
PHYSICAL REVIEW 8 VOLUME 51, NUMBER 23 15 JUNE 1995-I

Coulomb gap in a two-dimensional electron gas with a close metallic electrode
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The tunneling density of states of a classical two-dimensional electron gas with large external
disorder and strong electron-electron interaction is studied by computer modeling and by solving a
self-consistent equation. The Coulomb interaction is supposed to be strongly suppressed at large
distances by a parallel metallic plane. At low temperatures the Coulomb gap is found to exist
even if the metallic plane is at a smaller distance from the electron gas than the electron-electron
separation. These results are explained in terms of a self-consistent equation. The tunneling density
of states as obtained from computer modeling is compared to recent experimental data by Ashoori
et a/. For a strong magnetic field our results are in a good agreement with the experiment.

I. INTRODUCTION

Tunneling into a two-dimensional electron liquid
(2DEL) in a strong magnetic field has been the subject
of intensive research in the past few years. Attention has
been directed to this area after the discovery of the gap in
tunneling conductivity between a metal gate and a 2DEL
(Ref. 1) and between two layers of a 2DEL. The experi-
ments have shown that in a strong magnetic field the tun-
neling conductivity is significantly suppressed at small
bias and low temperature. Several theoretical groups
have offered both classical and quantum-mechanical '

explanations or this phenomenon. It was shown that the
observed tunneling gap arises kom a gap in the single-
particle density of states (DOS) of a 2DEL at the Fermi
level. However, all these theories Inostly assume no exter-
nal disorder. This approach is applicable to the cleanest
heterostructures with wide spacer layers and low impu-
rity concentration, like the samples used in Ref. 2. The
samples of Ref. 1 are quite different: they have highly
doped material pretty close to the 2DEL layer, and,
therefore, the disorder potential in these samples may
be large. In addition, the proximity of the metal con-
tact leads to a strong screening of the electron-electron
interaction.

In this paper, we investigate the DOS of a classical
2DEL, subjected to a random potential, and study the
conductivity for tunneling into 2DEL. We have shown
before that the classical description gives good results
for the tunneling between two layers of a 2DEL in a
strong magnetic field. We were able to get the voltages,
corresponding to maxima of the tunneling current in a
good agreement with the experimental data of Ref. 2
without any fitting parameters. No disorder was as-
sumed.

We think that the classical description of the gap in
the tunneling DOS becomes more reliable in the pres-
ence of a disorder. This is because the Coulomb gap
in a d.isordered system is connected with the long-range
part of the interaction. The localization of electrons is
the only condition of applicability of this approach. In
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FIG. 1. Comparison of our simulation results with ex-
perimental data from Ref. 1: ratio of the conductivity
to its high-temperature value o.h, vs temperature in di-
mensionless units. Solid line shows the TDOS Gt (u)
normalized by its high-temperature value for v = 0.3,
A = 0.4e /tel, and d = 0.4l. The markers show the
data from Fig. 7 of Ref. 1 for diferent magnetic fields:
B = 1.0 T—circles; B = 2.0 T—triangles; B = 4.0 T—pluses;
B = 6.5 T—diamonds; B = 8.5 T—squares.

the system with the Coulomb interaction the character-
istic length R, responsible for the DOS at the energy
e is R, = e /r~e~ Her.e, K is the dielectric constant
of the surrounding medium and e is the energy with
the reference point at the chemical potential, where the
DOS has minimum. The Coulomb gap appears if R,
becomes larger than the localization length of electrons.
The length R, increases with the decreasing ~e~. That is
why we think that to get the DOS at small ~e~ the sys-
tem with the Coulomb interaction can be approximated
as interacting classical point charges. Strong magnetic
field suppresses the quantum overlap and increase the
classical region. The experimental data of Ref. 1 support
this point. The tunneling gap appears only in a strong
magnetic Geld and it becomes more pronounced with in-
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creasing field (see Fig. 1). One can expect that near the
peaks of cr, the gap might become less pronounced due
to the increase of the localization length. This effect can-
not be described in the framework of our classical theory
and, as far as we know it has not been observed.

In the Hartree-Fock approximation Yang and Mac-
Donald has recently derived the classical Hamiltonian
from the quantum one in the presence of disorder. Here,
we consider the case when the Coulomb interaction is
screened by a metallic gate and the characteristic length
is smaller than B,. In this case, the DOS at the chemical
potential is nonzero even at T = 0.

We show by a computer modeling that the gap is sup-
pressed by the screening, but it still exists. This means
that the characteristic length of the interaction is still
larger than the interelectron distance and the classical
description should be reasonable. Using the classical ap-
proach, it is demonstrated below that the tunneling gap,
observed in Ref. 1, can be described as a Coulomb gap in
the DOS of a classical electron system, even despite the
screening of the Coulomb interaction between the elec-
trons.

The striking feature of the gap observed in Ref. 1 is
that it is independent of the electron density at a given
magnetic field, i.e., on Glling factor. Such behavior is
a characteristic feature of a "classical" Coulomb gap,
which has a universal DOS dependence on energy in the
vicinity of chemical potential. This type of gap exists in
systems with long-range Coulomb electron-electron in-
teraction and with a strong external disorder. The sec-
ond requirement is, probably, met in the samples used
in Ref. 1, since the concentration of impurities in these
samples is fairly large, and the distance between the
doped layer and the 2DEL is small. However, the first
requirement is violated because the distance d between
the 2DEL and the metallic gate is small: it is of the order
of electron-electron distance (for the sample A of Ref. 1
d —200 A, and for electron density n = 10ii cm 2, we
have d = 0.6n ~~). This means that the interaction at
larger distances is strongly screened and falls off faster
than the 1/r Coulomb interaction. In fact, at r )) d
the potential V(R) 1/rs, so the interaction becomes
dipole.

The other type of the Coulomb gap, the gap in the elec-
tron liquid without any external disorder, was recently
predicted theoretically and, in our opinion, observed
experimentally. '3 We show in Sec. III that this gap exists
even for dipole electron-electron interaction, and should
be understood as a kind of polaronic effect in the system
of interacting electrons. However, this gap is strongly de-
pendent on the filling factor. The question raises if there
is a gap of an "intermediate" type, which would combine
the features of the two above types: the gap survives at
dipole interaction and is universal in Riling factor. Such
a gap may exist only at some range of moderate mag-
nitudes of external disorder, because at small disorder
the gap would not be universal, and at large disorder the
Coulomb interaction is a necessary condition for the gap
to exist.

In a search for this type of the Coulomb gap, we have
performed a computer simulation of the system of classi-

cal interacting electrons in an external random potential.
The model and the algorithm are described in Sec. II.
Our simulation has shown that the DOS has a dip at
the Fermi level, even when the screening length d is less
than the mean electron-electron distance. Consequently,
the tunneling conductivity at small biases is strongly sup-
pressed. Moreover, the conductivity at zero bias becomes
independent of the filling factor at moderate disorder
A & 0.4 —0.6, and its temperature dependence is in good
agreement with the experimental data. The results of
the calculations are discussed in detail in Sec. III and
Sec. IV.

II. MODEL AND ALCORITHM

We study a system of classical point charges on a two-
dimensional lattice in an external disorder potential. The
Hamiltonian of the system has the following form:

where n, = 0, 1 are occupation numbers of electron on
the lattice sites, v is the filling factor of the lattice, P; is
the external random potential, distributed uniformly in
the interval —A & P; & A, r;~ is the distance between the
sites i and j, and V(r) is the interaction potential. To
simulate a plane of 2DEL, parallel to a metallic gate at a
distance d, we have used the interaction of the following
form:

e 1
V(r) =-

K P

1

gr2 + 4d2

We assume that the tunneling probability itself depends
only on the parameters of the sample (such as the thick-
ness and height of the tunneling barrier) and not on the
electron density, temperature, or magnetic field. Then
the tunneling conductivity &om the 2DEL to a metal at

The Hamiltonian Eq. (1) with the interaction Eq. (2)
takes into account the Coulomb interaction of the elec-
trons of 2DEI with other electrons and their images in
the metal plane. The interaction of an electron with
its own image charge is not included, because it would
lead only to a change in a total energy of the system by
some constant value. We take the lattice constant to be
l = 1/gn0, where n0 ——eB/hc is the electron density
at v = 1. Thus, v is also the filling factor of the lowest
Landau level. Our model contains two-dimensionless pa-
rameters: filling factor v and the ratio d//. By changing
v at a fixed I/i one simulates an experiment, where an
electron density is changed at a constant magnetic field.

In order to hand the conductivity for the tunneling be-
tween the metallic gate and the 2DEL, we must know
the DOS of single-particle eiiergies G(e) of the 2DEL at
a given temperature T. The single-particle energy e, of
the sitei is
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a given bias voltage u is proportional to the tunneling
density of states (TDOS) defined as follows:

&a(~) = f «G(~) I—~f lI
cIe ) (4)

Here,

(e) = 1

exp P(e —p~) + 1 '

P = 1/T is a reciprocal temperature and p~ is the chem-
ical potential of the metal. The latter can be expressed
through the chemical potential of the 2DEL p and the
bias u between the gate and. the 2DEL,

Pg = P+&.

We calculate here the tunneling density of states of
the 2DEL Gq(u) as a function of filling factor v, distance
from 2DEL to the gate d, and. temperature T. We have
used the Metropolis Monte Carlo procedure to average
the TDOS over many-electron configurations. We have
also employed quasiperiodic boundary conditions ' to
reduce the dependence of the results on the finite size
of the system. Doing finite temperature calculations, we
did not average the DOS over difFerent realizations of the
external disorder P, . Instead, we have used systems of
large enough size to achieve a self-averaging. We have
found that when the distance between the 2DEL and
the gate d is of the order of lattice constant /, i.e., the
screening of the electron-electron interaction by the gate
is strong, a square sample with 10000 sites is sufficiently
large, so that the results do not depend on the realization
of the disorder. A typical calculation for d l, P
(10 —30) (e /Kl), and L = 100t, which means that we
have I x L, = 10000 lattice sites, takes about 30 min on
Cray- YMP.

We have also calculated the DOS of the 2DEL at zero
temperature. To do this we have found the pseudoground
state of the system by minimization of the Hamiltonian
Eq. (1), with respect to all one-electron hops. The min-
imization algorithm of Ref. 12 has been used. An av-
eraging over diferent realizations of disorder was then
performed. It has been shown by Mobius et Ol. that
many-electron hops do not change substantially the DOS
as obtained by this algorithm.

temperature decreases, then it saturates at some nonzero
value.

One can also see from Fig. 2 that the value of TDOS at
zero bias Gq(0) becomes independent of the filling factor
at large magnitude of disorder. Since we keep d/l con-
stant, this means that Gz(0) is independent of an elec-
tron density. At v ( 0.5, this independence appears at
A & 0.4. The situation is a little diferent in the vicinity
of v = 0.5, where at low temperatures a larger disorder
is necessary to overcome a tendency to form a crystalline
state and achieve the independence of the filling factor.
For example, for T = 1/30 and v = 0.5 the conductivity
becomes independent of the filling factor for A & 0.6.
We und. erstand that the tendency to crystallization at
v = 0.5 is an artifact of our model which is completely
classical. At other filling factors our system remains in a
liquid state at all temperatures und. er the study even at
A=O.

Figure 3 displays the temperature dependence of the
TDOS. Zero-temperature results are also given there.
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III. RESULTS OF THE SIMULATION

The first question is if the Coulomb gap exists at all
when the long-range part of the Coulomb interaction is
strongly suppressed by a gate. To answer this question,
we have calculated the TDOS of the 2DEL at d = 0.7l,
which is a typical value for the experimental conditions
of Ref. 1. Some of the results are shown in Fig. 2 for dif-
ferent values of the filling factor v, difr'erent magnitudes
of disorder A, and two temperatures. First, one can see
that the TDOS has a dip at zero bias, but does not vanish
there. This is consistent with the experimental results of
Ref. 1, where the tunneling conductivity first decreases as
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FIG. 2. Tunneling density M states G~ in units of
~/e I vs bias u between the 2DEL and the gate (in units
of e/~l). The temperature is T = 1/30 (a) and T = 1/20 for

(b) in units of e/K/, for difFerent values of disorder A. Solid
curves are for the 6lling factor v = 0.3, dashed curves are
for v = 0.2, and dotted-dashed curves are for v = 0.5. The
distance between the 2DEL and the gate is d = 0.7l. The
magnitude of disorder A is shown in the figure for each set of
curves, in units of e /ml. Note that the conductivity at u = 0
becomes filling factor independent at large enough A.
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One can see that the finite temperature afFects the TDOS
only in the vicinity of zero bias, and the width of the re-
gion where the TDOS is changed by the temperature is
of the order of the temperature itself.

Thus, we can conclude that the Coulomb gap in the
TDOS survives the strong screening. Moreover, within
some interval of A the value Gi(0) is independent of the
electron density. This is just a behavior, observed in
Ref. 1.

Now we discuss the dependence of Gi(0) on other pa-
rameters, such as temperature T, disorder A, and screen-
ing length d. In this section, we study the behavior of the
conductivity at zero bias Gi(0) in the region of disorder,
temperatures, and Ailing factors, where it is independent
of the filling factor (the limitations on temperatures and
filling factors are chosen to avoid the vicinity of v = 0.5
at low temperatures and small magnitudes of disorder).

We have found that there is an unexpected univer-
sality in these dependencies. This universality is illus-
trated in Fig. 4, where the values of Gi(0)/T are plot-
ted versus ATd for difFerent values of individual param-
eters. Figure 4(a) gives the temperature dependence,
while Figs. 4(b) and (c) give dependence of A and d,
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receptively. All data clearly collapse in this scale onto
some universal curve, which suggests that within a cer-
tain range of the parameters the TDOS at zero bias is
given by the universal formula,
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FIG. 3. The TDOS Gi in units of e/e l vs bias u in units of
e/rl. The magnitude of disorder is A = 0.6 e /el, the filling
factor v = 0.3, and the distance between the 2DEL and the
gate is d = 0.7l. (b) shows the conductivity at small biases in
more details. The temperature is shown in the (b) for each of
the curves, in units of e /ml.

0
Q'
o

0

0
10 10 10 10

ATd
FIG. 4. Universal behavior of the conductivity at zero bias:

G (0)/Tiin units of r /e vs the paraineter ATd (in units
of e /m for different values of A, T, and d). On the plot
(a) the dependence of Gi(0)/T on A at fixed d = 0.7l and
T = 1/30 (e jel) is presented. Plot (b) shows the depen-
dence G( i)j0Ton T for A = 0.6 (e /ml), d = 0.7l (squares),
and for A = e /ml, d = l (circles). Finally, the depen-
dence of G ( i)/0Ton d at constant A and T is shown on
plot (c) for A = 0.4 (e /ml), T = 1/30 (e /tel) (diamonds),
A = 0.6 (e /el), T = 1/30 (e jml) (squares), and A = e /~l,
T = 1/30 (e /el) (circles). The dotted-dashed curve is a fit,
given by Eq. (8).
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Gq(0) = Tf (ATd ) .

The best fit for the function gives the expression

0.8
&(&) =

(7)

(8)

self-consistent equation (SCE).Mogilyanskii and Raikhi4
have solved SCE at nonzero temperature. Their result for
large A reads:

G(p) = 0.085 + 0.86
e2d

'
e4

'

This function is shown in Fig. 4 by the dashed-dotted
line.

The universality equations (7,8) exists only within a
certain range of the parameters A, T, and d. First, the
magnitude of disorder A has to be su%.ciently large for
Gq(0) to be independent of the filling factor. Then, the
distance d has to be small: d & 1.5l, where / is the lattice
constant. Finally, we have found that the universality a}-
ways breaks at very low temperatures. For example, for
d = 0.7l, the equations (7,8) hold for T ) 1/60 in units
of e /vt. As temperature decreases or d increases, the
TDOS Gq(0) eventually becomes tower than the value
predicted by Eqs. (7,8), but we have never observed the
deviation in the opposite direction. In other words, if we
start &om such a low T or large d that the universality
is broken, and then increase T or decrease d, the TDOS
Gi(0) increases until it reaches the solid curve in Fig. 4,
and then it follows the universal law. Also, the universal
dependence manifests itself as an upper limit for G&(0):
a low temperature of large d can cause the conductivity
to be less than the universal value, but the larger values
have never been realized in our calculations. If we take,
for example, d = 1.4, then at T & 1/20 the conductivity
is lower than the universal one. At T = 1/20 it reaches
the value, given by Eqs. (7,8) and remains on the uni-
versal curve when the temperature continues to increase.
One might suppose that for each d there is a temper-
ature above which the universality begins, but at high
temperatures the gap in conductivity disappears. This
determines the maximum value of d at which the univer-
sality can still be observed, which value we have found
to be about 1.5L.

The parameter ATd has a dimension of r/e, there-
fore is it does not depend on the unit of length, the lattice
constant. Thus, we may expect that this universality is
not the result of a lattice eAect. To test this directly, we
have repeated some calculations for a triangle lattice and
found no deviation in Gt. (0) within the computational ac-
curacy.
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TEMPERATURE DEPENDENCE. COMPARISON
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The very existence of the Coulomb gap at A e /Icl
is connected with the long-range part of the Coulomb
interaction. At large d we would expect that at zero
temperature DOS G(0) = ~/e d and it is temperature
independent if T « e /rd It follows tha. t if e2/Kd
A e /rl the gap should not exist. However, Fig. 2
shows very pronounced gap at different A and d = 0.7l.
We think that this can be explained as a game of small
numerical coefficients.

At large A this problem was approached with the

FIG. 5. Gomparison of the simulation results for zero tem-
perature with the solution of the self-consistent; equation
Eq. (10). Solid lines show TDOS in units of e/e I vs bias
in units of e/Kl, as obtained from the computer simulation,
dashed lines show the solution of the self-consistent equation.
The 6lling factor is v = 0.3, the distance between the 2DEL
and the gate is d = 0.7l, and the magnitude of disorder A is
0.4 (a) and 0.6 (b) in units of e /Kl. (c) shows the solution of
the SCE for A. = 0.4 (dashed line) and A = 0.6 (solid line) as
a function of g~e —p, ~; all energies are in units of e el.
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This result confirms the above qualitative arguments,
however, the small numerical coefBcient in the first term
allows us to suggest that the gap exists at much smaller d
than one can expect. We have solved a zero-temperature
SCF

OD

G(e) = G~ exp dt G(E )R (E + e )
7t o

(1o)

where G = 1/2Al and B(e) is the reciprocal function
of the interaction potential:

K 2K
G(.) = o.os5,e2d me4

(12)

This result is in a good agreement with Eq. (9) obtained
at nonzero temperature. It also contains a small number
in the first term, and we think that this small number is
responsible for the existence of the gap at small d (see
also discussion in Ref. 16).

The solution of SCE at small A and d and at zero
temperature gives a square root energy dependence of a
DOS rather than linear (see Fig. 5). It is interesting to
compare this result with the result of computer modeling
at T = 0. It follows from Eq. (4) that at zero temper-
ature, when —(8f /Oe) = b(e —pg), the TDOS at zero
bias is just equal to the DOS at the Fermi level. We
have calculated DOS of 2DEI at zero temperature, us-
ing the minimization algorithm of Ref. 12, as described
in Sec. II. The TDOS can be obtained from the DOS by
shifting the energy axis in such a way that the chemical
potential p, becomes an origin. The resulting TDOS is
shown in Fig. 5 together with a solution of the SCE.

One can conclude from Fig. 5 that the energy depen-
dence, as obtained by SCE, is close to the result of com-
puter modeling. On the other hand, G(p) is different.
We think that the reason is as follows. Strictly speaking,
SCE is valid at large A only (see Ref. 6). However, one
can see by iterating this equation that the energy depen-
dence at small energies and at a given G(p) is determined
by the the values of the function G(e) also corresponding
to small energies. In this case, one can expect to get a
correct self-consistent solution. On the other hand, the
value G(p) is determined by the integral of G(e), which is
not limited by small energies. At large energies Eq. (10)
gives g(e) = g = 1/2Al2. This is definitely wrong if A
is not larger than the Coulomb energy. Thus, we think
that at small A one can use SCE to hand an energy de-
pendence of the DOS, but this is not the way to obtain
G(~).

The square root energy dependence of G(e) at T = 0
explains square root temperature dependence, which has

V[A(e)] = e.

For the interaction potential Eq. (2) the equation (10)
can be solved only numerically. At large A and d the so-
lution in the gap can be approximated almost everywhere
as

been obtained by computer modeling in the moderate
temperature range. However, we cannot explain by the
same way the universal dependence of the TDOS on the
factor Ad2.

V. COMPARISON WITH EXPERIMENT

We now compare the results of our simulation for the
conductivity at zero bias with the experimental data of
Ref. 1. These data are averaged over a wide range of
electron densities. For the comparison we use a large
enough value of disorder, where the results of our cal-
culations are virtually independent of the density. Since
we use the classical model with electrons considered as
point charges, our results may apply to the limit of large
magnetic fields. In magnetic field B' = 8.5 T the lattice
constant is I = 1/~no ——ghc/eB 220 A. The distance
d between the 2DEL and the metal for the sample A of
Ref. 1 is about d = 160 A= 0.7/. In Fig. 1 we compare
the experimental data from Fig. 7 of Ref. 1 with the re-
sults of our simulation with these parameters. One can
see that we have achieved a good agreement, except at
the lowest temperatures, where our saturation value for
conductivity appears to be higher than the experimental
one.

The reason for this discrepancy may be the correlation
in the spatial distribution of electron in the 2DEL and
in the tunneling contact. It was shown that such corre-
lation in a system of two parallel quantum wells reduces
the conductivity significantly at low temperatures. The
equation (4) for conductivity ignores any effects of such
correlations. In fact, this expression is valid when the
tunneling contact is a perfect metal. However, in the
samples of Ref. 1 the tunneling is measured between the
2DEL and the strongly doped semiconductor layer, with
the Debye screening length of the order of 50 A, which
is comparable with the distance d. This also means that
the value of d itself is known only approximately, and
the error in its determination may be of the order of the
Debye length in the tunneling contact.

In conclusion, we have performed a computer simula-
tion of a two-dimensional system of classical point elec-
trons on a lattice with a parallel metal plane. We have
calculated the density of states of the two-dimensional
electron liquid and the tunneling conductivity between
the metal and the electron layer. We have shown that
the electron-electron interaction leads to the suppression
of the conductivity at small bias. The results obtained
are in a good agreement with the experimental data.
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