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We provide a set of parameters for second-neighbor tight binding model Hamiltonians, including
spin-orbit interaction, in silicon and germanium. . Our attempt is the construction of a simple
Hamiltonian, useful as a stepping stone for the description of more complex systems. We introduce
a criterion for establishing transferable scaling laws of the parameters. The results obtained, checked
versus determination of deformation potentials under hydrostatic and uniaxial [001] stress, indicate
a clear deviation from the d Harrison scaling law.

I. INTRODUCTION

The determination of energy band structures in semi-
conductors under pressure, has recently been the ob-
ject of renewed interest, due to the development of epi-
taxial techniques for the growth of lattice mismatched
nanostructures. Among them an important role is
played by Si/Ge strained-layer superlattices, 2 also in the
form of Ge Sii alloys, as promising candidates for de-
vice applications. A natural request has thus emerged,
for the construction of transferable Hamiltonians, which
can provide reliable bulk band structures (energy gaps
and masses), with the further bonus of being so man-
ageable as to be easily employed also for the description
of band structure and. structural properties of very large
scale system. Hydrostatic and uniaxial deformations as
w'ell as alloying are additional physical eKects to be prop-
erly accounted for by these Hamiltonians.

The semiernpirical tight-binding (TB) method is well
suited to describe situations where periodicity is par-
tially or totally disrupted and provides a simple descrip-
tion of bands and density of states in the solid. A wide
literature exists on its merits and limits (for a review
see Ref. 5), moreover its connection with self-consistent
density-functional theory has recently been explored,
providing a more fundamental ground to the matrix ele-
ments entering in the tight-binding procedure.

The need for simplified reliable tight-binding Hamilto-
nians is evident, for instance, from their use in molecular-
dynamics simulations, ' total energy calculations, de-
termination of elastic constants, phonon frequencies, de-
fect formation energies, etc.

In this paper, we provide a very economical tight-
binding sp Hamiltonian for silicon and germanium, con-
sidering erst and few selected second nearest neighbors,
with the inclusion of spin orbit interaction. We describe
in Sec. II, our procedure for the determination of the
Slater and Koster (SK) parameters for bulk crystals:
our results have the accuracy of other tight-binding calcu-
lations obtained with a larger number of parameters.
We also provide in Sec. III a criterion for the determi-
nation of scaling laws for these parameters as a function
of distances. We test in Sec. IV these laws calculating

deformation potentials for direct and indirect transitions
under hydrostatic pressure and in the case of uniaxial
deformation. Section V contains the conclusions.

II. THE METHOD FOR BULK DIAMONDLIKE
BAND STRUCTURE

We use a Slater Koster tight-binding model with an
orthogonal basis built from s and p orbitals for each atom
in the unit cell. Interactions up to second neighbors and
spin orbit are considered; inclusion of second neighbors
is essential for accurate description of the region around
the fundamental gap and of the lowest conduction bands.

The (8 x 8) second neighbor Hamiltonian matrix el-
ements for diamondlike structures are given in terms of
four transfer energy integrals involving nearest neighbors,

(2 2 2)' (2 2 2)' (2 2 2)' &(2 2 2)'
seven transfer energy integrals involving second neigh-
bors, i.e. , E„(110),E, (110), E (110), E (011),
E „(110),E „(Oll),and E, (Oll), and duo on site ener-
gies, E, and E„,for the outer s and p orbitals, respec-
tively, in the crystal. Since the original work of Slater
and Koster, a long list of attemps and recipes have been
presented in the literature to determine the value of these
parameters looking for best 6t with experimental data or
other semiempirical calculations.

Of course, in the use of TB as interpolation scheme,
the higher the number of parameters considered (as, for
instance, including larger distances), the better is the fit;
however, if one plans to introduce the TB Hamiltonian as
a stepping stone to another calculation (as, for instance,
in the transfer matrix procedure and renormalization of
multilayer structures), ~4 it is often useful to consider only
an economical small number of optimized parameters.

In this philosophy is the five orbitals per atom, sp s*,
model introd. uced by Vogl et al. including only first
neighbors: following Slater and Koster, by diagonalizing
the TB matrix at high symmetry points, they exploit the
analytic expression of the crystal eigenvalues at I' and
X points to fit the values of nearest neighbors parame-
ters. The importance of the inclusion of second neighbors
in this model has then been stressed. by Newmann and
Bow."

0163-1829/95/51(23)/16772(6)/$06. 00 QC1995 The American Physical Society



51 TIGHT-BINDING MODEL AND INTERACTIONS SCALING. . . 16 773

In our method, we follow the spirit of Refs. 15 and
16, including selected second-neighbor parameters and
spin-orbit interaction. The procedure can be summa-
rized in the following steps. First, we consider the close
analytic expression for the eigenvalues at I' and X, with-
out spin-orbit interaction; we realized that these expres-
sions do not contain the parameters E, (110),E, (Oll),
E z(110), and E „(Oll), thus, we are faced with four
eigenvalues at X, i.e. , Xi,X4, Xi,X~, four eigenval-
ues at I", i.e., ri, I'25„,res, I'2, and nine SK parame-
ters. If we introduce the constraint E„(110)= 0, which
is reasonable because the energy integral involving s func-
tions at second-neighbor distances is smaller than the
other parameters, we have an exactly soluble problem,
which gives analytic expression for the values of the SK
parameters in terms of the known eigenvalues at X and
I' points.

These expressions which are at the basis of our proce-
dure are given below:

(1 1 li 1 2= -(» ).+-(» ). ,2' 2' 2 3 3

(1 1 li 1 1= —(»&)i —-(»~) i,2'2'2) 3 3

for the nearest neighbors, and

E„(110)= (sscr)~,
1E, (110) = (spo )2,
2

1 1E..(11O) = (»~)-, + -(»~). ,

E..(Oll) = (»~), ,

E „(Oll)= E, (011) = 0 (2)

for the second neighbors. For the remaining SK param-
eters, in the two-center approximation, we have
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8
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%e need further relations to determine the value of the
four parameters not included in the above Eqs. (1). If
we introduce the boo-center approximation, the SK pa-
rameters assume the following expressions in terms of
two-center integrals:

The value of E „(110)has no effect on the eigenvalues
along the 4 line from I' to X, but is very important at
the L point, in fact it is linked to the barycenter of La
and I3 eigenvalues through the relation,

1 ( Ls+Ls tE.„(llo)= ——
i
E„——4(" 2

(4)

Equation 4 is obtained from diagonalization of the H
at L point and considering the submatrix with degener-
ate eigenvalues. It has already been noticed that the
expression for the energy distance L3 —I3, as obtained
from the same diagonalization, in the form

E „(110)= E (110) —E (011)—A,

the parameter A does not acct the eigenvalues at I' and
X points, thus, we also use it to adjust the barycentre
between L3 and L3 eigenvalues and, consequently, the
band structure along the A segment in the energy region
near the fundamental gap; we have found A = 0.445 for Si
and A = 0.4438 for Ge. Finally, in the search of smallest

(111) (111)
L3 —4 Exy I

+ aa I(222) (222)
is not consistent with the energy distance revealed ex-
perimentally when we use the SK parameters given in
Eqs. (1). This means that this distance cannot be ob-
tained if we do not include higher orders of neighbors, or
if we do not consider higher angular momentum contribu-
tions to the wave functions, even if we abandon the two-
center approximation. The above argument has led us
to consider an empirical parameter A to correct the value
of E „(110)in the form
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number of parameters, the E, (110) parameter is also
neglected at this stage because we have verified that it
has a negligible effect on the band structures.

With this 6rst choices, our procedure gives a reason-
ably good valence and conduction band structure scheme,
when we exploit known eigenvalues obtained in the liter-
ature by other methods.

As a further improvement, we double the secular prob-
lem to properly take into account the spin-orbit interac-
tion in the form proposed by Chadi. I et A be the matrix
element of the spin-orbit interaction between different p
orbitals with different spin, on the same site. At I', the
topmost valence band is split by spin orbit as follows:

E(r+) =E(r'„)+~,
E(r+) = E(r' ) —2A,

thus A is determined from the band structure as
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3

In the same way at the topmost valence I point, we have
the spin-orbit splitting: 8

/ 2
&p = -&o

3

Finally, we have shifted the on site energy E„soto
exactly reproduce the fundamental gap. We list in Ta-
ble I the parameters obtained for Si and Ge. The cor-
responding band structures are reported in Figs. 1 and
2. We obtain a realistic dispersion for conduction states;
this goal is generally very diFicult to be reached using
8p TB Hamiltonians with up to second-neighbor inter-
actions. The above parametrization gives a good agree-
ment also between theoretical and experimental values
of effective masses for electrons and holes as can be seen
from Tables II and III.

III. TIGHT-BINDING PARAMETERS SCALING

The semiempirical TB method presented in Sec. II is
particulary suited to describe electronic structures when

FIG. 1. Band structure of silicon obtained with the param-
eters of Table I. Spin-orbit effects are included; they cannot
be distinguished on the chosen scale, thus single group nota-
tions are used.

the crystal arrangement is distorted by pressure or alloy-
ing effects; it is also precious in the search of transferable
TB Hamiltonians for group IV semiconductors and in
total energy calculation. ' In all these situations, the
knowledge of the change of SK parameters with the dis-
tance is essential. For this aim an often used prescription
is the d Harrison scaling law.

The inadequacy of the Harrison law has been pointed
out in literature, and more or less complicated ex-
pressions have been introduced to selectively correct each
parameter involved in TB matrix elements. To
determine the analytic trends of the energy parameters
with pressure, an approach has been to Gt TB param-
eters to closely reproduce a good variation of the band
gap at several pressure points; alternatively cluster cal-
culations have been proposed to extract the TB matrix
elements and to study their dependence on the atomic

TABLE I. Silicon and germanium parameters obtained
with our method (units are in eV).
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FIG. 2. Band structure of germanium obtained with the
parameters of Table I. Spin-orbit effects are included.
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Rs~p (eV)
mll
mJ

mhh(A)
m(h(A)
mhh{A)
m)h(A)
Ap (eV)

Present
1.12
0.51
0.20
0.54
0.17
0.28
0.25
0.044

Expt.
1.12
0.9
0.19
0.54
0.15

0.044

Reference 32.

distance.
The scaling technique that we introduce in this pa-

per, derives from the numerical evaluation of the SK two-
center parameters for different interatomic distances. We
start &om single-( Siater-type atomic wave functions in
the form deduced by Clementi et a/. From them the
crystal potential is built as a sum of atomiclike potentials
each of them made by nuclear, Hartree, and exchange-
correlation terms in the form

2Z Sm
"

(2+ — r p(r ) dr +87r
P 7 0

g
1/3

-6
I

—p(r')
I

+(n) .
q 8vr

V(r)=— r'p(r') dr'

The density dependent correlation factor E, which cor-
rects the Slater exchange potential to include electron
correlation on pair interactions, introduces an active
screening in the low density region far from nuclei; it
is given by2"

TABLE II. Values of the fundamental gap, of masses (in
units of electron mass), and of spin-orbit separation Ap for
Il con. mll and m& fer to the conduction electron mass

along direction A, and perpendicular to it. mhh and m~h
refer to the topmost heavy and light valence bands, along A
and A directions.

with o. = 0.646 p ~ .
The two-center integrals are numerically evaluated for

different distances between centers, considering deforma-
tion of these distances up to 5% of their values without
applied stresses: this corresponds to consider pressures
up to 100 Kbar. The numerical values can be well inter-
polated by the relations

(8)

where the index o; identifies the type of two-center inte-
gral. We give the resulting values of ng in Table IV for
silicon and germanium. The departure from the d law
is evident. We stress that our determination of scaling
laws is completely ab initio, and that our results agree
qualitatively with the calculations of Refs. 9 and 4, where
a semiempirical approach is used. The strong scaling law
for second neighbors interactions represents, in the case
of small deformations, a useful alternative to the intro-
duction of an exponential type cutoff. ' ' In what con-
cerns the TB diagonal parameters E„andE„they are
made by free atomic eigenvalues corrected by the crystal
Geld. We have evaluated analytically the two-center crys-
tal field integrals at different distances and have obtained
ab initio scaling laws also for them. As generally done in
the literature, in the search of very simple TB Hamilto-
nians, we have used the parameters E& and E, deduced
for the unstrained crystal also in the case of hydrostatic
deformation; in fact, we have veriGed that the role of
variation of crystal Geld integrals with hydrostatic pres-
sure has a negligible efFect on the band structure. The
effect of uniaxial strain on the crystal field contribution
to E„is discussed below. We now verify the quality of
the above scalings by using them for the SK parameters
introduced in Sec. II, and evaluating deformation poten-
tials for hydrostatic and uniaxial pressure.

4 /2I 1
E(n) = 1 ——n tan

I

—
I
+ —n ln(1+4n

3 (n) 2

1 2 1 2 —2——n 1 ——n ln(1 —4n )6 4

TABLE III. Values of the fundamental gap, of masses (in
units of electron mass), and of spin-orbit separation Ap for
germanium. mll and m~ refer to the conduction electron mass
at the L point along direction A, and perpendicular to it. mhg
and m&& refer to the topmost heavy and light valence bands,
along A and A directions.

IV. CALCULATION
OF DEFORMATION POTENTIALS

Strain effects can be easily considered in the tight-
binding scheme; strain modifies atomic arrangement
and infI.uences the energy parameters and the direction

TABLE IV. Scaling laws for independent integrals for sili-
con and germanium.

Rs p {eV)
mll
mJ

mhh(A)
m(h(A)
mhh(&)
m)h(A)
hp (eV)

Reference 32 ~

Present
0.74
1.64
0.18
0.45
0.06
0.22
0.07
0.29

Expt.
0.74
1.64
0.08
0.37
0.04
0.28
0.04
0.29

Interaction

s st
(sp~)~
(pp~) ~

(pp~) ~

sso
(spo)2
(pp~)2
(pp7r) 2

Silicon
4.37
3.46
2.72
4.51
8.97
7.12
7.18
8.56

Germanium
5.00
3.63
2.73
4.76

10.72
8.25
8.09
9.59
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cosines, which enter in the definition of the TB matrix
elements. These latter quantities are deduced from the
new geometrical arrangement of the atoms as indicated
by Slater and Koster, the dependence of the SK param-
eters &om the distance between centers needs an appro-
priate scaling procedure. For this aim we use the scaling
laws obtained in the previous section and perform sev-
eral band structure calculations for different pressures;
from them we can compare the results obtained versus
the known experimental values of the deformation poten-
tials. Different methods have been employed for calcula-
tion of the pressure coefBcients in silicon and germanium;
we mention the semiempirical TB, erst-principle
pseudopotential, LMTO, first principle quasiparticle
approach, and LCGO methods.

We study both hydrostatic and uniaxial [001] stress
conditions on Si and Ge. To consider the effect of uni-
axial stress on the energy parameter E„,and thus the
induced modification of crystal Geld interactions, we can
write

E(') = E„—2bp(e —e„),
where e~~ = ' and e« —— ''

, ao is the unstrained
bulk lattice constant, a~~ and a~ are the in-plane and the
interplane lattice constants, respectively. The parameter
bp is a deformation potential for the p eigenvalue when
uniaxial stress is applied to the crystal. We introduce
the empirical values bp 2 9 eV and bp —3 5 eV for
Si and Ge, respectively, because they satisfactory repro-
duce the distances of nonequivalent minima in the lowest
conduction band valleys. Moreover, due to the effect of
the empirical parameter A only at the L point, we have
deduced the scaling laws exponents n~ ——4.0 for Si, and
n~ ——6.0 for Ge, from the behavior of the energies at the
L point.

We have first evaluated the deformation potential for
selected direct and. indirect transitions under hydrostatic
pressure; these are given from the relation that connects
the variation of the corresponding gap energies per rela-
tive variation of the cell volume:

TABLE V. Deformation potentials for silicon (units are in
eV).

a(Es)
a(Ei )

( + 1 ~)a
1 u)L

b

Present
-12.3

-4.8
1.8

-5.8
6.2

-1.6

Expt.

-5.2
1.4, 3.8

7 9 11.3
-1.95, -2.27

Reference 32.
"Reference 34.

action, have been obtained by Pollak and Cardona; the
linear split of the P3y2 multiplet, bEooq, can be expressed
in terms of the deformation potential 6 and the strain
component e, and e as follows:

hEopi ——2b(e„—e ). (10)

8E =:-„(e —e, ).

Equation (ll) defines the shear deformation potential
33~Q ~

The deformation potentials calculated with our proce-
dure are shown in Tables V and VI, in comparison with
the experimental results. Due to the uncertainties which
often affect the experimental results (for a discussion see
Refs. 34 and 39) and the wide amount of theoretical val-
ues (see, for instance, Refs. 11, 21, and 22 for TB calcu-
lations and the list of data collected. in Ref. 29 for other
computational schemes), we can conclude that quite sat-
isfactory values for deformation potentials are provided
by our results.

V. CONCLUSIONS

The minima of the six equivalent valleys along 4 di-
rection in Si, are differently shifted under application of
uniaxial strain: if the strain is along [001], the bands
along [001] and [001] are shifted by —z=„(e —e„),
while the remaining four equivalent bands are shifted by
—:-„(e—e„)with respect to the mean energy, thus the
relative shift of inequivalent minima is

s gB
din V dp

There are two main results of this paper: the oper-
ative derivation of a simple sp TB Hamiltonian and

where B is the Bulk modulus (B = 0.99 Mbar for Si and
B = 0.758 Mbar for Ge).s

We have thus considered the deformation potentials
a(Eo), corresponding to the transitions I'zs„~I'2, and
the deformation potential a(Ei), corresponding to the
transition L3 ~ Lq, the above transition are direct.
We have also considered the deformation potential for
the indirect transitions I'25„~L;„and I'25

by convention, these are indicated as [:-~+ s "„—a]
respectively, in the literature.

The uniaxial stress lifts the degeneracy of the topmost
valence band. Useful relations for pressure variation of
the three topmost valence bands at I', under application
of an uniaxial stress much smaller than spin-orbit inter-

Present
-11.7
-4.3
1.7

-4.5
6.2

-1.6

Expt.
-12.7

-4.7, -5.7
1.14

-2.0, -3.8

-2.2, -2.86

Reference 32.
Reference 35 ~

Reference 36.
Reference 37.

TABLE VI. Deformation potentials for germanium (units
are in eV).
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scaling laws proposed for the TB parameters. The
analytic expressions of Eq. (I) for first- and second-
neighbor TB parameters in terms of known eigenvalues
at F and X points, and the further refinements intro-
duced, are indeed very efI'ective procedures for semiem-
pirical TB Hamiltonians for group IV semiconductors.
These Hamiltonians provide satisfactory conduction and
valence electronic band structures, as well as efFective
masses.

We have also presented an ab initio criterion for ob-
taining scaling laws of TB parameters as a function of

distances between centers. Deformation potentials un-
der hydrostatic and uniaxial pressures obtained &om the
knowledge of these scaling laws show satisfactory com-
parison with existing experimental and theoretical val-
ues.
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