ is
the valence-band projection operator, which has the sin-
gle diagonal nonzero matrix element for the valence-band
s~a~e (l„lP„ll„)=

Projecting Eq. (8) on the conduction-band states and
using the momentum representation [Eqs. (3)—(5)], we
obtain a 2x2 matrix equation, which describes the be-
havior of the conduction-band density matri~ p„~:

III. EVALUATION OF THE CONCENTRATION
AND ISOSPIN DENSITY BALANCE

EQUATIONS

An averaged over the period 2'/v density operator is
determined from the quantum kinetic equation,

Ot A,

'+ —[H, pg] = Gt+Ig. (8)

Here, Iz describes the evolution of the density operator
due to the scattering (recombination processes are ne-

glected), and the term Gq describes the interband gener-
ation of carriers by the laser radiation [see Ref. 17 and
Eq. (A4) from the Appendix]:

0

Gg ——— dre" ' S [bHt+~, pg+~]S+, hH,+
h2

+H.c. , (9)

where S = exp[iHr/h]. In the following, we apply

siinilarly to the single QW case. ' Here, 'P is the in-

terband velocity of the Kane's model, E& ——E + E„.
Due to the same parity of the ground-state electron and
hole envelope wave functions, the overlap integral of the
l —QW orbitals (l, ~ls) is close to 1 (provided that the
transverse electric field is not very strong), and we sub-

stitute (l, ]lp, )=1 in the following. On the other hand, the
interwell overlap integral (r, ]lh) is exponentially small,
due to negligible underbarrier penetration of the or-
bitals belonging to the diferent wells, and we neglect

I("iE vlli)l.

In this equation (z ——p /(2m*h), m* = m, mh/(m, +
mg) is the reduced mass, Pi = (1 + o )/2 is t}ie l QW
projection operator, and

A(u = cu —(e, —eh)/h

1
ng = —'ti' ) p

P

1
n, = —tro) p„„

P

where tr denotes trace over the isospin variable and S is
the normalization area. Function n& obeys the equation

(14)

where the relaxation term has vanished, because the scat-
tering does not change the total number of the electrons.
Isospin density vector n& obeys the Bloch balance equa-
tions,

is the difference between the laser frequency and the ef-
fective band-gap frequency. Assuming that the pulse du-
ration is small in comparison with the scattering times,
we have neglected collision eKects in the generation term.
The generation term goes to zero at ~t~ )) rz. Since G„& is
a nondiagonal matrix, nondiagonal contributions in the
density matrix p„~ are important for the following calcu-
lations.

Below, we consider the evolution of the total electron
concentration in the DQW's nq, as well as the evolution of
the "isospin density vector" n&. These values are ReFined
as
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Onq 1 ~ ~ p.

Oc
—[L x ng] = Gg+ I, G„= —tro ) G„g, (15)s

where vector L = (2T/h, 0, A/5) describes coherent oscil-
lations, and the last term I~" describes dephasing (relax-
ation of the isospin density). When both the excitation
time r„and the coherent oscillation period 27rh/AT are
small in comparison with the relaxation time, we can ne-
glect the relaxation term I~ in the description of the
electron density evolution during the excitation and just
after it. Equations (14) and (15) must be solved with the
initial conditions n~ ——0 and n~ ——0 at t = —oo.

IV. TIME EVOLUTION OF THE ELECTRON
DENSITY

(a)

0 1 2

t (units 2n/~T)

After substitution of the expression (ll) in the right-
hand part of Eq. (14) and trace calculation, we obtain
the following expression for the generation rate:

2 0

x [(1 + rj) cos(Aw —(„—wT/2) w

+(1 —ri) cos(A(rJ —
(& + LOT/2)'T],

1
d7BJ(t+ 7) —)

d~'zv (7.') d7BJ(T + 7 )

x [(1 + rI) cos(A~ —( —~T/2)v.

+(1 —g) cos(Aw —(+ wT /2)r],

where characteristic concentration N is defined by

m* fe7 Egl'
4

and the sums over the 2D momentum p are transformed
into simple integrals over ( = („. Such integrals are
evaluated with the use of the well-known relation

d( exp[i(t + iO)(] = ~b(t) + iP(1/t),

where +i0 in the exponent appears due to damping and
P means the principal value. We have

0
N QJ (r ) + ZO(7 )BI(T

—OO P 7C7

+7.)[(1+g) sin(A~ —~T/2)r

+(1 —q) sin(A~+ ~T/2)v]). (2o)

Figure 2(a,b) represents the evolution of the electron
concentration calculated from Eq. (20), w'ith zo (t)

where wT = AT/5 is the coherent oscillations fre-
quency, and rI = 4/AT determines the interwell cou-
pling strength. The solution of Eq. (14) is obtained in a
straightforward way, after integration of G& over time:

10)

-1 0 1 2

t (units 2'/~z)

FIG. 2. Time evolution of the conduction electrons con-
centration (arbitrary units), for r„wT /27r = 0.5 (a) and
r~(ur/27r = 1.0 (b), at Bur = ~r (1), A(u = 0 (2)) and
A(u = —(ur (3).

exp[ —(t/7„) ] at different values of light frequency and
difFerent correlations between the pulse duration w„and
coherent oscillations frequency uT. Only the resonant
case 4 = 0 is shown here. For the excitation below the
conduction-band edge (Aw ( —wz /2), evolution of the
concentration is nonmonotonic, with a peak in the region
t w„. The peak is more prominent for longer pulses
[see (b)] Evolution of the electron concentration in the
nonresonant case A g 0 for w„uT/2m = 0.5 is shown
in Fig. 3(a,b). It is seen that for the positive A non-
monotonic behavior of nq can exist also for the excitation
above the conduction-band edge. It is connected with the
asymmetrical contributions of the l and r orbitals in the
electron states: at 4 ) 0, the lowest electron state is
localized mostly in the right well, while the excitation at

v„occurs in the left well.
At t )) w„ the electron concentration is saturated. The

saturation value can be expressed through the error func-
tion according to the following equation:

1 + erf (Aw —tuT/2)r„/v 2
1+ rl

erf (A(u + (uT/2) rp/~2
2
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1
d~m(t + 7.) —)

x [sin(A(u —(p —~T /2) v.

—sin(A~ —(„+~T/2) r], (23)

0 1 2

t (units 2'/(uT) 2Tn. (t) = N @,(t)—
T

(24)

and G = Gq [see Eq. (16)]. Solution of the system (15)
can be easily found after Fourier transformation in time,
which transforms (15) into a system of three linear equa-
tion. After determination of the Fourier components of
the isospin density, we perform an inverse Fourier trans-
formation and obtain nq. It is convenient to write com-
ponents n, n„, n of nq in the following way:

2T
n„(t) = N C, (t),

T
(25)

4T
n (t) = N 4p(t) + 2 C q(t)

T T
(26)

where

@p(t) =
—OO P

71BJ (r ) + Bl(T )BI(T + T)

x [(1 + rl) sin(A~ —cup /2)v.
0 1 2

t (units 2~/(uT)

FIG. 3. The same as in Fig. 2(a) for nonzero splitting A:
A/Az =0.7 (a) and A/Ar = —0.7 (b).

—(1 —q) sin(4~ + ~r/2)~]), (27)

At Awr„« —1, n+ goes to zero (no absorption). At
Aw~„&) 1, n+ does not depend on Lu and wT. In
the latter case, N is connected with the total concentra-
tion of the photoexcited electrons by the simple relation
n+ ——/27rN. Typical electron concentrations gener-
ated in the experiments are below 10 cm, which
approximately corresponds to the single-pulse intensities
below 3 erg cm

V. OSCILLATIONS OF THE DIPOLE MOMENT

/' e, (t) )

I c,, (t) I— d'r 2 I ( cos &z (r —t) )
) sin(uT(r —t) )

~ (~')
~

tp(v. ')m(~' -+ 7.)2sin(A(u7)
7r7

/ cos~T(7-/2+ 7' —t) )x
i

g sin~T(~/2+ r —t) ) (28)

Functions @q (t) and 42 (t) describe the oscillating contri-
bution in the isospin density evolution, while @p(t) de-
scribes the nonoscillating contribution. Equations (24)—
(28) show that all components of the isospin density os-
cillate with time. It is important to consider the com-
ponent n, (t), because it is connected with the potential
A&p caused by the dipole moment of DQW's:

T f 'PE(~) 1
drtp(t + r) —)

x [cos (A(d —(p —capT /2) 7

—cos(d ~ —(p + u)T/2)r], (22)

In the collisionless approximation, we neglect the relax-
ation term I~" in the right-hand part of the system (15).
The remaining contribution in the right-hand part arises
from the generation term, which is a three-component
vector Gq ——(G, G„,G, ) with

Ay eAzn (t), (29)

where Az is the separation between the l and r orbitals
(this value is close to the distance between the centers of
the quantum wells).

Figure 4(a—c) and Fig. 5(a,b) illustrate behavior of the
dipole moment at 4 = 0 and 4 g 0, respectively. A
complex evolution of the dipole moment at t ~„ takes
place when 7„ is comparable with 2vr/wT. At t )) w„, the
dipole moment has periodic behavior, which is described
by the equation
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1+9
/2) ./A

(30)

I I

0 2

(units g~/~ )

I

0

t (units 2~/~ )

I

0

t (unit»II/wT)

FIG. 5. The sameF . . e same as in Fig. 4 b for n P
~ = —0.7 (b).
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VI. CONCLUSIONS

In this paper, we have investigated the edge photoex-
citation of carriers in the DQW's by the ultrafast laser
pulses. A laser pulse at t = 0 generates an electronic
wave packet in one of the wells. This packet oscillates be-
tween the wells with the period 2nh/Az determined by
the level splitting of the DQW's. As a result, the DQW
structure manifests itself as a dipole oscillator emitting
terahertz radiation. When the laser pulse duration 7.„
is comparable with the coherent oscillations period, it
is necessary to take into account the movement of the
electron wave packet during the excitation time. In such
conditions, time evolution of the DQW's dipole moment
has complex behavior in the time interval t 7z. Nev-
ertheless, asymptotic behavior of the dipole moment at

&& 7z is periodic and is characterized by a constant
phase, which is independent on characteristics of the
structure and photoexcitation, provided that the exci-
tation pulse is symmetrical.

On the other hand, not only the distribution of elec-
trons between QW's, but also the total concentration nt
of photoexcited electrons show complex behavior under
ultrashort pulse pumping. The dependence of the satura-
tion value n+ of this concentration from Lu and 4 can
be measured by the time-integrated photoluminescence.
By means of the time-resolved photoluminescence, one
can measure time evolution of the I QW concentration,
which is equal to the combination nt, + n (t).

In order to describe these phenomena, we evaluated the
matrix quantum kinetic equation for electrons in DQW's.
Such an equation contains a nondiagonal term, which de-
scribes the generation of the electrons by the light pulse.
We took into account longitudinal motion of electrons
and obtained the analytical expressions for the concen-
tration of photoexcited electrons and the DQW's dipole
moment in the case of Gnite pulse duration. Such ex-
pressions allowed us to investigate the time evolution of
the concentration and dipole moment for different pho-
ton energies, pulse durations, and DQW's parameters.
In our calculations, we have neglected the scattering of
electrons, which is not important for the generality of our
results in the case when both the pulse duration and co-
herent oscillations periods are small in comparison with
the relaxation times. (We stress here that in the existing
calculations, ' the scattering is taken into account phe-
nomenologically, which does not permit us to estimate
the dephasing times properly. ) The next approximation
is that we have neglected the Coulomb interaction be-
tween the electrons and holes, which gives rise to exci-
tonic effects.

The calculated time evolution of the DQW's dipole
moment is consistent with the existing experiments, '

where the excitation pulse duration has been small in
comparison with the coherent oscillations period. In the

case when the pulse duration is comparable with the co-
herent oscillations period, our calculations show a more
complex behavior of the dipole moment during the exci-
tation. To reveal such peculiarities, further experimental
studies are necessary.
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AP PEN DIX.

Here, we evaluate the generation rate for Eq. (8), start-
ing from the general equation for the density operator Bz.

' + [II,R, ]
—= —[bH, e ' '+ H.c., R,].Bt 6 ' ih (A1)

Using the initial condition R&~ —Ro, ([H, Ro] = P),
we can rewrite this equation as

t
A 1

Rg ——Bp + —.

ih
d7.e" S t[hH e ™'+H.c., R ]S+ „

(A2)

1
dwe" [(hH, e ' + H.c.),

xS [(hII,+ e '"~'+ ~+H.c.), R,+ ]S+]. (A3)

In this paper, we consider the case of high frequency
pumping (1/u is small in comparison with all typical
times of the problem) and are interesting in the slowly
changing part pz of the density operator. Neglecting
the contributions in (A3), which are proportional to
exp(+ikut) (k = 1, 2, ...), we obtain an averaged over
the period 2vr/ur quantum kinetic equation,

x (e-*-[S.[hH, +., P,+„]S.+, ha,+]
+H.c.). (A4)

The right-hand part of (A4) transforms to Eq. (9) (the
collision integral I& can be evaluated in the usual way).

(Sq is introduced in Sec. III). Substituting (A2) into the
right-hand part of (Al) and replacing w by 7 + t, we
obtain in this part,

1 A ~—„[hH,e ' '+ H.c., RO]
zh
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