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We consider the problem of the statistics of the scattering matrix S of a chaotic cavity (quantum
dot), which is coupled to the outside world by nonideal leads containing N scattering channels. The
Halniltonian H of the quantum dot is assumed to be an M x M Hermitian matrix with probability
distribution P(H) oc det[A +(H —e) ]

™2S)~2, where A and e are arbitrary coeKcients and P =
1, 2, 4 depending on the presence or absence of time-reversal and spin-rotation symmetry. We show
that this "Lorentzian ensemble" agrees with microscopic theory for an ensemble of disordered metal
particles in the limit M ~ oo, and that for any M ) N it implies P(S) oc

~
det(l —StS)~ tp +

where S is the ensemble average of S. This "Poisson kernel" generalizes Dyson's circular ensemble
to the case S g 0 and was previously obtained from a maximum entropy approach. The present
work gives a microscopic justification for the case that the chaotic motion in the quantum dot is
due to impurity scattering.

I. INTA@)DU CTION

Theoretical work on phase-coherent conduction
through cavities in which the classical electron mo-
tion can be regarded as chaotic has stimulated recent
experiments~0 ~3 on conductance fluctuations and weak-
localization eKects in quantum dots. If the capacitance of
the quantum dot is large enough, a description in terms
of noninteracting electrons is appropriate (otherwise the
Coulomb blockade becomes important ' ).

For an isolated chaotic cavity, it has been conjectured
and con6rmed by many examples that the statistics of the
Hamiltonian H agrees with that of the Gaussian ensem-
ble of random-matrix theory. If the chaotic behavior
is caused by impurity scattering, the agreement has been
established by microscopic theory: Both the Gaussian
ensemble and the ensemble of Hamiltonians with ran-
domly placed impurities are equivalent to a certain non-
linear o model. ' Transport properties can be com-
puted by coupling M eigenstates of H to N scattering
channels. Since N (& M this construction introduces
a great number of coupling parameters, whereas only a
few independent parameters determine the statistics of
the scattering matrix S of the system.

For transport properties at zero temperature and in-
Bnitesimal applied voltage, one only needs to know S
at the Fermi energy E~, and an approach which starts
directly from the ensemble of scattering matrices at a
given energy is favorable. Following up on earlier work on
chaotic scattering in billiards, two recent papers ' have
studied the transport properties of a quantum dot under
the assumption that S is distributed according to Dyson's
circular ensemble. 2' 3 In Refs. 5 and 6 the coupling of the
quantum dot to the external reservoirs was assumed to
occur via ballistic point contacts (or "ideal leads" ). The
extension to coupling via tunnel barriers (nonideal leads)
was considered in Ref. 8. In all cases complete agreement
was obtained with results which were obtained from the

Hamiltonian approach. This agreement calls for a
general demonstration of the equivalence of the scatter-
ing matrix and the Hamiltonian approach, for arbitrary
coupling of the quantum dot to the external reservoirs.
It is the purpose of this paper to provide such a demon-
stration. A proof of the equivalence of the Gaussian and
circular ensembles has been published by Lewenkopf and
Weidenmuller, for the special case of ideal leads. The
present proof applies to nonideal leads as well, and re-
pairs a weak spot in the proof of Ref. 20 for the ideal
case.

The circular ensemble of scattering matrices is char-
acterized by a probability distribution P(S) that is con-
stant, that is to say, each unitary matrix S is equally
probable. As a consequence, the ensemble average S is
zero. This is appropriate for ideal leads. A generaliza-
tion of the circular ensemble which allows for nonzero
S (and can, therefore, be applied to nonideal leads) has
been derived by Mello, Pereyra, and Seligman, ' using
a maximum entropy principle. The distribution func-
tion in this generalized circular ensemble is known in the
mathematical literature as the Poisson kernel,

P(S) oc det(1 —StS)

Here, P E (1,2, 4) is the symmetry index of the ensemble
of scattering matrices: P = 1 or 2 in the absence or
presence of a time-reversal-symmetry breaking magnetic
field; P = 4 in zero magnetic field with strong spin-orbit
scattering. (In Refs. 24 and 25 only the case P = 1
was considered. ) One verifies that P(S) = constant for
S = 0. Equation (1.1) was first recognized as a possible
generalization of the circular ensemble by Krieger, for
the special case that S is proportional to the unit matrix.

In this paper, we present a microscopic justi6cation of
the Poisson kernel, by deriving it from an ensemble of
random Hamiltonians, which is equivalent to an ensem-
ble of disordered metal grains. For the Hamiltonian en-
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semble, we can use the Gaussian ensemble, or any other
ensemble to which it is equivalent in the limit M ~ oo.
(The microscopic justification of the Gaussian ensemble
only holds for M + oo.) For technical reasons, we use
a Lorentzian distribution for the Hamiltonian ensemble,
which in the limit M + oo can be shown to be equiv-
alent to the usual Gaussian distribution. The technical
advantage of the Lorentzian ensemble over the Gaussian
ensemble is that the equivalence to the Poisson kernel
holds for arbitrary M & K, and does not require taking
the limit M + oo.

The outline of this paper is as follows: In Sec. II,
the usual Hamiltonian approach is summarized, follow-
ing Ref. 17. In Sec. III, the Lorentzian ensemble is intro-
duced. The eigenvalue and eigenvector statistics of the
Lorentzian ensemble are shown to agree with the Gaus-
sian ensemble in the limit M + oo. In Sec. IV, we then
compute the entire distribution function P(S) of the scat-
tering matrix from the Lorentzian ensemble of Hamilto-
nians, and show that it agrees with the Poisson kernel
(1.1) for arbitrary M )¹ In Sec. V, the Poisson kernel
is shown to describe a quantum dot, which is coupled to
the reservoirs by means of tunnel barriers. We conclude
in Sec. VI.

with this Hamiltonian is given by

S(E~) = 1 —2mi Wt (E~ —H + i7r WWt) W . (2.2)

1
P(H) = —exp (—4PMA trH )),

with V a normalization constant and A an arbitrary coef-
ficient that determines the density of states at E~. The
coupling matrix W is fixed. Notice that P(H) is invari-
ant under transformations H ~ UHUt, where U is or-
thogonal (P = 1), unitary (P = 2), or symplectic (P = 4).
This implies that P(S) is invariant under transformations
TV ~ UW, so that it can only depend on the invariant
TVtlV. The ensemble-averaged scattering matrix S can
be calculated analytically in the limit M —+ oo, at fixed
%, E~, and fixed mean level spacing A. The result is

1 —7rWt W/A

1+vrWtW/A
(2.4)

For P = 1, 2, 4, the matrix S is, respectively, unitary
symmetric, unitary, and unitary self-dual.

Usually one assumes that H is distributed according
to the Gaussian ensemble,

II. HAMILTONIAN APPROACH

& = ) .I~)E~(~l+ ):Ip)HV-(~l
a P)&

+) (l~)W -( i+ i
)W*.(vl) .

P&

(2.1)

The matrix elements H~„form a Hermitian M x M ma-
trix H, with real (P = 1), complex (P = 2), or real
quaternion (P = 4) elements. The coupling constants
W„ form a real (complex, real quaternion) M x N ma-
trix W. The N x K scattering matrix S(E~) associated

FIG. 1. Schematic drawing of a disordered cavity (gray)
attached to a lead. There are N scattering channels in the
lead, which are coupled to M bound levels in the cavity. In
(a) only one lead is drawn. A system with more leads (b) is
described by combining them formally into one lead.

The Hamiltonian approach ' starts with a formal
division of the system into two parts, the leads and the
cavity [see Fig. 1(a)]. The Hamiltonian of the total sys-
tem is represented in the following way: Let the set (~a))
represent a basis of scattering states in the lead at the
Fermi energy E~ (a = 1, . . . , K), with N the number of
propagating modes at E~. The set of bound states in the
cavity is denoted by (~p) j (p = 1, . . . , M). We assume
M &¹ The Hamiltonian 'R is then given by

It is possible to extend the Hamiltonian (2.1) to in-
clude a "background" scattering matrix Sq, which does
not couple to the cavity. The matrix So is symmetric
for P = 1 and can be decomposed as So ——Oe ' 0
where the matrix 0 is orthogonal and 4 is real and diag-
onal. In the limit M + oo, the average scattering matrix
S is now given by

;@1 —srWt W/A, @

1+vrWtW/A
(2.5)

Lewenkopf and Weidenmuller used this extended ver-
sion of the theory to relate the Gaussian and circular en-
sembles, for P = 1 and S = 0. Their argument is based
on the assumption that Eq. (2.5) can be inverted, to yield
WtW and So as a function of S. Then P(S) = Ps(S)
is fully determined by S (and does not require separate
knowledge of WtW and So). Under the transformation
S -+ USU (with U an arbitrary unitary matrix), S is
mapped to USU, which implies

Ps(S) = Pvsv&(USU ). (2 6)

For S = 0 one finds that P(S) is invariant under trans-
forrnations S ~ USU, so that P(S) must be constant
(circular ensemble). There is, however, a weak spot in
this argument: Equation (2.5) cannot be inverted for the
crucial case S = 0. It is only possible to determine TV~TV,
not So. This is a serious objection, since So is not in-
variant under the transformation S M USU, and one
cannot conclude that P(S) = const for S = 0. We have
not succeeded in repairing the proof of Ref. 20 for S =—0,
and instead present in the following sections a difFerent
proof (which, moreover, can be extended to nonzero S).

A situation in which the cavity is coupled to n reser-
voirs by n leads, having Ki scattering channels (j
1, . . . , n) each, can be described in the framework pre-
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sented above by combining the n leads formally into a
single lead with N = P z N~ scattering channels. Scat-'=1
tering matrix elements between channels in the same
lead correspond to reflection from the cavity, elements
between channels in difFerent leads correspond to trans-
mission. In this notation, the Landauer formula for the
conductance G of a cavity with two leads [Fig. 1(b)] takes
the form

ble. The cluster functions in the Gaussian ensemble are
known for arbitrary n, for the Lorentzian ensemble, we
compute them below.

From Eq. (3.1), one obtains the joint probability dis-
tribution function of the eigenvalues,

p(~E )) = &M—(pM+2 p)/2-~E E ~p
h

i&j
N1 N1+N2G=„) )
i= jL j=F1+1

(2.7)
[P2 + (E )2]

—(PM+2 —P)/2 (3.3)

We erst consider the case A = 1, e = 0. We make the
transformation

III. LORENTZIAN ENSEMBLE 1+iH
1 —iH (3.4)

For technical reasons, we wish to replace the Gaussian
distribution (2.3) of the Hamiltonians by a Lorentzian
distribution,

The eigenvalues e'~& of the unitary matrix S are related
to the energy levels Ej by

p(II) ) M(pM+2 p)/2—
V

xd. t I~'+(H-. )'] " """, (3.1)

ei&' = 1+i'
P~ = 2 arctan E~ .

1 —zE-
2

(3.5)

The probability distribution of the eigenphases follows
from Eqs. (3.3) and (3.5),

(3 6)
1—
V hi(j

This is precisely the distribution of the eigenphases in the
circular ensemble. The cluster functions in the circular
ensemble are known. ' The n-level cluster functions
T in the Lorentzian ensemble are thus related to the
n-level cluster functions T in the circular ensemble by

T„(Eg,. . . , E„)

= T (2 arct Eanq, . . . , 2 rcat nEa) (3.7)

For n = 1, one finds the level density

M
P( ) —

(1 E,)
(3.8)

independent of P. For n = 2, one finds the pair-
correlation function,

T, (E) = ) b(E —E,))i=1
(3.2 ) T~(E„E,)

where A and e are parameters describing the width and
center of the distribution, and V is a normalization con-
stant independent of A and r. The symmetry parame-
ter P E (1,2, 4) indicates whether the matrix elements
of II are real [P = 1, Lorentzian orthogonal ensemble
(AOE), complex [P = 2, Lorentzian unitary ensemble
(AUE), or real quaternion [P = 4, Lorentzian symplec-
tic ensemble (ASE)]. (We abbreviate "Lorentzian" by a
capital lambda, because the letter I is commonly used
to denote the Laguerre ensemble. )

The replacement of (2.3) by (3.1) is allowed because
the eigenvector and eigenvalue distributions of the Gaus-
sian and the Lorentzian ensemble are equal on a fixed
energy scale, in the limit M ~ oo at a fixed mean level
spacing A. The equivalence of the eigenvector distribu-
tions is obvious: The distribution of H depends solely on
the eigenvalues for both the Lorentzian and the Gaussian
ensemble, so that the eigenvector distribution is uniform
for both ensembles. In order to prove the equivalence of
the distribution of the eigenvalues Eq, E2, . . . , EM (en-
ergy levels), we compare the n-level cluster functions
T~(Eq, E2, . . . , E ) for both ensembles. The general def-
inition of the T 's is given in Ref. 23. The erst two T 's
are defined by

M

T~(Ei, E2) = ) b(E, —E;)bjFg —E,))i,j=l
(3.2b)

4 sin (M arctan Eq —M arctan E2)
(1 + Ez ) (1 + E2 ) sin (arctan Eq —arctan E2)

(3.9)
M M

bE, —z- b z, —E

(3.2c)

The brackets () denote an average over the ensem-

Equation (3.9) holds for P = 2. The expressions for P =
1,4 are more complicated.

The n-level cluster functions for arbitrary A and r can
be found after a proper rescaling of the energies. Equa-
tion (3.7) generalizes to
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Eg
—e E„—s) 2AT„(Ei,. . . , E„)= T

~

2arctan, . . . , 2arctan
A

' '
A j"- A2+ E —.s2j=l 2

(3.10)

The large-M limit of the T~'s is defined as

Y ((i, . . . ,(„)= lim &"T„((iA,. . . , (~4). (3.11)

For both the Gaussian and the Lorentzian ensembles, the mean level spacing L at the center of the spectrum in the
limit M -+ oo is given by A = Avr/M. Therefore, the relevant limit M -+ oo at fixed level spacing is given by M -+ oo,
A ~ oo, 4 = A7r/M fixed for both ensembles. Equation (3.10) allows us to relate the Y 's in the Lorentzian. and
circular ensembles,

Y ((i, . . . , ( ) = lim (27r/M) T„(2arctan(vr(i/M), . . . , 2 arctan(vr(„/M))

lim (2vr/M)" T„(2'(i/M, . . . , 27t („/M)
= Y. (&i " &-). (3.12)

It is known that the cluster functions Y in the circular
ensemble are equal to the cluster functions Y„ in the
Gaussian ensemble. Equation (3.12), therefore, shows
that the Lorentzian and the Gaussian ensembles have the
same cluster functions in the large-M limit.

The technical reason for working with the Lorentzian
ensemble instead of with the Gaussian ensemble is that
the Lorentzian ensemble has two properties, which make
it particularly easy to compute the distribution of the
scattering matrix. The two properties are as follows.

Property 1. If H is distributed according to a
Lorentzian ensemble with width A and center e, then H
is again distributed according to a Lorentzian ensemble,
with width A = A/(A + s2) and center s' = s/(A + s ).

Property 2. If the M x M matrix H is distributed
according to a Lorentzian ensemble, then every N x N
submatrix of H obtained by omitting M-N rows and the
corresponding columns is again distributed according to
a Lorentzian ensemble, with the same width and center.

The proofs of both properties are essentially contained in
Ref. 26. In order to make this paper self-contained, we
brieHy give the proofs in the Appendix.

I

Q = 1, 1 ( n &¹ Substitution into Eq. (2.2) gives

S = 1+ ivrlVtHW 1 —i~A'tHW (4.3)

A. Special coupling matrix

where we have defined H = Q U" (H —Ep) UQ.
We assume that H is a member of the Lorentzian

ensemble, with width A and center 0. Then the ma-
trix H —E~ is also a member of the Lorentzian en-
semble, with width A and center E~. Property 1 im-
plies that (H —Ey ) is distributed according to a
Lorentzian ensemble with width A = A/(A + E~) and
center s = E~/(A2+E&). Orthogonal (unitary, symplec-
tic) invariance of the Lorentzian ensemble implies that
Ut (H E~) U h—as the same distribution as (H E~)—
Using property 2 we then find that H [being an 1V x 1V

submatrix of Ut(H —E~) U] is distributed according
to the same Lorentzian ensemble (width A and center
s). We now compute the distribution of the scattering
matrix, first for a special coupling, then for the general
case.

IV. SCATTERING MATRIX DISTRIBUTION
FOR THE LORENTZIAN ENSEMBLE First, we will consider the special case that

(4.4)
The general relation between the Hamiltonian H and

the scattering matrix S is given by Eq. (2.2). After some
matrix manipulations, it can be written as

is proportional to the unit matrix. The relation (4.3)
between the S and H is then

S = 1+i7rWt(H —Ey) W

x 1 —i srWt (H —EJ:) W

We can write the coupling matrix TV as

(4.1)

1+ iH
1 —iH

(4.5)

Thus, the eigenvalues E~ of H and e'~& of S are related
via

W = UQW, (4.2) e'&' = 1+iE,
1 —iE. P~ = 2 arctan E~ . (4.6)

where U is an M x M orthogonal (P = 1), unitary (P =
2), or symplectic (P = 4) matrix, W is an 1V x 1V matrix,
and Q is an M x N matrix with all elements zero, except

Since transformations H -+ UHUt (with arbitrary or-
thogonal, unitary, or symplectic 1V x 1V matrix U) leave
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P(H) invariant, P(S) is also invariant under S ~ USU .
So P(S) can only depend on the eigenvalues e'~& of S.
The distribution of the E's is [cf. Eq. (3.3)]

P(S) = Pp(Sp)
dSo

(4.14a)

where the Jacobian dsp/ds is the ratio of infinitesimal
volume elements around So and S. This Jacobian is
known,

[A2 + (E -)2]—(PN+2 —P)/2 (4 7)
(PN+2 P)/2

dS ( ~

det(1 —its) ~2)
(4.14b)

From Eqs. (4.6) and (4.7), we obtain the probability dis-
tribution of the P's,

(1 ~ ) N(PN+2 —P)/2

P((@~))=
V I

&&

'

)e 4g e*4a (p

After expressing Sp in terms of S by means of Eq. (4.11),
we find that P(S) is given by the same Poisson kernel as
Eq. (4.9), but with a different S,

1 —7r(A+ iY)WtW
4.151+~(A+ iY)WtW

—(PN+2 —P)1 —o.*e' ' (4.8a)

In the limit M +oo, a-t fixed level spacing A = Avr/M,
Eq. (4.15) simplifies to

2

1 —A —iZ A2 + E~ —A —iEp
1+A+iE. A2+ E~2+ A+ iE~ (4.8b)

Equation (4.8) implies that P(S) has the form of a Pois-
son kernel,

P(S) = det(1 —S St) (pN+2 p)/2—
2N (PN+2 —P) /2 ~

x det(l —StS) (4 9)

the average scattering matrix S being given by

S„=o.b„ (4.1O)

B. Arbitrary coupling matrix

S = r + t'Sp (1 —r'Sp) t
:- s, = (t')-'(s —r)(1 —rts) 't', -

(4.11)

where we abbreviated

r = (1 —~WtW)(1+~WtW) ',
r' = —W(l —~W'W)(1+ ~WtW) —'W —',
t = 2~ / W(1+ mWtW)

t' = 2~'/'(1+ ~W'W) —'Wt.

(4.12a)

(4.12b)

(4.12c)

(4.12d)

Now we turn to the case of arbitrary coupling matrix
R". We denote the scattering matrix at coupling t/V by S,
and denote the scattering matrix at the special coupling
(4.4) by Sp. The relation between S and Sp is

AM —Vr2TV t WS=
AM+ ~2WtW (4.16)

V. IDEAL VERSUS NONIDEAL LEADS

The circular ensemble of scattering matrices is appro-
priate for a chaotic cavity that is coupled to the leads by
means of ballistic point contacts ("ideal" leads). In this
section we will demonstrate that the generalized circular
ensemble described by the Poisson kernel is the appro-
priate ensemble for a chaotic cavity which is coupled to
the leads by means of tunnel barriers ("nonideal" leads).

The system considered is shown schematically in Fig.
2. We assume that the segment of the lead between the
tunnel barrier and the cavity is long enough, so that both

The extended version of the Hamiltonian approach,
which includes a background scattering matrix So, can
be mapped to the case without background scattering
matrix by a transformation S —+ S' = USU (P = 1),
S + S' = USV (P = 2), or S m S' = USU (P = 4),
where U and V are unitary inatrices. (U is the trans-
posed of U, U is the dual of U. ) The Poisson kernel is
covariant under such transformations, i.e. , it maps to
a Poisson kernel with S' = USU (P = 1), S' = USV
(P = 2), or S' = USU+ (P = 4). As a consequence,
the distribution of S is given by the Poisson kernel for
arbitrary coupling matrix TV and background scattering
matrix So. This proves the general equivalence of the
Poisson kernel and the Lorentzian ensemble of Hamilto-
nlans.

The symmetry of the coupling matrix W is rejected in
the symmetry of the 2N x 2N matrix

which is unitary symmetric (P = 1), unitary (P = 2), or
unitary self-dual (P = 4).

The probability distribution Po of So is given by Eq.
(4.9). The distribution P of S follows from

FIG. 2. Schematic dravring of the chaotic cavity and the
nonideal lead containing a tunnel barrier.
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the N x N scattering matrix So of the cavity and the 2N x
2N scattering matrix Sq of the tunnel barrier are well
de6ned. The scattering matrix So has the probability
distribution Po ——const of the circular ensemble, whereas
the scattering matrix Sq is kept Axed.

We decompose S~ in terms of N x N re8ection and
transmission matrices,

(5.1)(tl 1 j
The N x N scattering matrix S of the total system is
related to So and Sq by

the Poisson kernel in the case that the chaotic motion in
the cavity is caused by impurity scattering. For the case
of a ballistic chaotic cavity, a microscopic justi6cation is
still lacking.

The equivalence of the Poisson kernel and an arbitrary
Hamiltonian ensemble can be reformulated in terms of a
central limit theorem: The distribution of a submatrix
of H of fixed size N tends to a Lorentzian distribution
when M -+ oo, independent of the details of the distribu-
tion of H. A central limit theorem of this kind for N = 1
has previously been formulated and proved by Mello.

S = rg + tI (1 —Spr~) Sptq. (5.2)
ACKNOW LEDC MENTS

This relation has the same form as Eq. (4.11). We can,
therefore, directly apply Eq. (4.14), which yields

~(s) ~
~
d«(1 —",s) ~-~~" +'-~~. (5.3)

VI. CONCLUSION

Hence, S is distributed according to a Poisson kernel,
with S = rg.
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denmuller are gratefully acknowledged. This research
was supported by the "Stichting voor Fundamenteel On-
derzoek der Materie" (FOM) and by the "Nederlandse
organisatie voor Wetenschappelijk Onderzoek" (NWO).

In conclusion, we have established by explicit computa-
tion the equivalence for M & N of a generalized circular
ensemble of scattering matrices (described by a Poisson
kernel) and an ensemble of M x M Hamiltonians with
a Lorentzian distribution. The Lorentzian and Gaussian
distributions are equivalent in the large-M limit. More-
over, the Gaussian Hamiltonian ensemble and the micro-
scopic theory of a metal particle with randomly placed
impurities give rise to the same nonlinear 0. model.
Altogether, this provides a microscopic justification of

I

APPENDIX: PROOF OF PROPERTIES 1
AND 2 OF SEC. III

The two proofs given below are adapted Rom Ref. 26.
The matrix H and its inverse H have the same eigen-
vectors, but reciprocal eigenvalues. Therefore, property
1 of the Lorentzian ensemble is proved by showing that
the distribution of the eigenvalues of H is given by Eq.
(3.3), with the substitutions A ~ A and s +s'. This -is

easily done,

~((E—1}) Phf(PM+2 P)/2—
2 V Ii(j

[P2 + (E. ) j
&~~+ dEi

d(E, ').
p22()222+2 —2)/2

'

@@ (@
—1 @—2) 2 g2 p (@ )2 )2 +2 2)l @2)

~ 2 4 Ei(j 'e

1 &M(PM+~ —P)/2
V hi(j

&M(PM+2 —P) / 2

V ~ hi(j

E-' —E-'' ~'E-'+(1 .E )' " —"""
2

- —(PM+2 —P)/2
E —E A +(E — )

2

(A1)

In order to prove property 2, we may assume that after
rescaling of H, we have A = 1, e = 0. First consider
M = N —1. In this case, one can write

I

real numbers a, 6, c, such that a & 0 and 4ac & 6, and
for real m & 2, we have

&G YlII=~ Yt Z (A2)

dx (ax + bx+ c)

where G is the N x N submatrix of H, whose distribution
we want to compute, Y is a vector, with real (P = 1),
complex (P = 2), or real quaternion elements (P = 4),
and Z is a real number. For the successive integrations
over Z and Y, we need two auxiliary results. First, for

= (ac —~ b ) a ~sr'~zl'(m —1/2)/I'(m).
(A3)

Second, if x is a d-dimensional vector with real compo-
nents, and if m ) (d + 1)/2, then
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ding (1+x )

= vr ~ r(m —d/2) /r(m). (A4)

the Y vectors so that 1+ G is diagonal, with diagonal
elements 1 + G, After rescaling of the Y vectors to
Y, = Y;(1+ G2) one obtains an integral similar to Eq.
(A4), with d = P(M —1). The final result is

Since det(l + H) is a quadratic function of Z, the
integral over Z can now be carried out using Eq. (A3).
The result is

~(l™l'+')~2 r [ '(pM-+ 1 —p)
vr (pM+ 1 —p)

x det(1+ G')~ ~(M ') '+l j~' (A6)

dZI'(H) =
vri~2r

2 (pM + 1 —p)
vr —,'(pM + 2 —p)

x d t(1+ G')(-™2+i')~'
x 1+Yt(l+ G ) Yj (A5) (PM —P+2)M/4 (A7)

Property 2 now follows by induction. Notice that Eq.
(A6) allows us to determine the normalization constant
V,

Next, we integrate over Y. We may choose the basis for
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