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Andreev resonances in the current-voltage characteristics
of a normal-metal —superconductor junction
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We calculate the current-voltage characteristic of a normal-metal —superconductor (NS) junction
having a one-, two-, or three-dimensional electron emitter. An additional tunneling barrier is also
placed in the junction, allowing the formation of quasibound Andreev energy levels. The resulting
conductance resonances are strongest for a normal-metal —insulator —normal-metal —superconductor
(NINS) junction, and are identical to the Rowell-McMillan oscillations in the three-dimensional
case. Andreev resonances in the conductance of a NS junction generally become stronger when the
electronic motion is confined to one dimension.

I. INTRODUCTION

The Bogoliubov-de Gennes (BdG) equations~ s de-
scribe the coupled motion of electrons and time-reversed
electrons in a superconductor, a normal metal, and
at their interfaces. The BdG equations can also de-
scribe conductance resonances due to combined An-
dreev. and normal reHections in many different experi-
mental geometries. The most widely known of these
conductance resonances are the Tomasch oscillations
in a normal-metal —superconductor —insulator —normal-
metal (NSIN) geometry, and the Rowell-McMillan
oscillations in a normal-metal —insulator —normal-
metal-superconductor (NINS) junction. In this paper we
explore the eR'ect of artificially confining electronic mo-
tion to a plane or a wire on conductance oscillations of
both the Rowell-McMillan and Tomasch type.

Tomasch oscillations in a standard planar (three-
dimensional) junction, can only be clearly observed in the
diiFerential conductance dI/dV or d I/dV, since they
occur for voltages outside the superconducting energy
gap where Andreev reHection is weak. Rowell-McMillan
oscillations, on the other hand, also occur when the volt-
age is less than the superconducting energy gap; there-
fore, they can be directly observed in the I-V character-
istic. Whenever the voltage exceeds the energy of an An-
dreev bound state trapped in the normal region between
the superconductor and insulator, a corresponding step
appears in the current of the NINS junction. Both the
Tomasch and McMillan-Rowell oscillations are reviewed
in Ref. 12.

The Tomasch type of conductance resonances become
stronger when electronic motion is confined to one di-
mension. It may be possible to observe Tomasch oscil-
lations directly in the I-V curve of a one dimensional
conductor. Unfortunately, these short-lived Andreev
resonances in a NSIN (or NSIS) junction can still only
be clearly observed in the difFerential conductance dI/dV
or d2I/dV2 for a two- or three-dimensional junction.
Strengthening the oscillations by restricting the geometry
is not enough to overcome weakened Andreev reHection

for energies outside the superconducting gap in a NSIS
or NSIN junction.

Reference 16 also calculated the current-voltage char-
acteristic of a one-dimensional Rowell-McMillan NINS
layered geometry, using the method of Ref. 3, finding
large Andreev resonances for applied voltages less than
the superconducting gap. It was unclear from Ref. 16,
however, why such an isolated Andreev resonance should
still be observed after averaging over all the diferent
possible directions from which electrons are injected in
an ordinary three-dimensional planar tunneling junction.
In ordinary resonant tunneling of normal electrons for
example, the strength of a similar type of oscillation is
greatly reduced in a three-dimensional planar structure
compared to an idealized one-dimensional structure.

We show in this paper that strong Andreev resonances
do indeed survive in a standard three-dimensional pla-
nar NINS junction, reducing there to the original Rowell-
McMillan oscillations, and are only slightly weaker than
for purely one-dimension electronic motion. This is be-
cause the transmission resonances for injection at an an-
gle 0 away from the tunnel barrier become very narrow
at large 0, reducing dimensional broadening eKects. It
should be possible to study the reduced dimensional ver-
sions of Tomasch and Rowell-McMillan oscillations ex-
perimentally, using techniques similar to those currently
employed in low-dimensional resonant tunneling.

II. TRANSMISSION COEFFICIENTS

The BdG equations, describing the coupled motion of
an electron u and its corresponding time-reversed elec-
tron v, are

(H —Ij,) A(r) u(r) u(r)
A*(r) (H —p) v(r) — v(r)

The one-electron Hamiltonian H is

( &' 8' 0' lH= — i,+,+, i+V(x, , y).z
2m (ax ay' az )
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k and. the total energy E will determine the transmission
and reHection coeKcients. Hence all the results of Ref. 16
for the particle current re8ection coefIicients for both nor-
mal and Andreev processes will apply, with the total wave
vector k replaced by its x component k . Similar conclu-
sions hold for the corresponding three-dimensional scat-
tering problem.

The electrical current can now be obtained in one d.i-
mension (1D) from

kx

dk hk
I]D 2e

p 27T m

x[1 —R, (E, k ) + Rh, (E, k )](f~ —f~), (5)

in two dimensions (2D) using

FIG. 1. Pree electron motion parallel to the interface occurs
in a two-dimensional NINS geometry. An electron from the
normal metal is injected at an angle 8, producing the trans-
mitted and reBected waves shown on the circles of constant
energy. The wave vector A:„ is conserved in the scattering
process.

We restrict our attention to only sheet impurity scatter-
ing potentials of the form V(x, y, z) = V;b(x —x;), since
they can be engineered most easily in practice.

Figure 1(a) shows the geometry we consider in two
dimensions, where the electron can be injected at any
angle 0 in the xy plane. ~ The solutions of Eq. (1) away
from an interface have the form

u(x, y) A
v(x, y) B

with the eigenvalues

h k"—p2m 2m

Due to translational invariance along the y direction, the
wave vector k„ is a constant of the motion. The total
energy E is also constant for each scattering state.

Figure 1(b) shows the constant energy surfaces far from
the interfaces, in both the normal metal and supercon-
ductor. An electronlike quasiparticle incident &om the
normal-metal side scatters &om the junction potential.
To solve for the particle current transmission and re-
Hection coefflcients, we match u(x, y), v(x, y), and their
derivatives at each boundary. Appendix A gives the de-
tails of this procedure. We make Andreev's approxima-
tion to describe scattering processes at the NS boundary;
therefore, we neglect any normal reflections occurring at
the NS boundary. In this approximation, normal rejec-
tions can occur only at the impurity.

We find the amplitude for Andreev reHection at the
NS interface depends only on the total energy E, in-
dependent of the angle of incidence. Furthermore, the
wave vector k„ is unchanged during the scattering pro-
cess. Therefore, only the x component of the momentum

dky dk hk
I2D ——2e L y 2K p 2K m

x[1 —R, (E, k ) + Rh(E, k )](f~ —fg),
and in three dimensions (3D) by

dk dky dk hk
2'. 271. p 2'. m

x[1 —R, (E, k ) + Rh(E, k )](f~ —fg) . (7)

Here R, (E, k ) denotes the normal reflection probability
and Rh(E, k ) the Andreev reHection probability. The
Fermi factors are f~ = f (E —eV) and fg = f(E). We
convert Eqs. (5)—(7) to integrals over energy E and in-
jection angle 0 to do the actual current calculation, as
described in the Appendix. In all figures we plot the
normalized current IN, defined as

2e 1DIiD ———IN
h

and

2e Lyk~
Nh

2e L„IzkF
3D =

h 4' N (10)

The normalization factors are chosen so that IN for a
ballistic NS interface is the same function of voltage in
1D, 2D, and 3D.

III. CU'RB.ENT-VOLTAGE CHARACTERISTICS

In the following calculations we assume the Fermi en-
ergy y, =1 eV and the order parameter ~A~ = 10 meV,
typical for metals. The choices fix the Fermi wavelength
as A = 12.3 A and the coherence length as (o ——196 A. ,
assuming m is the &ee electron mass. For the tunneling
barrier, we assume the transmission coefFicient T 0.2.
In the normal state we have T = 1/(1+ Z ), so that
the parameter Z = 2.0 for an electron normally incident
on the tunnel barrier at the Fermi velocity. Our results
do not strongly qualitatively depend on these parameter
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FIG. 2. Normalized difFerential conductance dI/dV vs bias
voltage V when the impurity is (a) 1000 A inside the nor-
mal metal, (b) at the NS interface, and (c) 1000 A. in-
side the superconductor. The device geometry permits ei-
ther one-dimensional (solid), two-dimensional (dotted), or
three-dimensional (dashed) electronic motion.

FIG. 3. Normalized current I vs bias voltage V vrhen
the impurity is (a) 1000 A. inside the normal metal, (b) at
the NS interface, and (c) 1000 A. inside the superconductor.
The device geometry permits either one-dimensional (solid),
two-dimensional (dotted), or three-dimensional (dashed) elec-
tronic motion.

choices, provided the tunnel barrier is not too transmis-
sive.

Figure 2 shows the differential conductance dI/dV ver-
sus voltage V of the NS junction when the tunnel barrier
is (a) embedded in the normal-metal 1000 A from the NS
interface, (b) at the NS interface, and (c) embedded in
the superconductor 1000 A &om the NS interface. This
corresponds to (a) a NINS McMillan-Rowell junction,
(b) a NIS Giaever tunneling junction, and (c) a NSIS
Tomasch-type geometry. Figures 3(a)—(c) shows the cor-
responding current versus voltage obtained by integrat-
ing Figs. 2(a)—(c), respectively. The resonances in dI/dV
from Figs. 2(a) and (c) generally become broader, weaker,
and shift to higher voltages as the injected electron dis-
tribution changes from 1D to 2D and 3D. Conversely, the
Giaever tunneling result in Fig. 2(b) is relatively immune
to altering the spatial distribution of injected electrons.

The strongest resonant oscillations in dI/dV occur in
Fig. 2(a), and are surprisingly resistant to averaging over
the angular distribution of the injected electrons. To
qualitatively understand Fig. 2(a), note that the momen-
tum along the tunneling direction decreases with angle
as hjc = +2mEcos8. A larger total energy E is now
required to meet the resonance condition for k, shifting
the resonance at an angle 0 to a higher energy. This con-
tributes to broadening of the conductance resonances in
dI/dV However, because . of the smaller momentum hjc

along the x direction, the tunnel barrier looks electively
much more reflecting for injection at an angle 0. The
transmission parameter Z = V;/hv for transmission at
an angle 8, so the resonances in [1 —R, (E, 8) + Rh (E, 8)I

versus energy E are much narrower for 8 g 0 than at
normal incidence.

The narrowing of the resonances in [1 —R, (E, 8) +
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R~(E, 0)] at large injection angles greatly reduces the
dimensional broadening of resonances in the difFerential
resistance dI/dV. Corresponding Andreev resonances
can be observed in Fig. 2(a) in 1D, 2D, and 3D. The
3D oscillations in Fig. 2(a) are simply the derivative of
the Rowell-McMillan oscillations, and produce relatively
clear current steps in the I Vi-n Fig. 3(a). Even for
the 3D junction, the single current step near eV = 0.75
4 is clearly visible. Increasing the distance I of the
tunnel barrier from the NS interface will produce more
such current steps. This same mechanism narrowing
the transmission resonances at an angle 0 also explains
why the Giaever tunneling current in Fig. 2(b) becomes
more sharply peaked in 3D than in 2D or 1D. Averaging
the electron injection over all angles does not appreciably
broaden the onset of Giaever tunneling.

The weak oscillations occurring above the supercon-
ducting gap in Fig. 2(c) and Fig. 3(c) for this NSIS junc-
tion strongly resemble the Tomasch oscillations in a NSIN
geometry. In the NSIN Tomasch geometry, an electron
incident on the insulator from the superconductor can ei-
ther Andreev reflect or normally reflect. The &action of
electrons Andreev reflecting can be viewed as conducting
through an efI'ective NSN geometry, while those normally
reflecting can be viewed as moving in an effective NSIS
geometry. If the insulating barrier is strong, conduction
through the NSIN geometry is nearly equivalent to con-
ducting through a NSIS geometry. If the insulator is only
moderately strong, the standard NSIN Tomasch gepme-
try will therefore produce a more complicated interplay
of resonances than the simplified NSIS geometry consid-
ered here. The resonances in any of these Tomasch-type
geometries will be equally difFicult to observe directly in
the I-V characteristic of a junction. Figure 3(c) implies
this observation might barely be possible for a 1D NSIS
junction.

In Figs. 2(c) and 3(c), the impurity is several coher-
ence lengths inside the superconductor (L ) (o), so that
few quasiparticles reach the barrier for eV ( L. The
junction therefore appears nearly ballistic for eV ( L,
producing similar normalized currents for 1D, 2D, and
3D tunneling junctions. We show in the Appendix that
the normalized currents are in fact; equal for a ballistic
NS junction, and Fig. 3(c) nearly approximates such a
junction.

Isolated Andreev resonances of the Rowell-McMillan
type in low-dimensional structures may also already have
been observed by tunneling from a scanning tunneling
microscope tip into a small metallic island on a supercon-
ducting substrate. However, disordered. interfaces may
have clouded their observation in Ref. 11. Andreev reso-
nances in a planar (three-dimensional) NINIS geometry
may also explain the zero bias conductance peak seen in
Ref. 18, since averaging over a distribution of such res-
onances produces a similar conductance peak in a one-
dimensional model.

IV. CONCLUSIONS

Both the Rowell-McMillan and Tomasch-type oscil-
lations in the I-V characteristic of NINS and NSIS

APPENDIX: SCATTERINC FROM THE
NINS POTENTIAL

We take the x direction to be normal to the interfaces,
as in Fig. l(a). The wave vectors for motion in the z
direction at an energy E are then

2m
(p+ E) cos0 (Ai)

in the normal metal and

2m
(p, + QE2 —A2) cos 0, (A2)

in the superconductor. Here 0 is the angle of the wave
vector k incident from the normal metal to the x axis,
and 0, the angle of the wave vector q inside the super-
conductor. We determine 0, from

sin 0, p+E
sin 0 p, + QE2 —A2

(A3)

We make Andreev's approximation to neglect difFerences
between the wave vectors k and q when 4 (( p, unless
they occur in an exponent. Furthermore, we neglect the
small difI'erence between 0 and O„even in an exponent.
These approximations do not qualitatively change any of
the results for the conductance.

To obtain the normal and Andreev reflection coefFi-

cients for electron injection from the normal metal, we

replace the total wave vectors in Ref. 16 with their x
components. The electron and hole particle current re-
flection amplitudes when the impurity is located in the
normal metal are therefore

junctions, respectively, are analogous to the quasibound
states in a resonant tunneling diode (NININ junction). In
the NINS junction, the resonant energy levels are formed
by multiple Andreev reflections &om the NS junction and
normal reflections &om the tunnel barrier, instead of the
multiple reflections between two tunnel barriers in the
NININ junction. 3ust as for the resonant tunneling diode,
the resonant energy levels in the NINS junction are di-

rectly observable in its current-voltage characteristic.
It should be possible to carry out a low-dimensional

version of the Rowell-McMillan and Tomasch experi-
ments. A semiconductor-based NINS junction suitable
for observing isolated Andreev resonances can be formed
by placing superconducting contact met;allization on a
molecular beam epitaxially grown GaAs-Al Ga~ As-
GaAs or InAs-AlSb-InAs heterostructure. This struc-
ture could then be etched into a quasi-one-dimensional
wire or post, using techniques similar to those used. to
fabricate low-dimensional resonant tunnel junctions for
normal electrons. In this paper we have shown that
resonances in the difFerential conductance dI/dV should
become more clearly observable in a low-dimensional ver-
sion of either the Rowell-McMillan or Tomasch experi-
ment.
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The resonant denominator d in Eqs. (A4) and (A5) is
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Here L is the distance of the impurity from the NS in-
terface, Z is the normalized impurity strength given by
Z = V;/5 u, and P is the phase of the superconducting
order parameter. The coherence factors 'lip and vp aIe
found from

QE2 —~2
2tLp = 1+ (A7) 0.0

0.0 1.0
Energy E/5,
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QE2 Q2
2vp = 1—

Similarly, if the impurity is a distance of L inside the su-
perconductor, the transmission and refiection amplitudes
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In this case, we Bnd d in Eqs. (A9) and (A10) from

FIG. 4. Normal reBection coeKcient R, as a function of the
incident energy Z when the impurity is (a) 1000 A. inside the
normal metal, (b) at the NS interface, and (c) 1000 A inside
the superconductor. The angle of incidence is 8 = 0 (solid),
8 = 57' (dotted), and 9 = 89' (dashed).

Equations (A4) —(A6) and (A9)—(All) hold when the en-
ergy satisfi. es E & 0. Similar formula can be obtained for
E&0.

The resonant energy levels are obtained by setting
d = 0 in either Eqs. (A6) or (All). Note that these
oscillations are of the "4d" type, where both the elec-
tron and the hole must each traverse the resonant cavity
twice to form a bound state. Various nonideal effects,
which we neglect in this paper, could contribute a small
"2d" component to the oscillation period.

Equations (A4) and (A5) and (A9) and (A10) show
that, for a ballistic NS interface, the particle current re-
fiection amplitudes for normal and Andreev refiection are
independent of the incident angle. The reBection ampli-
tudes then depend only on the total energy of the incident
particle, the same as in a one-dimensional NS junction.
The reflection probabilities are B, = ~r,

~

for normal re-
flection and Ba = ~rh

~

for Andreev reflections.

We can understand the resistance of dI/dV to angular
averaging in Fig. 2(a) by examining the normal reflec-
tion B, from Fig. 4(a) and Andreev reflection Rh from
Fig. 5(a). As the injection angle 8 increases, the reso-
nance shifts to higher energy, becomes narrower, and may
disappear altogether. All formula for resonance energies
and linewidths from Ref. 16 hold also for injection at an
angle 8, provided we replace the physical length L by
the "efFective length" Leos 0 and the total velocity v by
its x component v . The total resonant energy E~ there-
fore increases to approximately by E~ nA(pn/2L cos 0,
shifting the resonances in dI/dV to a higher voltage and
broadening them. Conversely, the resonance width E'I
is approximately EI —ln(RB )b,(p/2L cos 0. The An-
dreev refIection coeKcient of a ballistic NS junction is
B 1 for ER ( A. The reAection coeKcient in the
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However, the Andreev reHection R decreases drastically
as the resonance energy increases, since the resonance
energy is now outside the superconducting energy gap
(ER ) 6). Consequently, the resonances are pushed to
higher energy and broadened when the impurity is in the
superconductor. That is why the resonances in dI/dV
are so poorly resolved in 3D in Fig. 2(c), compared to
their good resolution in 3D in Fig. 2(a). Formulas simi-
lar to those used in Ref. 16 describe the evolution of these
resonances in Figs. 4(c) and 5(c).

We now wish to obtain the electrical current &om the
reHection coefficients in Eqs. (A4) and (A5) and (A9)
and (A10). To facilitate our evaluation of Eqs. (5)—(7),
we convert the integrals over the x, y, and z components
of the wave vector to an integration over total energy E
and angle of incidence 8. The total energy in the normal
metal can be written as

0.0

(hk,
(2m )

(A12)

0.5

1.0

0.0
0.0

1.0
Energy E/5,

I

1.0 2 0
Energy E/h,

1.5

3.0

where the radial wave vector is k„= k + k„ in two

dimensions and k„= k + k„+ k in three dimen-
sions. We transform further to to polar coordinates using
dk~dky = k„dk„d0 in two dimensions and d'k~dkydkz

k„sin8dk„d8dg in three dimensions. Using k = k„cos 8
and dE/h = hk„dk /2vrm, we obtain the normalized cur-
rents

I~~ =f ds

x[1 —R.(E, 8 = 0)+ R, (E, 8 = 0)](f~ —fs)
(A13)

in one dimension,

FIG. 5. Andreev reQection coefficient Rh, as a function of
the incident energy E when the impurity is (a) 1000 A. inside
the normal metal, (b) at the NS interface, and (c) 1000 A
inside the superconductor. The angle of incidence is 0 = 0
(solid), 8 = 57' (dotted), and 8 = 89' (dashed).

~/2 OO

I~ ——— d0cos0 dE 1+—
—m/2 —OO P

x [1 —R, (E, 8) + Rh (E, 8)](f~ —fs)

in two dimensions, and

(A14)

absence of superconductivity is R = Z /1 + Z, with
Z = V, /hv = V;/cos8/2E/m. Therefore, as the injec-
tion angle approaches 8 -+ vr/2 we have R -+ 1, indepen-
dent of the initial barrier strength V, . This narrows the
transmission resonances considerably for large angles.

Similar reasoning applies to the reHection coeKcients
for the tunnel junction in Pigs. 4(b) and 5(b). As is ev-
ident from Fig. 4(b), electron re8ection is only R, 0.9
when E = 2A and 0 = 0. The reQection increases con-
siderably at large angles, since the barrier appears effec-
tively stronger. The corresponding dI/dV in Fig. 2(b)
is therefore sharpest in 3D, where more large angle elec-
trons are injected from the contacts.

At large injection angles, the resonances are also
pushed to higher energy in Figs. 4(c) and 5(c), when the
impurity is in the superconductor. The effective normal
reAection R &om the barrier also increases, as before.

m/2

I~ ——2 d8sin8cos8 dE
~

1+ —
~

0 ~)
x [1 —R, (E, 8) + Rh(E, 8)](f~ —fs) (A15)

in three dimensions.
The differential conductance dI/dV at T = 0 can be

found Rom Eqs. (A13)—(A15). At zero temperature we

have

d

dV (f~ —fs) = — = b(E —eV) .
dE ~

(A16)

= [1 —R,(E=eV8=0)
i dV]

+Rh, (E = eV 8 = 0)]

The normalized differential conductance is then found
&om the angular integrations
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ln one dimension,

(dl l
(dV)

+Rg(E = eV, 8)t (A18)

d8cos 8 [1 —R,(E = eV, 8)

+Rh (E = eV, 8)] (A19)

= 2 d8 sin 8 cos 8[1 —R,(E = e V, 8)
I dV) o

in tvro dimensions, and in three dimensions.
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