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Grazing-incidence difFraction from superlattices has been described by a distorted-wave Born approxi-
mation. Using the example of a GaAs/AlAs superlattice, the inhuence of specular interface reAection on
the difFraction pattern has been investigated experimentally and well explained by the theoretical treat-
ment. A comparison with the dynamical theory and parallels with the x-ray reAectivity is given. Real-
structure efFects such as misorientation, interface roughness, or graduated heterotransitions have also
been taken into consideration.

I. INTRODUCTION

Grazing-incidence diffraction (GID) is a relatively
young x-ray scattering technique developed in the last 15
years. Originally applied to the investigation of near-
surface regions and perfect crystals, GID has been ex-
tended recently to investigate multilayers (ML's) and su-
perlattices (SL). Two theoretical approachs have been
employed successfully. The first is based on a distorted-
wave Born approximation (DWBA), considering the
diffraction of a distorted wave, which penetrates the sub-
surface region after being transmitted through the sample
surface under grazing incidence. The second treatment
is based on the solution of the Maxwell equations for the
two-beam case, solving the boundary conditions for the
electrical field at the sample surface. Mainly the erst,
semikinematical treatment has found practical impor-
tance since it allows one to present the diffraction intensi-
ty by an expression proportional to the kinematical
scattering amplitude and thus the Fourier transformation
of the diffraction potential. The application of the classi-
cal DWBA to multilayers is restricted to SL with no
change in the averaged electron density, neglecting
reAection at the interfaces.

The dynamical theory has been used for perfect crys-
tals and single and double heterostructures. Numeri-
cal problems of dynamical calculations existing for more
complicated multilayers and superlattices have been
solved recently.

In the case of refraction-index-modulated superlattices,
additional so-called Bragg-like peaks have been detected
in the scattering patterns of nonspecular reQection
(NSXR) and GID. It was possible to associate these with
specular interface reAection and to interpret them em-
ploying the concept of Umweganregung (excitation of a

diffraction process by another diffraction). ' '"
Within this paper we expand the principle of the

DWBA to diffraction from multilayers and superlattices.
The validity of the treatment and its advantages and limi-
tations will be discussed. The paper wi11 be structured as
follows: Starting with the derivation of the theoretical
treatment we give an interpretation of the diffraction pat-
terns employing the concept of Vmmeganregung. Section
III provides experimental results for GID from a super-
lattice. In Sec. IV we make use of the theory's ability to
explain details of the diffraction pattern analytically. The
fit of the experimental data allows a structural characteri-
zation with high precision including such real structure
effects as misorientation and interface roughness. The
discussion 6nishes by noting similarities between the
scattering patterns of NSXR and GIB.

II. THEQRETICAI. TREATMENT

The total wave Geld %' after scattering of an incident
wave 4 by an optical potential Vis fully described by the
integral equation

%(r)=4(r)+ Idr'Go(r, r') V(r')'P(r'),

giving the complete solution of the wave equation

(b, +K )%(r)= V(r)%(r) .

Here K is the vacuum wave vector, and Go the free-
particle Green function. The optical potential V is de-
scribed by the space-dependent refraction index V=K
[I—n(r)]. For neutrons and x rays the deviation of the
refraction index n from 1 is in the order of 10 . Thus V
can be expressed by the electrical susceptibility,
V= IC y(r) in the case of x—rays; for neutrons g(r) has
to be replaced by the neutron scattering length b (r).
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A. The DWBA

In this section we want to extend the approach of the
DWBA to the general case of GID from multilayers.

The essential features of the DWBA consists of split-
ting V into two parts V= V, + Vz. Using the Heisenberg
representation of quantum mechanics we can develop the
solution of the wave equation in the complete orthogonal
basis of solutions for the wave equation

(6+K )4' '(r)=V, (r)%' '(r) .

4' ' is the distorted wave field after scattering by the po-
tential V&. It represents the initial state for the. scattering
by the potential V2 = V —V, . Expanding the total wave
Geld in a perturbation series and cutting after the second
term, we obtain the solution of the DWBA to first order

)P'"(r)=%' '(r)+ Jdr'G, (r, r')Vz(r'))P' '(r') . (4)

Here 6
&

is the Green function for a particle under action
of Vi.

In order to consider multiple reAection by the inter-
faces, we choose

V) = Kyp(r)—

Assuming an epitaxial multilayer, we can develop the
potential in a pseudo-Fourier series

—i( f H (z')dz'+H~( r(~)
XML(r) XXH(z)e

0
The Fourier coefficients of the susceptibility yH and the z
component of the reciprocal-lattice vectors H are func-
tions of depth.

Applying the two-beam approximation, only the
Fourier components 0, H, and H have to be taken into
account.

The solution of Eq. (l) is then identical to the extended
dynamical theory. It has been developed for coplanar
strong asymmetric diffraction from perfect crystals and
single layers on a substrate, ' ' and for conventional
GID (diffracting planes nearly perpendicular to the sur-
face) in a series of papers. The formalism has been ex-
tended to multilayers in Ref. 8. However, numerical
problems restrict the application to structures consisting
of only a few layers.

Apart from the dynamical theory a number of papers
are based on a second approach, employing a distorted-
wave Born approximation. ' ' The DWBA includes an
approximation which requires the diffraction to be rela-
tively weak. Then it can be treated by kinematical
diffraction of the wave transmitted by the sample surface.
The theory has been described in detail in Ref. 2 for the
case of a single crystal. Up to a certain point it also gave
acceptable results for multilayers with nearly no
difference in the main refraction index. '

q(p)(r )
—e

p(z)
&(z)

.r p(z)
il ll

0(z)

where f( ' is the irregular solution for an incident wave
coming from the inside.

The reAected and transmitted wave amplitudes p and 0
can be calculated by applying the optical matrix formal-
ism '

p(z) p(z() )

g( )
=1&(z,zp) g( )

with

A(Z Zp) R(Z Zp)
1

T(z, zp) —R (zp, z)

and A(z, zp) = T(z, zp)T(zp, z) R(zp, z )R(z,z—p), written
for z 4 z0.

T(z, zp) and R(z, zp) are the transmission and
reAection functions of the layered stack between z and z0.
The bar marks the functions for negative angles of in-
cidence.

B. The diffracted wave 6el
The contribution of V2 to the total wave field %""at a

point in space (r~~, z) consists of contributions from the
upper part z' &z and one from the lower part z' & z of the
multilayer,

Consequently the diffraction potential is treated as the
perturbation.

As will be shown below, diffraction-generated extinc-
tion plays a role only in the very near vicinity of the
fulfilled Bragg condition of the layer lattices, and is thus
negligible in most parts of the multilayer truncation rod.

Applying the DWBA in this form, we consider specu-
lar reAection from the surface and from interfaces of the
multilayer, and its inhuence on the diffracted amplitudes
dynamically. However, we neglect any inAuence of the
diffracted on the specular rejected intensities. The mutu-
al interaction between the diffracted and reflected wave
fields would require one to extend the DWBA to a higher
order.

In first-order DWBA we can divide the total wave field
into rejected and difFracted wave fields:

+' "(r) =WsxR(r ) + fosD(r)

where the latter corresponds to the second term of Eq.
(4).

The dynamical treatment of specular reAection gives
the well-known nonperturbed states

r

Vz = KgH(z)exp — i f H, (z—')dz'+H~( r~~
0

Using the two-dimensional spectral representation of
the Green function, the diffracted wave amplitude can
be expressed in the form
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tt'otD(r)

with

—ik r

f "~l f d"ii f dz' " " — (z')
g

(z')Vz(r'
RI — 0

II

z' for z &z'
z (

z for z &z':

The Wronskian determinant in our case is Wk = —2ik, (z)[8(z)8(z)—p(z)p(z)], which for z &0 becomes the easy form

Wk = 2iI—C, 8( —0). After substituting Eq. (5), integration over r~~ gives
II

@otD(")= f oo, P ( P ), —i( f H (z"}dz") P'
5(l

II

—
koll

—
HII) dz' — (z') 8 (z')XH(z')e ' '

8 (z')
0

(10)

E 2e
fotD(z & 0)= K

2

with

—iK rh Po
g (PI, O~ );S, gEI„, ' '

0
(12)

S,"=f 'dzg,

Here p; and 8; are the amplitudes of the rejected and
transmitted waves at the upper inner interface of the lay-
er i. The index 0 is the initial state, ~nd h the final state
after diIIFraction. Provided the lateral Bragg condition is
exactly fulfilled, there occur four scattering processes in
each layer. These are characterized by reduced scatter-
ing vectors in the layers,

q ) )
=k„+k~, —~„q)2

=k„—k~, —~, ,

q~, = —k„+kI„—H„q22 = —k„—kI„—H, ,

corresponding to the full scattering vectors Q, of Fig. l.
For classical GID (diffraction planes perpendicular to

the surface), only two scattering vectors, e.g., qz2 and q, 2,
are independent. The two others difFer from them only in
sign. Notice that all scattering vectors vary from layer to
layer, since

k, (z) =Q(I(.'—k,' )+re'~, (z)

kh (z) =Q(K —kp )+K yo(z) .

The scattering situation within one layer will be demon-

and thus establishes the in-plane Bragg condition

~hII =~0II+HII

to be fulfilled everywhere in the crystal. In other words,
it provides the crystal truncation rod of the multilayer.

%'e are interested in the wave amplitude at the position
of our detector at z &0. The amplitude of go,D can be
expressed as a sum over contributions of the substrate (in-
dexed here as layer 0) and the different layers in the struc-
ture:

strated schematically in Fig. 1 by the concept of
Ummeganregung. Measuring in reQection geometry, q22
describes the primary scattering process. The corre-
sponding matrix element S22 for one layer is similar to
the result of the kinematical theory. Three other process-
es are caused by Ummeganregung. They presuppose
simultaneous specular interface reAection.

To obtain the contribution of one scattering process of
the whole layered stack we have to take the sum over all
contributions of the layers considering the right phase re-
lations. Considering only the specular reAection from the
sample surface and neglecting the interface reAection, the
rejected wave amplitude becomes zero inside the multi-
layer [p'(z &0)=0], and the transmitted wave has the—ik Z
form 9*(z)0)=te ' with the Fresnel coefftcient of
transmission of the surface t. Replacing 0 and p by 0*
and p*, we get the well-known expression used conven-
tionally for the scattered mave of GID:

—iK -r
h

(z &0)= —I(.'GID
hz

I

X f d I 'fo &red'

where the scattered amplitude is proportional to the
Fourier transformation of the di8'raction potential.

Qp
iE

FI~ l. Schematical situation of scattering within the layers.

(a) The wave vectors of the unperturbed states: the projections
on the lateral (Q„Q~) plane and on the (Q,Hl) plane. (b) The

(KAID scattering vectors of the four processes [they lie in the

(Q,Hl) plane].
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e primaryTo illustrate the difference between the primar
scattering process of a multilayer in Eq. (12) and the ex-
pression of the conventional GID [Eq. (14)], in Fig. 2 we
compare the transmission function 0 for a A1As/GaAs
heterostructure (single layer on a substrate) with 8' of a
simple substrate. In Fig. 2 we have calculated 0* and 0
directly below the surface. Figure 2(a) shows the well-
known behavior of the transmission function through a
single surface. However, we find oscillations in Fig. 2(b),
related to the A1As-layer thickness.

For a very thin AlAs layer we see, in the diffraction
pattern calculated with Eq. (12), a splitting of the
Yoneda-like wings, as is known from NSXR by multila-
ers." mu c ay-

C. Grazing-incidence diftraction
from a superlattice

1.5

0. 5

0

—0. 5

—1.5
(3)

Let us now consider the special case of diffraction from
a superlattice. The periodic modulation of the crystalline
properties gives rise to satellites in the truncation rods
through reciprocal-lattice points. The superlat tice
periodicity allows us to transform Eq. (12). We define the
matrices %,z„and Mh &, to relate the specular wave field
amplitudes at the A- and B-type interfaces. The matrix

,i(z, z D,i) =M, &hM—h&, relates the specular wave field
from one SL period to the next. Now for Eq. (12) we
write the expression

—2. 5 I I I I I i

0. 1 0.2 0.3 0.4 0. 5 0. 6 0.7 0. 8

Incident angle [degj

FIG. 2. Amount of the transmitted wave amplitude at the
inner surface. (1) GaAs substrate. (2) 100-nm A1As on GaAs.
(3) 10-nm GaAs on A1As (the curves are shifted progressively
along the intensity scale).

Po,D(z (0)=—K'l 2e
2

—iK r
h N —1 p(+zsi)

h g slo g(+Z )
p zsl

p( +z i)sM"
sl slh g(+Z ) tp, (15)

sl [ slh a Mslo ™a/hh ~hMa /ho]

Here S,&
can be understood as the diffraction matrix of

the superlattice period including all four multiple-
scattering processes. The sum runs over the number of
periods X. +z,

&
is the position of the inner substrate sur-

face.

D. Numerical calculations and comparison
with the dynamical theory

1

The theoretical treatment has been employed to calca cu-
ate the difFracted intensities for A, =1.54 A of the (220)

refiection for the example of a 20-period GaAs/A1As su-
perlattice. Each period consists of a 66.5-A-thick GaAs
layer and a 147.5-A-thick A1As layer. Measurements of
GID intensity are usually carried out by keeping the in-
cident angle with respect to the surface a; as a Axed pa-
rameter, and measuring the diffraction pattern as a func-
tion of the exit angle with respect to the sample surface
a& (a& scan) [Fig. 3(a)]. In Fig. 4 the intensity pattern of
an a& scan has been calculated for a; =0.76'. We see a
large number of peaks, but only some of them coincide
with the expected positions of the diffraction satellites.
The curves below, Figs. 4(b) —4(e), give the square of the
amount of the diffraction amplitudes calculated for the
four diffraction processes separately.

The qz2 process (primary process) shows exclusively
the expected true superlattice satellites. The other addi-
tional peaks can be attached to the three secondary pro-
cesses.

In Fig. 5 we compare the results of the DWBA with
calculations of the dynamical theory. We do not enter
into detail for the numerical procedure of the dynamical
simulations, since it is the subject of another paper.

Figure 5 shows good agreement between both treat-
ments over roost of the a& scan. Near a&=a thel

DWBA calculates higher intensities. There the incident
beam and the diffracted beam nearly fu1611 the Bragg con-
dition for the diffraction plane HKO. The diffraction
causes extinction that is not considered by the DWBA
approach.

GID
8'

220:

t

FI~ 3. Grazing-incidence di6'raction by a superlattice;
schematical representation in real and reciprocal space.
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I I I
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FIG. 5. Corn. Comparison of af scans (relative intensities) calculat-
e y (1) the present DWBA and (2) the dynamical theory.

III. EXPERIMENT

BL BL BL BL

3
o

(2)

0. 1 0.3 0.5 0.7 0.9 1.3

Exit angle [deg]

FIG. 4. Calculated (220) af scans of a A1As/GaAs superlat-
tice for a;=0.76. (a) Re( ) esults of the four scattering processes:
(1) Whole GID ine intensity including all four processes. (2) The
primary scattering process q». (3) The secondary scattering
process q». (4) The secondary scattering process». (5) The
secondary scattering process q». (b) Classi6cation and origin of
the three kinds of peaks. (1) Whole GID ' te intensrty including all
four processes. (2) Contribution of the thr de ree secon ary process-
es. (3) Specular reAection curve (the curves are shifted progres-
sively along the intensity scale).

Experiments to study GaAs/AlAs superlattices were
carried out with the surface diffractometer 04 t

ASYLAB Hamburg. The experimental setup is de-
a

scribed in detail in Ref. 17. Here we show the results ob-
tained from a GaAs jA1As superlattice of 20 periods with
nominal 7.0-nm-thick GaAs layers and 150- - h' kn . -nm-t ic

s layers, grown on a [001]-GaAs substrate by
molecular-beam epitaxy (MBE). We adjusted the lateral

ragg condition for a; =0.4', and measured the af scans
by use of a one-dimensional position-sensitive detector.
The angular scale was calibrated beforehand by measure-
ments in the reflection mode. Some af scans for different
a s are selected in Fig. 6(a). Figure 6(b) gives the same
curves in Q, coordinates. For small a; the wave does not

who. e SL, giving nse to increased fullpenetrate the w o
widths at half maximum (FWHM) of the satellites.

Near the critical angle appears a split Yoneda-like
peak. We find the primary true satellites at nearly con-
stant Q, positions. Additionally we observe several
multiple-scattering peaks, as predicted b th h

e mu tip e scattering peaks have 6xed positions in the
af representation [Fig. 6(a)].

IV. DISCUSSION

In order to explain the peak positions of the additional
peaks analytically, we derivate a semikinematical approx-
imation for the four scattering processes. In the kinemat-
ica approximation of SXR we neglect multi le reflection
between the interfaces. Then M» as well as M, &b assume
simple forms:

Mb~ =
—ik tz a

0

—ik t
re

+ik tz a
z sl+ink D

sl

—i2nk Dz sl

0

n —1 i2jk D)—
,&e

j=O

with the superlattice structure factor for specular reflection
tk btb

—i(k t +k t=2ire " 'sin(k t )e 0

This allows us to write analytical solutions for the amplitude f h fi u eso t e our scattering processes,
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/
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0 0. 5 1 1.5 2
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Q, [1/nm)
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FIG. 6. Experimental GID curves of a 20-period GaAs/A1As superlattice: (a) af scans and (b) in the Q, representation (the curves
are shifted progressively along the intensity scale).

—iK rh
l 2e

/GAD(Z (0 ) = E
hz

f 11 P12
t„ tof21 0'22

which are apart from a common phase factor:

f'12

f'21
S21F,10

+' » s&

—I b, k, ND„
e

—i hkzD

S11FslF sl
0 II

(
Oz sl I)( oz sl I)
Fh +ihk ND )12 sl e

+i2k»D,
&

+iAk Dsl

+i XkzND
e

+iXk D )
, e

+iXk ND )e
+iXk D,)e ' "—I
+iXk, ND„

e
+iXk D

)e

+ihk ND
)e

+ihk D )e

—iXk ND
)

+ e
—iXk D,)

+ibk ND
1e

+ihk D,)e

+iXkND )e
+i XkD

e "—1

with Xk =kg +ko, kk =ko kh

Keeping in mind that in an af scan a; remains un-
changed, three kinds of peaks will be created, if one of
the terms between the parentheses in the denominator
goes to zero:

z sl & z sl 2 1ST& khz Bsl 7l '7T

Thus we can classify four di6'erent types of features in the

complete truncation rods: first we have the Yoneda-like
wings, which are situated at the critical angle for total
external reflection 8, . In the case of thin subsurface lay-
ers there occurs what we know as frustrated total
re6ection from the optics of thin films. That is, the
transmitted evanescent wave reaches the next interface.
It leads to a splitting of the Yoneda-like wings caused by
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the behavior of the transmitted wave amplitude 0, as we
have seen in Fig. 2. The primary true diffraction satel-
lites occur if the sum of the inner wave vectors
Xk, =ko, +k&, is equal to a reciprocal superlattice vec-
tor.

Two types of Ummeganregung peaks are generated in
the af scans by the processes y», y&2, and y2, . First
there occur peaks whenever the exit wave fulfills the
Bragg condition of the superlattice; that is, two times in
the angular space between two neighboring true satellites.

Such peaks are known from the diffuse scattered inten-
sities of NSXR, here called Bragg-like resonances. A fur-
ther type of peak arises from the terms containing the
difference of wave vectors hk, . In Fig. 4(b) the different
kind of peaks are marked in an af scan. For an illustra-
tion of the origin of the different peaks, we added the
specular reAection curve and the sum of the three
Umweganregung processes in Fig. 4(b).

If a; fulfills the Bragg condition of specular reAection,
the positions of the hk, satellites fall together with the
true Xk, satellites and with every second Bragg-like reso-
nance (Fig. 7). Adding in Eq. (15), the amplitudes of the
multiple-scattering processes phase relations play a role.
Thus Umweganregung can violate rules for forbidden sa-
tellite orders and, conversely, destructive interference can
give rise to diminished true satellites (see Fig. 8).

—10

5G
O

(2)

—12

0. 2 0. 4 0. 6 0. 8 1
Exit angle [deg]

1.2 1.4 1.6

FIG. 8. Calculated (220) af scans for a;=0.30. Destructive
interference between the primary and secondary processes
causes the attenuation of a true satellite: (1) whole GID intensi-
ty; (2) the primary scattering process; and (3) the secondary pro-
cesses {the curves are shifted progressively along the intensity
scale).

—10
(2)

o —15

—20

0.2 0.4 0. 6 0. 8 1
Exit angle [deg]

1.2 1.4

FIG. 7. Calculated (220) af scans for a;=0.49' {fulfilled
Bragg condition for the second SXR Bragg peak). (1) Whole
GID intensity including all four processes. (2) The primary
scattering process q&2. {3)The secondary scattering process q».
(4) The secondary scattering process q». (5) The secondary
scattering process q» (the curves are shifted progressively along
the intensity scale).

A. The(Q„a; —af) mapping

Generally, it follows from symmetry considerations
that in a noncoplanar scattering experiment the measured
intensity is not, as in the coplanar case, completely deter-

mined by the vacuum wave-vector length E and the
scattering vector Q, I(K,Q). The scattering amplitude
depends on kp and k& rather than only on their difference
vector Q.

In addition to the wave vector in vacuum K, we need at
least four independent coordinates, which, e.g., in angu-
lar space can be the angles a;, af, 6;, and 6f [see Fig.
1(a)].

However, as is shown in Eq. (10), all calculations of the
difFraction pattern along the truncation rod predict a
fulfilled lateral Brag g condition within the sample.
kP

II kPII +~ll
Taking the lateral Bragg condition into account (which

means in a perfect multilayer we measure only the
nonzero intensity along the truncation rods), 6; and 6f
become functions of a;, af, and H~~ (Fig. 9):

sin(6;)= —28,+K' —K'„
(19)—K —H +K

2H ~~+K' K—sin(6f)=

with

= 2~ = 2~ = 2"K=, Ko, = sin(a;), K„,= sin(af).

Assuming the experimental situation fulfils Eq. (19), the
CsID intensity of a perfect epitaxial multilayer can b de-
scribed only by a,. and af.

Drawing the diffraction patterns of the truncation rod
as functions of a; and uf, we find the profile of Fig. 10.
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~ .~ ! ~ I ~ I ~ a I i s i ~ I22.7 1

22.7—

22.69—

22.68—

22.67—

22.66—

22.65 ~ I I I
1

5 ~ ~ I ) f ~ ~ ~ | I

0 0.5 1 1.5
ct, [deg]

The area accessible in reAection geometry is limited by
the sample horizon, represented by the lines a; and
af =0. The position and classification of the different
kinds of diffraction peaks is illustrated in the schematical
representations of Fig. 11, neglecting [Fig. 11(a)] and in-
cluding [Fig. 11(b)] the mean refraction in the superlat-
tice. The constant a,- and af lines, where the Bragg con-
dition for the superlattice Bragg peaks of the reAection
mode are fulfilled, form a grid of Bragg-like resonance
lines in the (Q„a;—af) mapping. Their grid points, the
so-called Bragg-like peaks, can be determined by the two

22.67

22.665:
22.66:

22.655:
22.65:

22.645 =

22.64:
22.635 —.

22.63

~ I ~ I I ~ L I ~ I I ~ I ~ I ~

0.5 1 1.5
a, [deg]

FICr. 9. 0; and Of as functions of af for a; =0.76' and the
fulfilled in-plane (220) Bragg condition.

~I ski L~ '~s
gal 'I~+———

h I ~ IS S~~~ E

~II
~ ~

I 4 1211
I ~ I I a

l r !r
I I 4@ !'/'r' I lg j

~ 5

FICy. 10. Contour plot of a calculated (Qz, a; —af) mapping;
(220) CxID intensity of the GaAs/A1As superlattice.

FIG 11 Positions of the primary true satellites (plain hnes)
the Bragg-like resonance lines (dashed lines), and Bragg-like
peaks (square dots) in the (Q„a;—af) mapping (a) without re-
fraction and (b) including refraction.
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integers n and m according to the modified Bragg equa-
tions

2D»+sin'a, + (yo) = n A,
(20)

2D»+sin af+(yo) =mA, ,

2 2m m.

Dsl

tl —K yo(z)
sl

Q.

from which we get the Q, positions
1/2

—&'yo(z)

' 1/2

(21)

-12

C40 -13

-15
0. 5 1 1.5

Exit angle fdeg]

The primary true satellites are at constant q, lines in Fig.
11(a). They become bent due to refraction and Bow
asymptotically into the lines a, =0, and af =0, of the
Yoneda-like wings in Fig. 11(b). Going back to the inten-
sity mapping of Fig. 10, we find the true satellites form-
ing banana-shaped features in the (Q„a;—af) space fol-
lowing the Bragg condition

sinaf = h2~/D»+H, +%+sin a,. +go»
—E +Osl

1/2

(22)

For H, =0 the banana-shaped features cross the Bragg-
like resonance lines within the Bragg-like peaks. The hK
satellites are lines parallel to Q„but they are of low in-
tensity.

The measured ef scans correspond to sections of con-
stant a, One calculated section along the Bragg-like res-
onance line was given in Fig. 7 and discussed above.
Another section between two resonance lines corresponds
to Fig. 4.

FIG. 12. Inhuence of misorientation on the (220) af scans
(relative intensities) for a;=0.76, no misorientation (1), and
0.06' misorientation (2).

representation of Fig. 12, where the Bragg-like peaks are
not affected. Second, q, 2+q2, is no longer zero but two
times H, . That causes a splitting of the AX lines in the
(Q„a;—af ) mapping. Further, the banana-shaped
features no longer cross the Bragg-like lines at the exact
positions of the Bragg-like peaks of Umweganregung (Fig.
13).

Figure 12 illustrates the sensitivity of the intensity ra-
tio and the positions of the Bragg-like peaks compared
with the true satellites with respect to a very small varia-
tion of H, . By fitting the exact positions, we found a
misorientation of the superlattice (220) planes of 0.03'.

B. Real-structure an8uences

Without considering real-structure effects it is approxi-
mately possible to confirm the positions of the experimen-
tal peaks by simulation, but there remain problems in
fitting the intensity ratios of the satellites for a nonperfect
sample.

In this section we study the inAuence of a slight
misorientation, of sample roughness, and of graduated
heterotransitions on the diffraction pattern, and we
demonstrate the sensitivity of the diffraction method for
real structure characterization.

Misorientation

In the case of growth on a misoriented substrate or of
orthorhombic or monoclinic distortion due to lattice
mismatch of the layers, the reciprocal-lattice vector con-
tains a nonzero z component H, . Then in Eq. (13) we ob-
tain four different magnitudes of q. This affects the peak
positions of the four scattering processes. Here let us
consider, for simplicity, a small-H, constant over depth
(an identical misorientation for all layers, but conserved
tetragonal distortion). The slight misorientation gives
rise to a constant shift of all primary satellites in the Q,

FIG. 13. Contour plot of a calculated real-structure
igz, a; —af) mapping with a 0. 15 misorientation and constant
rms roughness of all interfaces (cr = 1.5 nm).
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C. Graduated heterotransitions
and interface roughness

with

(1 X) 2—i',X—,
dZ dZ

(23)

X=p/8 and
dr
dz

1 dA'

sin( 2a' ) dz

a' is the z-dependent angle of refraction. Notice the anal-
ogy with the Takagi-Taupin equation of diffraction. In
our case of very thin transition layers, the quadratic term
in Eq. (23) can be neglected within the graduated inter-
face (the semikinematical treatment). For the special
case of a Gaussian profile the semikinematical treatment
of the single heterotransition leads to the formulas of
Nevot and Croce for the reAection coeKcients.

The inhuence of the interface grading in the perturba-
tion potential is similar to that in conventional x-ray
diffraction. The strong diffraction orders will be dimin-
ished with increasing transition width, and rules for for-
bidden satellites can be broken.

For identical superlattice periods (constant roughness)
it makes sense to calculate first F,&, S,&, and M, &

for one
period and to prefer the optical matrix formalism com-
pared with a recursion formalism. A more detailed
description is given in Ref. 24. In Fig. 14 the calculated
curves for different rms roughnesses (assuming a Gauss-
ian profile) show that mainly the Bragg-like peaks dimin-
ish, since the reAectivity of the interfaces is reduced.
Thus in the real-structure mapping of Fig. 13 the intensi-
ty of the Bragg-like resonance lines decreases with in-
creasing a; and af. The banana-shaped features of true
satellites are less affected. However, we have found that
along the Bragg-like resonances, the intensity at the posi-
tion of true satellites can also vary dramatically due to
graduated interfaces, since there the banana-shaped
features fall together with the Bragg-like peaks.

Interface defects in multilayers such as interface
roughness, graduated heterotransitions, or interdiffusion
have been investigated by conventional coplanar x-ray
diffraction and x-ray reAection by many authors. Here
we want to describe the inhuence on the coherent GID
truncation rods.

Unlike to heterotransitions, rough interfaces generate
diffuse scattering. The diffuse scattering of superlattices
in x-ray reAection and in the GID has been the subject of
another paper. In the direction of the coherent wave it
is dificult to distinguish between roughness and graduat-
ed interfaces. A rough interface interacts there like a
composition transition layer.

Thus we can consider the inAuence of rms roughness
on the coherent crystal truncation rod to be similar to the
treatment of a graduated heterotransition.

First, the graduated interface affects the nonperturbed
states; that is, the specular rejected wave field. Treating
the heterotransition dynamically, for the amplitude ratio
of the transmitted and reAected waves we found the
differential equations

-10

-12

-13
0. 2 0. 4 0. 6 0. 8 1

Exit angle [degj
1.2

FIG. 14. Inhuence of rms roughness on the (220) af scans
(re1ative intensities) for a; =0.76', no roughness (1), and o = 1.5
nm (2) ~

D. Experimental results

The experimental curves have been fitted by including
misorientation and rms roughness. In Fig. 15 we show
the best fit of the experimental curves. All peak positions
of all curves are well confirmed. There is also good
agreement for the intensity ratio of the satellites. Notice
that all curves are fitted by the same set of structure pa-
rameters. For the mean thickness of the GaAs layers we
found 6.6S+0.05 nm, and 14.65+0.05 nm for the A1As
barrier. The experimental findings confirm the results of
x-ray reAection and conventional symmetrical x-ray
diffraction.

The misorientation of the (220) planes has been deter-
mined to be 0.03 +0.005 . This value has been confirmed
by an independent measurement after Ref. 26, applying
strong asymmetric coplanar diffraction in reAection and
transmission through the edges.

With NSXR measurements we showed evidence of a
perpendicular correlation of the roughness of different in-
terfaces in the superlattice. Supported by our NSXR
studies we assumed increasing rms roughness for our
GID fit. The curves of Fig. 15 are calculated with a
starting value at the substrate surface of o.,„b=8.6 A, and
a rms roughness of the jth interface of o =Qo,„b+jg
with /=1. 6 A.

The experimental curves represent the intrinsic
diffraction pattern, convoluted by the intensity distribu-
tion within the divergence of the incident beam and by
the aperture of the detector.

For a given a;, if we want to measure the crystal trun-
cation rod in an af scan, we have to realize the appropri-
ate lateral divergence of the incident beam 60. and a
sufhcient lateral acceptance of the detector AOI, accord-
ing to Eq. (19). Gtherwise the detector and the sample
have to be rotated to fulfill Eq. (19) for difFerent af 's.

We performed measurements with fixed sample and
PSD positions. Thus the illumination of the TR changes
with o;;. That is the reason for the remaining discrepan-
cies in the measured intensities with respect to the
theory, especially for the dramatic decrease in the mea-
sured intensity above 1.7'. A banked theoretical hK sa-
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tellite at a; =af can be avoided by introducing an extinc-
tion coe%cient dependent on the Bragg-angle deviation
for the difFraction. However, the truth lies between the
dynamical theory and the distorted-wave approach, since
the dynamical theory requires perfect structures. We ob-
served experimental (a;=af) peaks, which lay between
the results of dynamical theory and the DWBA.

10

10'

10'

10'

GID

. NSXR

10

0

a; [deg]

I I I I

0. 2 0. 4 0. 6 0. 8

Q, [1/nmj

1.2 1.4 1.6

0.565

FIG. 16. Comparison of CxID and NSXR: measured Qz
scans (relative intensities) at a; =0.76'.

(a) E. Similarities in the scattering patterns
of NSXR and GID
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l I
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Exit angle [deg]

0.76
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a; [degj

Finally we want to mention some similarities between
the grazing-incidence difFraction pattern and the NSXR
pattern for the present case of superlattices with correlat-
ed interface roughness. Correlated interface roughness
leads to sheets of resonant difFuse scattering (RDS) in the
NSXR patterns. These sheets are localized at
q, =2hrrlD», which means they fulfill the same "Bragg"
condition as our true satellites. The Bragg-like peaks
have also been found in the NSXR patterns. Figure 16
shows two af scans, the upper one measured in the CzID
mode, the lower in the x-ray-reAection mode. We see the
peak positions of the Bragg-like peaks and the primary
satellites of both x-ray techniques are well aligned. Also,
the agreement of the relative intensities of the satellites is
remarkable. In the NSXR pattern the peak of the specu-
lar reAected beam occurs at czf =a;, where in the GID
pattern we 6nd a much weaker hK satellite. Since NSXR
has been measured in a coplanar geometry, the expansion

&D
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FIG. 15. Best fit of the experimental curves including
xnisorientation and increasing roughness (the curves are shifted
progressively along the intensity scale).
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FICx. 17. Contour plot of a NSXR (Qz, Q„ /Q, l mapping.
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of the uf scan is not limited by the incident lateral accep-
tances of the monochromator and detector. At angles
below the horizon we also observe transmitted orders of
resonant diffuse scattering, leaving the sample through
the edges.

The similarity of the influences of refraction and
Umweganregung due to specular interface re6ection can
easily be visualized by comparing the (Q„Ql/Q, ) map-
ping of the NSXR intensity, measured from the same
sample (Fig. 17) (see Ref. 23), with our (Q„a;—af) map-
ping of Fig. 10. The RDS-sheets become bent like bana-
nas due to refraction. On the RDS banana-shaped
features we observe sharp Bragg-like peaks at the posi-
tions where they are crossed by the Bragg-like lines. But
notice that the NSXR mapping contains mainly diffuse
scattered intensities. Only the SXR truncation rod at
(Q~~ =0) represents coherent reflected intensity. Both the
RDS banana-shaped features and the Bragg-like lines hit
the SXR truncation rod in the SXR Bragg peaks of the
superlattice. Unlike the NSXR mapping, the CrID (Q„
a; —af) mapping discussed in this paper shows exclusive-
ly coherent diffracted intensities. The similarities in both
scattering patterns are expressed by the identical unper-
turbed states of specular reQection, and are further

caused by the superlattice periodicity influencing both
perturbation potentials.

V. CONCLUSIONS

The theoretical treatment of GID based on the
distorted-wave approach has been extended to the calcu-
lation of the diffracted intensities from epitaxial multilay-
ers. Applying the concept of Ummeganregung, we ex-
plained the origin of the different features in the
diffraction pattern of superlattices.

By the example of a GaAs/AlAs superlattice we have
shown that the theory describes details of the diffraction
pattern, and have demonstrated the capability of GID for
the structural characterization of refraction-index-
modulated superlattices including real-structure effects
such as misorientation and graduated interfaces.
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