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Fano resonances in the optical spectra of semiconductor quantum structures
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The appearance of Fano resonances in the 6ne structure of the optical absorption spectra is pre-
dicted for all semiconductor quantum structures with one or two degrees of freedom. The resonances
are explained by Coulomb coupling of the bound and scattering states of an exciton series belonging
to difI'erent subband pairs but occurring at the same photon energy. To demonstrate this effect,
two examples, the quantum well and the quantum-well wire, are treated numerically. The optical
spectra show Fano resonances.

I. INTRODUCTION

In the optical spectra of quasi-one- and quasi-two-
dimensional semiconductor quantum structures, the im-
portant transitions are usually classified according to
the pairs of electron and hole subbands that are cou-
pled. However, such a classification is only approximately
valid. Indeed, the Coulomb interaction between elec-
trons and holes couples all subbands. This holds espe-
cially for the exciton series belonging to diferent subband
pairs. Since partially bound states of higher subband
pairs and scattering states of lower subband pairs are en-
ergetically degenerate, a resonant Coulomb interaction
between the discrete excitonic states and the continuum
of electron-hole pair states occurs. The resulting Fano
eKect ' should produce an asymmetric line shape of the
exciton lines in the optical spectra of the low-dimensional
system. The linewidth of those lines can be considerably
larger than the homogeneous broadening.

In recent months, Fano resonances have been ob-
served in photoluminescence excitation spectra of GaAs-
Ga Alq As quantum wells (QW's) and in linear ab-
sorption experiments on GaAs under high magnetic
fields. 4

The possibility for the occurrence of a Fano resonance
has already been discussed for quantum wells, ' when
the ground state of the light-hole exciton lies in the
heavy-hole continuum, but has not been observed exper-
imentally. Though the Fano model explains the basic
features of these lines, it is less useful for determining
the complete optical spectrum of a microstructure, be-
cause of the complicated geometry. Various analytical
and numerical attempts have been made in order to sim-
plify the problem and to determine an approximate re-
sult, which is valid in a neighborhood of the expected
Fano resonance. Very recently Willcox and Whittaker
have found Fano resonances in numerically calculated ab-
sorption spectra of quantum wells.

The interplay of Coulomb and confinement e8'ects gives

rise to optical spectral with a rich fine structure. For in-
stance, the quantization of the center-of-mass motion is
responsible for additional peaks. ' Most calculations
of excitons in quantum wells neglect the coupling of sub-
band pairs, even when the Schrodinger equation is solved
by numerical integration.

In this paper, we show analytically that Fano reso-
nances are a typical feature of the absorption continuum
of low-dimensional semiconductor structures. Two ex-
amples, the quantum well and the quantum-well wire,
are treated numerically in order to visualize this gen-
eral result. In particular, we present complete spectra
of quantum-well wires which, for the first time, include
continuum states.

II. GENERAL THEORY

The linear optical susceptibility of a quantum mechan-
ical system is given by

where
I
i) is the initial state and T is the operator of

the optical transition. The quantities E~ and I@A) are
eigenvalues and normalized eigenstates of a stationary
Schrodinger equation:

—V'. V'+ W(xg, . . . , x„) CA(xg, . . . , x„)2m

Here, m is the efFective mass tensor.
Fano resonances can occur when both discrete and con-

tinuum states are involved in Eq. (2) and, furthermore,
are coupled. We assume that in some directions (g) the
motion is unlimited, whereas the motion in the other di-
rections (rl) is bounded on both sides, which implies a
potential of the form,
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W(g, vy) = V(g, vy) + U(g); je = (xi, . . . , x );
g = (+~+i). . . ) z~); 0 ( m ( n)

Ep +E. The Inatrix element of the Hamiltonian between
these states is given by

llnll-~
lim U(g) = +oo; V(g, g) (0; n d «~(&)&~„(C)

xV(g, g) Qp ~(g) pp (vy), (4)
v(4 ~) ~o f» dll&ll'+ ll~ll'~ ~ (3)

m = m& m„; m&, m„positive definite.
The eigenvalues of the equation for the g coordinates,

A,
2

~~+ U(~) ~~(~)
2mB

= Ep rpg(vy); A = 0, . . . , oo,

h2—V'g V'g + Vg(g) gx„(g) = Ep„@),„(g);2m(

p= 1~. . . )oo ) Ep~ Q 0)

2

~&+V.(r) @.~(g) =EV.~(C); E&o,—V(.
2m(

are discrete and unlimited. For each A a set of func-
tions, @p„and gg @, describing approximately the mo-
tion along g, can be defined according to,

which is identical with the Fano coupling matrix
element. Apart from the trivial cases in which either V
is independent of g or the integral (4) vanishes for sym-
metry reasons (geometrical or electron-hole symmetry),
we expect Fano resonances for states with good quantum
numbers A, p, if there exists a A', such that the relation
Ep + Eg„)Ep is fulfilled.

We describe the optical properties of a microstructure
in the framework of the envelope function formalism.
This approximation works well if the modulation depth
of the bands is much smaller than the band gap for the
optical transition and the lattice-periodic functions and
the band structure are not changed qualitatively by the
microstructure. For example, this is approximately true
for the heavy-hole —electron transition in Gai Al As, as
long as the aluminum mole fraction x does not exceed
the cross-over value between x = 0.35 and x = 0.43.
Without going into further detail, we suppose that this
approximation holds for the system under consideration.
Assuming, for simplicity, one conduction and one valence
band, the optical susceptibility is given by

V~(4) = d" n V~(n) V(C n).

Choosing functions pp, g~ that are normalized and g„~
b normalized, we can use as a basis for the representation
of the Hamiltonian of Eq. (2) the products rp~(g) @q„(g)
and yp(g) @g@(g). There exist an infinite number of
pairs lA, p) and lA', E) (A & A'), so that Ep + Eg„

where Eg —— E,(0) —E„(0) is the gap energy and
Ol l is the n-dimensional normalization volume (n =
1, 2, 3). The pair energies and wave functions, Eji and
C ~, responsible for the positions and oscillator strengths
of the resonances, are determined by the two-particle
Schrodinger equation,

62 e~.+ ~.(r.) — ~~+ ~~(r.) — +.(r. , r.) = E.o~(., r.)2m 2mh, 4

Here, m, y~ are the masses and R'
y~ the confinement

potentials for electron and hole, respectively.
Equation (6) represents a six-dimensional Schrodinger

equation. If there is no confinement in some directions,
the corresponding center-of-mass motions can be sepa-
rated. Only the zero-wave vector solutions appear in the
optical susceptibility. For the remaining coordinates, we
obtain an equation of the form (2) with a nontrivial po-
tential TV and a dimensionality n & 6. For quasi-zero-
dimensional systems (quantum dots), the two-particle
motion is bounded in all directions so that the condi-
tions (3) cannot be fulfilled. The same holds for three-
dimensional (bulk) semiconductors, since center-of-mass
and relative motion can be separated and the latter is

completely unbounded. Therefore, no Fano resonances
can be expected in quasi-zero- and three-dimensional
semiconductors, but they should appear in quasi-one-
and quasi-two-dimensional ones.

The Coulomb potential is responsible for the Fano cou-
pling and plays the role of the potential V in Eq. (3).
The parameter q, which determines the line shape, is
proportional to the transition matrix element of the dis-
crete state and inversely proportional to the transition
matrix element of the degenerate continuum states and
to the Fano coupling parameter (4). Of course, in real
systems, the con6.nement potentials do not go to infinity.
This does not change the results qualitatively, as long as
the height is far above the frequency range of interest.
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Interestingly, for semiconductors in a magnetic field
an equation of the same type as Eq. (6) can be derived.
The existence of Fano resonances in a bulk semiconduc-
tor in a magnetic field has been proven recently in theory
and experiment. For a quantum well in a magnetic Beld,
however, the absorption spectrum is purely discrete be-
cause of the confinement in all directions.

ment potentials and masses for electrons and holes. This,
of course, does not change the physics that is contained
in Eqs. (2—5). In all explicit results, Rydberg units are
used. Energies are represented in units of the binding
energy E~ of the three-dimensional exciton and lengths
in units of the Bohr radius 0,~.

III. EXAMPLES

In the last section, we have shown that Fano reso-
nances are a general feature of quasi-one- and quasi-two-
dimensional systems. As examples, in this section we
study the very simplest cases, the ideal quantum well and
the parabolic quantum-well wire in the limit of strong
QW confinement, i.e., infinitely high barriers. To sim-
plify the numerical calculation, we assume a two-band
model with electron-hole symmetry, i.e., equal confine-

A. Quantum well

In a quantum well, the optical transitions are char-
acterized by pairs of single-particle quantum numbers
(n„nr, ) of electron and hole, where n, ~i,

——1, . . . oo. We
consider the case of a layer of thickness d, bound by in-
finite barriers. In this idealized model, it is strictly re-
quired that n, = nh for optically allowed transitions.

Expanding the two-particle wave functions C~ (6) in
terms of quantum-well subbands n and nh, the optical
susceptibility (5) can be written,

(~) =(») ~ ~ I p'l ) )- ) &»~ (0) &w ~~~~ (0)
sp -, Eg + Ep —h(~ + ie) '

where

n', =1 n~ ——1

x pg~ ~ (p) = Ep pp~ ~ (p)

V. '. '„(p) =
2 4

47cE'8'0

sin g" sin "g sin g sin
dZg dZQ

0 Q(~ ~~)2 + p2

Here, m = m, mh/(m, +mh) is the reduced exciton mass.
Furthermore, in the case of electron-hole symmetry, it is
m = /q m, = /q mi, . Using Rydberg units, the only
parameters are the quantum-well thickness d and the ho-
mogeneous line broadening he.

The nondiagonal Coulomb matrix elements, V
(ngn'), perform the coupling of diB'erent allowed optical
transitions (n, n) and (n', n') and lead to Fano resonances
when a discrete state of a higher subband pair is degen-
erate with a continuum state of a lower subband pair. In
the ideal case, all Fano parameters are negative because
all V ~ I (p) ) 0, the transition matrix elements for the
subband pairs (n, n) and (n', n') are positive, and the mi-
nus sign of the Coulomb potential has to be taken into
account. However, for arbitrary confinement potentials
or complicated valence band structure the wave functions
cannot be deduced &om the confinement potentials in a
simple manner, and no general rule can be given for the
sign of the Fano parameter q.

In Fig. 1, the imaginary part of the two-dimensional
optical susceptibility for a quantum well is shown for
d = 2.4 (lower curve), 2.0 (intermediate curve), and
1.6a~ (upper curve) versus Ru —Eg. A homogeneous

linewidth of he = 0.2E~ is introduced. As expected,
the distances between consecutive peaks increases as the
thickness decreases. The positions of the excitons of the
higher subbands overlap energetically with the continua

l I
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(2,2)

(3,3)

I

12 15 18-3 0 3 6 9
Energy (Ry)

FIG. l. Imaginary part of the optical susceptibility vs en-
ergy hen —E~ for quantum wells with d = 2.4, 2.0, and 1.6a~.
The homogeneous linewidth is taken as Ae = 0.2E~. The
allowed optical transitions are characterized by the subband
pairs (n„).nh
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Flc. 2. The transition (2, 2) from the framebox in Fig
with a higher resolution he = 0.01 Z~.

( D) I@I ) ~ (N 1)..
N=O

(N even)

Iv-(0 o)I'
Eg( ) + Ru(N+2) + E„—h(~+ie)

Here, ~ is the subband spacing which is identical for
electrons and holes, and Z = 5/(2M') ]~~ with M =
m, + mh can be interpreted as an effective wire width.

The remaining Schrodinger equation for the eigenfunc-
tions y„and eigenvalues E of the internal motion is

h2 /0 8 ) 1
+ + —may

2m (Ox2 By2~ 2

of the lower-lying subbands.
In order to study the line shape, we have reduced the

value of the homogeneous broadening. In Fig. 2, the op-
tical absorption of the transition (2, 2) is shown for a
well thickness of 2.0a~ and a homogeneous linewidth of
he = 0.01E~ (framebox in Fig. 1). The line shape clearly
exhibits features of a Pano resonance, which can be char-
acterized by the Fano parameters q and I'. The line is
asymmetric, and the high-energy tail is smaller than the
low-energy one, indicating a negative coupling parame-
ter q. The total linewidth I" is considerably larger than
the introduced homogeneous linewidth he and is, there-
fore, a result of the mixture of discrete and continuum
states. The Fano parameter of the main peak is about
q = —6. This resonance is followed by a whole series of
lines stemming form higher order excitons. As predicted
in the Fano model, the total linewidth is decreasing with
increasing order.

B. Quantum-well wire

In the case of a quantum-well wire with only the first
well subband in the energy range of interest, the infl. u-
ence of the higher well subbands on the first one can
be neglected. The gap energy then has to be replaced
by the efFective two-dimensional gap, E~ ~, which takes
into account the energy of the first quantum-well sub-
band. We use for the relevant Coulomb matrix element
Vqqqq(p) = e /(47rspsp), which is obtained in the limit
d = 0. This restriction is not necessary. Zimmermann
has shown that for a large range of thicknesses, the cor-
rect binding energy can be obtained if the Coulomb po-
tential is replaced by an efFective one.

For quasi-one-dimensional structures, the optical spec-
tra are dominated by the center-of-mass motion.
Therefore, the eigenstates of the two-particle Schrodinger
equation are characterized by quantum numbers [N, n]
of center-of-mass and the relative motion, where 2V, n =
0 ~ ~ ~

y
Xo

For parabolic confinement and electron-hole symmetry,
center-of-mass and relative motion can be separated, and
the optical susceptibility becomes

[2,0]

[0
O

0
(D

[0,

[2,0]

[0,2]

[4,0]

I I I I

4 8 12 16 20
Energy (Ry)

FIG. 3. Imaginary part of the optical susceptibility vs en-

ergy hen —E~ for wires with difFerent confinement Ru = 2.0,
4.0, and 6.0 Ez and a homogeneous broadening Se = 0.2 E~.
The pairs [N, n] denote the quantum numbers for cen-
ter-of-mass and relative motion.

e2
&-(»&) = E- V-(*,w).

47rspE' x + g2

This time, the Coulomb potential couples difFerent sub-
bands n, n' of the relative motion. Considering the ma-
trix elements of the Coulomb potential with respect to
the quantum numbers of the relative motion, we find
that the Fano parameter q is negative for the allowed
even-parity states. In quantum-well wires, the Coulomb
interaction is generally stronger than in quantum wells,
no matter which confinement is assumed or how large
the distance of consecutive wire subbands is. The reason
for this is that for a dimensionality lower than or equal
to one the binding energy of the exciton is not limited.
Hence, we have to expect a more pronounced. Fano e8'ect.

In Fig. 3, optical spectra of quantum-well wires are

plotted versus the energy Ru —Eg for a subband dis-{2D)

tance of Ru = 2.0 (lower curve), 4.0 (intermediate curve),
and 6 OE~ (uppe. r curve). The corresponding wire widths
are in the range of one exciton Bohr radius. A homo-
geneous broadening he = 0.2 E~ is introduced. The
main peaks are due to the center-of-mass quantization,
yet there are smaller ones which result &om the rela-
tive motion of the exciton. For small values of Lu, the
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FIG. 4. Line shape of the transition [0, 2j, from the frame-
box in Fig. 3, &om the fralnebox with a higher resolution
h~ = 0.01E~.

fine structure is hardly visible. The side peaks become
more pronounced as the quantization energy increases.
Obviously, there is a difI'erence between the first series
of side peaks and the higher ones. The reason for this
is that the excitons of the first wire subband remain dis-
crete states, whereas the higher ones are energetically de-
generate with continuum states of lower-lying subband,
leading to Fano resonances. They are smaller but con-
siderably broader, and their shape departs strongly from
the Lorentzian form.

In order to study the line shape in detail, the opti-
cal absorption is calculated for Ru = 4.0E~, for a much
smaller broadening of 0.01K~. The transition I0, 2] is
shown in Fig. 4, which corresponds to the marked sector
in Fig. 3. Again, features of a Fano resonance are visible.
The Fano parameter is q

——2, which indicates a strong
coupling.

turn wells, the Fano parameter q of the optically allowed
transitions n, = nh is rather large in magnitude and a
Fano line shape is visible only for extremely small ho-
mogeneous broadening. In quantum-mell wires, the Fane
parameters are much smaller in magnitude because of
the larger Coulomb coupling of subbands in quasi-one-
dimensional systems. Therefore, the efI'ect should be
observable in quasi-one-dimensional systems with small
homogeneous broadening and a wire confinement of the
order of the exciton Bohr radius.

The examples, in the paper, were not chosen to give
a quantitative description of the absorption spectra of a
large variety of microstructures studied experimentally.
Nevertheless, we will briefly discuss the changes that oc-
cur for real structures.

In a quantum well with electron-hole symmetry, opti-
cally allowed continuum states are Coulomb coupled to
forbidden discrete lines leading to Fano resonances with
a parameter q = 0, i.e. , a Lorentzian dip in the con-
tinuum. If the assumption of electron-hole symmetry is
lifted, those forbidden states will lead to Fano resonances
with small values of q. Those lines are more likely to be
observed experimentally and have, in fact, been found in
asymmetric double quantum wells.

In quantum-mell wires the electron-hole-asymmetry-
induced coupling of center-of-mass and relative coordi-
nate is proportional to Yy, where Y and y are the center-
of-mass and relative coordinate, respectively. Since all
allowed transitions have even parity with respect to %
and A, the single lines in the spectrum are not coupled to
any visible continuum states. Therefore, the Lorentzian
lines are not accidental and should still appear if the con-
dition of electron-hole symmetry is not fulfilled. On the
other hand, visible continuum states can be coupled to
invisible discrete states leading to Fano resonances with
q = 0.
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