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The quantum interference corrections to the conductivity are calculated for an electron gas in
asymmetric quantum wells in a magnetic field. The theory takes into account two diferent types
of the spin splitting of the conduction band: the Dresselhaus terms, both linear and cubic in the
wave vector, and the Rashba term, linear in wave vector. It is shown that the contributions of
these terms into magnetoconductivity are not additive, as it was traditionally assumed. While the
contributions of all terms of the conduction-band splitting into the D'yakonov-Perel' spin relaxation
rate are additive, in the conductivity the two linear terms cancel each other, and, when they are
equal, in the absence of the cubic terms the conduction-band spin splitting does not show up in the
magnetoconductivity at all. The theory agrees very well with experimental results and enables one
to determine experimentally parameters of the spin-orbit splitting of the conduction band.

It was first found by Dresselhaus in 1955 that in cubic
crystals with symmetry Tp there is a spin splitting of the
conduction band, which is cubic in the electron wave vec-
tor k. This splitting is described by the Hamiltonian2

II. =~) ~;k;(k,'„—k,'„),
2

(i = x, y, z; i+3-+i),
where o; are the Pauli matrices (in this paper, we take
h = 1 everywhere, except in the final formulas). If the
symmetry of a crystal is reduced, the splitting linear in
wave vector appears, for example, in uniaxial crystals,
in Tp crystals under a deformation, ' and, most im-
portantly, in quantum wells and heterostructures.
In symmetric quantum wells grown along [001], the
conduction-band Hamiltonian has the form

k2
II = +(cr A),

where o' = (cr, cr„), A = (n, n„) are two-dimensional
vectors with components in the plane of the quantum
well. Here, the spin splitting coefBcients A are propor-
tional to the bulk coefficient p in Eq. (1). According to
Ref. 11,

0 = —Oz cos y —O~ cos 3p,(')

Oy 0] sin p —03 sin 3p,(~) .

n&'l =&k
~ (k;) —-'k'

~,
k~

03 ——p —,
4

where k = k2 + k„, tang = k /k„, and (k, ) is the
average wave vector in the direction z, normal to the
quantum well.

In asymmetric quantum wells, or in the presence of

a deformation e „, the Hamiltonian II includes another,
so-called Rashba term:

H' = n[cr X Ie], . (4)

This term can be included in the Hamiltonian Eq. (2), if
one includes additional terms into 0:

n = ni~ l sing, n„= —ni cosy, ni = o.k. (5)

In deformed crystals, according to Refs. 5, 6, and 12,

= 2 (n', , + n,'r, ),

1
o. = —C'3g y.

2

The values of the coe%cient C~ for some A3B5 com-
pounds are given in Refs. 6 and 12. In an asymmetric
quantum well, the coeKcient o, is proportional to the av-
erage value of the electric field (or potential gradient) in
the well. This coefFicient was calculated in the &amework
of the A,'- p method, ' neglecting the immediate vicin-
ity of the potential barriers. However, if the efFective
mass approximation would have been valid throughout
the entire well, including the barriers, then o; = 0.

If the linear in k spin splitting is given by only one of
the terms Eq. (3) or Eq. (5), all observable effects are
identical, because these two Hamiltonians can be con-
verted. one into the other by a unitary transformation.
In both cases, the conduction-band minimum is shaped
like a ring around A: = 0. However, if both terms are
present, the electron spectrum changes qualitatively: the
energy minima now occur at finite k along the axes (110)
or (110), depending on the signs of ni and ni(i) (2)

Both terms Eq. (3) and Eq. (5) give additive contribu-
tions into the D'yakonov-Perel' spin-relaxation rate:

0163-1829/95/51(23)/16928(8)/$06. 00 1995 The American Physical Society



51 CONDUCTION-BAND SPIN SPLITTING AND NEGATIVE. . . 16 929

where Oi ——0& + 0& and w, n = 1, 3, is the relax-
ation time of the respective component of the distribution
function:

1
W(8) (1 —cosn6) d8.

7n

Here, W(8) is the probability of scattering by an angle

state) and PP with I = 1, m = —1, 0, 1 (symmetric triplet
state). The singlet contribution is the same as in Ref. 11:

2 1
o =Dq

7g

The values E are the eigenvalues of the matrix. oper-
ator,

'RCp ——
2Kvp'Tp

2f

where vp is the density of states at the Fermi level and

In this paper, we show that such additivity does not
exist for weak localization eKects, which are responsible
for the negative magnetoresistance (NMR). In the theory
of the NMR, the spin splitting of the conduction band.
was first taken into account in Ref. 7. In this paper, it was
supposed that the magnetoconductivity Ao.(R) depends
only on the spin relaxation times, by analogy with the
Larkin-Hikami-Nagaoka theory, which considered the
Elliott-Yafet spin-relaxation mechanism. In Ref. 11, it
was shown that for D'yakonov-Perel' spin relaxation, this
approach is valid when the Hamiltonian Eq. (2) contains
only cubic in k terms, the ones with Os (note also that the
spin-relaxation rates, given in Ref. 7, should be increased
two times~~). The formulas derived in Ref. 11can be used
if only one of the terms Eq. (3) or Eq. (5) is present in
the Hamiltonian Eq. (2).

When both terms Eq. (3) or Eq. (5) coexist in the
conduction-band Hamiltonian, one can reduce the equa-
tion for the Cooperon propagator Co(q), as described in
Ref. 11, using the iteration in the parameters O,wp and
qe7'0, where vo = IW(8) d8 is the elastic lifetime and
v is the Fermi velocity, to the following form:

A = Dq'+ —+ 2 (n', ~, + n,'~.) (2 —J,')

+2(D~)) ~ —O(~ i (J+q++ J q )

+ io~ i (J+q —J q+)

Here, J; are the matrices of the angular momentum op-
erator with total momentum I = 1, J~ = (J +iJ„)/~2,
and q~ = q~ + zqy.

An interesting particular case occurs when Oz

+Oi and 03 —— 0. If one introduces new coordi-(2)

nates (upper sign for A~ = +0~ and lower sign for(i) (2)

g(~) g(~l)

x+y x/y

q& + qy

v&
J +Jy J +Jy

it is easy to show that the operator 'R in these coordinates
becomes

R = —+ —v q 'ry + (Bi'ry + Asks) (2 + 0' p + 0'&p&)
122 2 2

7 Q 2

+2 (0'~py + ET' p~) Ag Ag Ty
(i) (2)

+V»» (ly + p ) Bl g + Bl gy)
(i) (2)

+ (~»+~») (~l ~»
—~l V-) .(i) (2) (10)

The components of the matrix Cp are determined by two
pairs of spin indices, and the matrices «r act on the first
pair, while the matrices p, also Pauli matrices, on the
second pair. The magnetic-Geld-dependent correction to
the conductivity is determined by the quantity S(q):

e2D qmax

b,o. = — S(q) d q,4+3 o

where q~ „=(Dvz) ~, D = v~wq/2 is the diffusion coef-
Qcient, and

1

S(q) = 27l vp'To ) Co = ——+ )
~p p

. E=—1

E'p and E are the eigenvalues of the operator A, corre-
sponding to the eigenfunctions Po (antisymmetric singlet

'R = D q' + (q„ —q„()J„)'
Tp

402, ~,
u, o

In the basis of eigenfunctions of J„,we have three inde-
pendent equations for eigenvalues E

E = D q„+ (q„+mq„())
7

In this case, S(g) becomes

—1

~(c) = I& ~.'+(a+~-») +—
(p

+ D q~ + qu q~p + 1
7 (p

When calculating the conductivity Eq. (11), one can ne-
glect the shift in q space q„p, compared to q~ ~ on the
upper limit of the integral. The result for the conductiv-
ity correction is

e2
T(pLo. =— in —.2' h
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II' = 2n(a.„k„), (20)

Note that in order for the difFusion approximation itself
to be valid, the condition 7~ &) &1 must hold. One can see

that when O1 ——+O1 and O3 ——0, Lo is determined by(1) (2)

the same formula, as without any spin relaxation. Note
that the spin relaxation rate Eq. (7) does not show any
peculiar behavior in this case.

The reason for such a striking difference between NMR
and spin relaxation can be seen if one writes the Hamil-

tonian H = cr 0 at O1 ——+O1 and O3 ——0 in the(1) (2)

form

where n „=1/bwq. According to Eqs. (13)—(21),

( 11 180„——b
i
n+ —~+ —,

~v
(25)

and E are the eigenvalues of the operator

Z = b(aat) + —+ 2 (n', ~, + n', ~s) (2 —J,')

—4in, nI ~g (J+ —J ) + 2(b7g) (26)

x —nI (J+a —J at) + in~ (J+at —J a)

where the coordinates u and v are determined by Eq.
(15). Then one can see that the random effective mag-
netic field" 2o,k„, parallel to axis v, leads to the random
precession of electron spin in the plane, perpendicular to
this axis. The &equency of this rotation is proportional
to k, or to the velocity V„. During the time bt between
two consecutive scattering acts the spin rotates by an
angle p21, proportional to the distance V„bt = u2 —u1.
Therefore, the total angle of the spin precession along a
path between points with coordinates uo and u„ is pro-
portional to the length L = u —uo. For the spin re-
laxation, these paths can be anything and resulting spin
rotations are random. On the other hand, the NMR is de-
termined only by the trajectories for which I is smaller
than the electron wavelength, i.e., I = 0 within the
framework of our theory. Hence, for O1 = +O1 and(1) (2)

O3 ——0 the total spin rotation on the trajectories which

contribute into the NMR is zero. When O1 = +Oz(1) (2)

but ns g 0, the direction of the random magnetic field
changes with the direction of Ie, and the total spin ro-
tation on a closed trajectory is not zero any more. The
absence of a spin contribution to interference effects in
one-dimensional metal rings for a spin Hamiltonian, sim-
ilar to Eq. (20), has been pointed out in Refs. 10 and 17,
where the conductivity oscillations and universal Huctu-
ations of the conductance were considered.

In a magnetic Geld q~ become operators and can be
expressed through the operators at and a, which increase
and decrease the Landau level number n:

One can see that in the general case, when both Oi(1)

and O1 are nonzero, the determinant of 'R can no longer(2)

be split into submatrices 3 x 3 in the basis of functions
~n, m) (m = —1,0, 1), unlike Eq. (10) of Ref. 11. There-
fore, the only way to find eigenvalues E „is to diagonal-
ize numerically the matrix 'R. (Since we are interested
only in the sum of reciprocal eigenvalues, it is possible to
express it through minors of the matrix 'R without com-
puting the eigenvalues themselves. However, this pro-
cedure has about the same complexity as full diagonal-
ization. ) The number of elements one has to take for a
given value of magnetic field B, or b, is at least n „an.d
increases infinitely as B approaches 0. Note that the size
of the matrix 'R is N = 3n

The numerical diagonalization of the matrix A was
performed using the LAPACK eigensolver for Hermitian
banded matrices. To improve convergence of the sum in
Eq. (24), we add and subtract from each 1/E „ its ap-
proximate asymptotic value 1/b(n + 1) at large n [the
constant, 1, added to n is needed only to extend sum-
mation to n = 0, as in Eq. (24)j. The sum of terms
bE ~ —(n, + 1) can be extended to n m oo, while the
sum of added terms (n+1) ~ can be replaced by an inte-
gral. Both approximations cause errors proportional to
wq/v~, (n;v;), and 1/n „,but the very approach of this
paper is valid only when this parameter is small and n
is very large. Therefore, we use the following expression
for the magnetoconductivity:

D1/t 2 ~1i2q+ — a,

(21)

D'~'q = b'~'at, Dq' = b(aat)2
1(aat) = —(aat + ata),
2

2

+4~2h, E'o„n+ 1n=o-

4eBD
hc

The nonzero matrix elements of these operators are

(22)

oo 1

+). ).
n=Om= —1

E

—2ln(biz) —2CI,

1

n+ 1

(n —1~ a in) = (n~ a ~n —1) = ~n,
1

(n~ (aat) ~n) = n+ —. (23)

The magnetic-Geld-dependent correction to the conduc-
tivity Eq. (11) now becomes

where C is the Euler constant. In order to compute the
sum of 1/E to n = oo numerically, we perform the
calculations for few values of n „in the range &om 500
to 5000 and extrapolate to n —+ oo.

We now present the results of the numerical computa-
tions. Let us introduce the following characteristic mag-
netic fields:
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ch, B
H~ =

4eDv.~ H~
= &-~,

ch 2 2 I ch
Hso = (20irl + 20sT3) q Hsci —— 20i&i, (28)4eD 4eD

CA (i) 2 (2) cg (2) 2

4eDD 203 %1) Hso = 20]4eDHso =(i)

Note that the field Hs~ is proportional to the spin re-
laxation rate. We also use dimensionless units for the
conductivity and magnetic field:

Bb—= = &-~,

4m-2h, f'
cr =

~

Err —lim Kcr
~

.
e g 8+0

We begin by demonstrating the effect of the coexis-
tence of both terms Oz and Oz in the spin splitting. In
Fig. 1(a), we reproduce the results of Ref. 11 for magne-
toconductivity at Hso/H~ = 4 and difFerent Hso/Hsci.
These results can be obtained &om Eqs. (24—26) if one

leaves only 0&, or Oz, and sets the other one to 0.(~) (2)

Our results have better numerical accuracy, especially
for small h, due to extrapolation to n m oo in the sum
Eq. (27). Note that the lowest curve, with Hso ——0,
gives the result of the Larkin-Hikami-Nagaoka theory.

In Fig. 1(b), we show the curves for the same values of
Hso/H~ and Hso/Hso, but now Oi = A(i . The effect
of redistribution of the spin splitting between Oi and
Q(i ) is, naturally, more pronounced for large Hs&/Hso,
when the linear in the k term dominates the spin relax-
ation. One can see that for Hso/Hsci ) 0.5, the re-
sults in Fig. 1(a) and 1(b) are qualitatively difFerent: the
magnetoresistance minimum shifts closer to B = 0 and
eventually disappears, and Lo becomes monotonic.

This effect is shown in more details in Fig. 2, where the
magnetoconductivity is plotted for Hso/Hso = 1 and
various Hs(&)/Hso. The lowest solid curve reproduces the
result of Ref. 11. One can clearly see the shift of magneto-

1

conductivity minimum and its disappearance when 0&
and Ai become comparable (Hsz/Hso close to 1/2).
The minimum disappears and the slope of magnetocon-
ductivity at B = 0 changes sign at Hs&/Hso 3/4.

While redistribution of linear in k spin splitting be-
tween the Dresselhaus term Eq. (3) and the Rashba term
Eq. (5) has a maximum effect on the magnetoconductiv-
ity when the linear splitting is dominant, the quantitative
effects of such redistribution can be seen when linear and
cubic splittings are coxnparable. In Fig. 3, the depen-
dence of magnetoconductivity on Hs(o/Hso is shown for
Hslo/HsQ —1/2, when the contributions of both linear
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FIG. 1. Dimensionless magnetoconductivity Ao vs dimen-
sionless magnetic field 5 [Eq. (29)], for Hso/H~ ——4 and
A = 0 (a) and A = Ai (b). For both plots (a) and (b)
the curves 1—5 show dependencies at different Hso/Hso = 1,
3/4, 1/2, 1/4, and 0, respectively.

FIG. 2. Dimensionless magnetoconductivity Ao. vs dimen-
sionless magnetic field b [Eq. (29)], for Hso/H~ = 4 and for
Hso/Hso = 1 (As ——0). The curves 1—5 show dependen-
cies at different ratios Hso/Hso = 1/2, 5/8, 3/4, 7/8, and
1, respectively. Lower plot shows magnification of small mag-
netic-fields region. The dashed curve shows the dependency
for Ag ——0.
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FIG. 3. Dimensionless magnetoconductivity Ao vs dimen-

sionless magnetic field b [Eq. (29)], for Hso/H~ = 4 and
for Hso/Hso = 1/2. The curves 1, 2, 3 correspond to

Hso/Hso = 1/2, 3/4, and 1, respectively. The dashed curve
shows the dependency for Aq ——O.

-0.2

&I -04

and cubic terms to the spin relaxation rate are equal.
One can see that, while the efFect is not as dramatic as
in Fig. 2, it has qualitatively the same character.

We now return to the question of the cancellation of
the Rashba and Dresselhaus terms in linear spin split-
ting. One can see that the cancellation of spin relaxation
terms in conductivity, which occurs when O~ = O~
and Oq ——0, also happens in a magnetic Geld. In this
case, the eigenvalue equation Eq. (26) splits into three
independent equations, analogous to Eq. (17). The com-
mutation relations for the operators q„and q in a mag-
netic Geld do not change with the shift of q„by a constant
value q„p in each of these equations:

(30)

Therefore, all eigenvalues E are equal to Ep, and

-0.6—

10
I

15 20

FIG. 4. Cancellation of linear terms in spin splitting. Di-
mensionless magnetoconductivity Ao is plotted vs dimension-
less magnetic field b [Eq. (29)], for constant flsrq7~ = 1/2, for
plot (a) aud 2 for plot (b), and for difFerent Hso/H~. Solid

lines show the magnetoresistance when Qi = Ai (maxi-

mum cancellation), dashed. lines are for A~~ = 0 (no cancel-
lation). For each family of curves (solid or dashed) Hso/H~
takes values 0, 1, 2, 3, and 4, with 0 for the uppermost curve
and 4 for the lowest cur~e (at Hso solid and dashed curves
coincide).

(1 H 'I H
q2 B$ B

where g is a digamma function.
As we have already noted, this cancellation of terms

with Qq and O~ occurs only when 03 ——0. However,(~) (2)

it is reasonable to suppose that addition of a small cubic
splitting will break this cancellation only slightly, result-
ing in a very weak dependence of the magnetoconductiv-
ity on Oq, when O~ = 0& . Figure 4 shows that it is
indeed so. In Fig. 4(a), the magnetoconductivity is pre-
sented for small 03 and di6'erent Oq. One can see that
when Oz ——Oz (solid hnes in Fig. 4), the magneto-
conductivity practically does not change when Hso/H~
changes &om 0 to 4. This shows that the two terms in
linear splitting almost cancel each other in NMR, and
the result looks as if there were no linear splitting at all,
even though the latter can be much larger than the cu-
bic splitting. On the other hand, the same change in
Hso/H~ has a very strong efFect on Aa, when only one

of the linear splitting terms is present (O~z
) ——0, dashed

lines). Figure 4(b) shows that the same trend persists
even for large cubic splittings, though the efFect becomes
less dramatic. We must stress again that no such can-
cellation occurs in the spin relaxation rates, which are
sensitive only to the total spin splitting.

The cancellation discussed above is more than an ab-
stract curiosity. The Rashba term Eq. (4) in quantum
wells can be changed by deformation. For a [001] quan-
tum well, a deformation along (110) or (110) will, accord-
ing to Eq. (6), change the coefficient n in Eq. (4). The
resulting splitting can exceed the contribution Eq. (2) for
not too high deformations. Such an experiment would
allow independent measurement of the magnitudes of lin-
ear and cubic in A,

' spin splittings Eq. (3), as well as the
sign and magnitude of the part of the coeKcient o. , which
is determined by the well asymmetry.

We should also note that the recent paper Ref. 14 con-
tains a discussion of the contributions of two types of
linear spin splitting: the Rashba term and the Dressel-
haus term. The authors of Ref. 14 have used spin-orbit
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splittings, calculated in Ref. 18. These splittings were
derived &om the experimental data, using the formulas
Rom Ref. 7, which implies an assumption that splitting
of both types give additive contributions to NMR, sim-
ilar to their contribution to spin-relaxation time. The
results presented above show that, in fact, the situation
is exactly opposite: the appearance of splitting of the sec-
ond type decreases, rather than increases, the total con-
tribution of linear splitting to NMR. This contribution
continues to decrease until both terms in linear splitting
becomes equal.

As far as comparison of theory and experiment is con-
cerned, no good agreement had been achieved for quan-
tuin wells (unlike the NMR in metal films, where the the-
ory provides a very accurate description of experimental
results). The theory of Refs. 7, 13 was unable to describe
the experimental results of Refs. 18, 19 in a wide range of
magnetic fields. ' The main reason for the discrepancy
between experiment and theory was the assumption that
linear and cubic terms give additive contributions to the
magnetoresistance and the formula of Ref. 7 can be used
for the D'yakonov-Perel' spin relaxation mechanism. It
was shown in Ref. 11 that this assumption is incorrect;
however, no comparison with experiment was presented
in this paper. We now proceed to illustrate that the
theory is able to describe magnetoconductivity in semi-
conductor quantum wells quite accurately.

In Fig. 5, we show the comparison of the experimen-
tal results &om Ref. 18 with the theory presented in this
paper. The main difhculty in obtaining a well-defined fit

arises kom the cancellation of the two terms in the linear
splitting, discussed above. Indeed, the best fit, shown in

()2Fig. 5 by the solid line, is obtained for O~ ~i~~ ——13,

Oi 'T&7~: 1 25, and O3 73%'& =—1.25. If one wants to(2)

find the best fit with only one term in the linear split-
ting of the conduction band, the fitting parameters are

O& v~w~ = 11.75, Oi ——0, and O3 v~w~ = 1.25, and
the agreement is also very good. Comparison of the two
sets of fitting parameters above shows that the addition
of the second term in linear splitting, with O&, almost
cancels a part of the first term, with Oi . The effect(i)

is that the main dependence of the magnetoconductivity
on the linear splitting can be described by the parameter

Oi —Oz v&7~, and an equal increase of both O
(&)' (2)' ~ (&)

and Oi makes only a small difference. On the other
hand, an attempt to fit the experiment with the formula
of Ref. 7, which can be used for Oi ——0, fails: one can see
in Fig. 5 that it is possible to fit the magnetoconductivity
either on the right of the minimum or on the left, but not
in the whole range of the magnetic field. The cancellation
of the linear splitting, shown above, emphasizes the im-
portance of magnetoconductivity measurements under a
deformation, where the ratio of the linear splitting terms
can be controlled independently.

Using values of the characteristic magnetic fields
Eq. (28), determined from the fit, we can estimate
the coeFicients p and o. of the spin-orbit Hamiltonian
Eqs. (1,4). From Eq. (3),

aO,("
k ((k;) ——,'k2) (32)

Here, we should take A: equal to the Fermi wave vec-
tor ky = i/27r&„and (k, ) can be estimated using the
Fang-Howard wave function for the electrons in the het-
erostructure:

-2
b

&(~) = g3 —a~/22"
-4

0

B (Gs)

Then (k, ) = 6 /4 The parame. ter 6 is determined mainly
by the density of the electron gas. We can estimate 6,
using the simple expression, given in Ref. 21:

FIG. 5. Comparison of theoretical and experimental re-
sults for the magnetoconductivity. Squares show the exper-
imental results of Ref. 18. Solid line shows the best fit ob-
tained from our theory, fitting parameters are H~ = 0.028 Gs,
Hso/H~ = 31, Hso/H~ = 28.5, and Hso/H~ = 26. The
best fit with only one term in linear splitting is shown by
the dashed line, fitting parameters are Hso/H~ = 26 and
Hso/H~ = 23.5. The fits for Ai ——0 are shown by dot-
ted lines. It is not possible to fit the experiment in the whole
range of magnetic fields in this case. The fit which works best
to the left of the magnetoconductivity minimum (marked by
l) has Hso/H~ = 6.7 (this is the value found in Ref. 18),
the fit to the right side of the minimum (marked by r) has
Hso/H~ = 4

(34)

where K is the dielectric constant and m is the electron
effective mass.

From the fit in Fig. 5, we have the value O& 7i7&-(i)'
13. The product v.qw~ can be found &om the value of
the magnetic field H~ 0.028 Gs, because, according to
Eq. (28),

t"h ch
4eD~~ 2v Fed)7 ~

where v~ = 5k~/m is the Fermi velocity of electrons.
Using the electron density K, = 6.1 x 10 cm from Ta-
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p =25eVA . (36)

This value for p agrees surprisingly well with the results,
obtained in Ref. 12 &om the measurements of spin relax-
ation, using optical orientation.

The fit also allows to estimate the coefBcient a of the
Rashba term:

ble I of Ref. 18, the electron mass in GaAs I, = 0.067mo,
and the dielectric constant of GaAs K = 12.55, we obtain
the following estimate:

4 ((k2) 1y2
)

i
(43)

which gives the value

and uses the cancellation e6'ect discussed above to add
equal corrections to Oi and Oi, this will result in a fit
nearly as good as the one we suggested. For this new fit,
p changes to approximately 28 eV A. , and the change is
well within the accuracy of existing determination of p.

Finally, we can use the value of O373~~ ——1.25 to esti-
mate the ratio ~s/wq. From Eq. (3) it follows that

(37) ~3 1
4

(44)

Using the value Oi wiw~ = 1.25, we get the estimate(i)'

n 1.2 meV A. (38)

The value of the coefBcient o. had never been measured,
and, as we noted before, it would have been exactly 0 in
nondeformed quantum wells if the effective mass approx-
imation was working everywhere, including the interface.
The authors of Refs. 13, 14 have estimated this coeK-
cient, assuming that the interface gives no contribution
at all, for a uniform electric field in the quantum well:

52 4 2Eg+ 4
2m Eg (Eg + A) (3Eg + 2b, )

(39)

where Eg is the direct band gap, 4 is the spin-orbit
energy splitting, and E is the electric Beld. In a het-
erostructure, the electric Geld changes in the z direction
from 4vr&, e/K at the interface to practically 0 on the
other side of the electron gas. In this case, it should be
replaced by an average electric field

(~) = J' ~(*)l~(.)l*«, (40)

where E(z) itself is determined by the distribution of
electron density:

(41)

We have taken the following values for the energy gaps
of GaAs: E = 1.42 eV and L = 0.33 eV. Substitution
of Eqs. (40,41) into Eq. (39) yields the estimate

nth«, ——2.2 meV A. . (42)

This number is about twice the value which fits the ex-
periment. We believe this is quite reasonable agreement
considering the fact that the estimate Eq. (39) is really
an upper bound, because it neglects the contribution of
the field in the interface, and the latter tends to decrease
n. On the other hand, if one assumes n = 2.2 meV A.

Theoretically, this ratio can vary from 1/9 for small-angle
scattering (like scattering on remote charged impurities)
to 1 for short-range scattering. For a structure with fairly
large mobility, p, = 1.1 x 10s cm2/V sec, the value 1/4 is
not unreasonable.

In conclusion, we have presented an improved theory
for quantum interference corrections to the conductivity
of an electron gas in a semiconductor quantum well in a
magnetic Beld. The theory is valid for D'yakonov-Perel'
spin relaxation and when the phase relaxation time w~

is much longer than the momentum relaxation time ~i,
so that the diffusion approximation can be used. Our
theory correctly takes into account the contributions of
difFerent terms in spin splitting of the conduction band.
We have shown that while the spin relaxation rate de-
pends only on the total magnitude of the spin splitting,
the difFerent parts of the latter give nonadditive contribu-
tions into the magnetoresistance. Furthermore, the two
terms in the linear in wave vector part of the spin split-
ting, known as Rashba and Dresselhaus terms, actually
cancel each other when their magnitudes are comparable.
Using this theory, we were able to fit the experimental
data for the magnetoconductivity in a wide range of mag-
netic fields. The spin-orbit splitting coefBcient for the
conduction band, obtained &om the fit, is in very good
agreement with the one measured in optical orientation
experiments.

Finally, we would like to note that the spin splitting
leads to similar interference corrections to magnetocon-
ductivity of hopping conductors. 2 We expect that in this
case it is also important to distinguish between diferent
terms in the spin Hamiltonian, whose contributions to
NMR will not be additive.
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