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Improved hydrodynamical model for carrier transport in semiconductors
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A set of closed hydrodynamiclike equations is derived from Boltzmann's transport equation (BTE)
describing charge transport in semiconductors. The production terms are modeled as relaxation terms
consistently with the Onsager reciprocity principle. Stationary and homogeneous solutions are explicitly
treated. The form of the production terms is checked by applying the Conrad method of moments to the
BTE. Finally the model is compared with Monte Carlo simulations for silicon.

I. INTRODUCTION

The increasing miniaturization of modern electric de-
vices requires an accurate modeling of energy transport
in semiconductors. This is of paramount importance in
order to be able to describe such phenomena as hot elec-
trons, impact ionization, and heat generation in the bulk
material. '

The standard drift-difFusion equations currently used in
the device simulation programs do not include the car-
riers energy as a dynamical variable. Therefore, short of
a direct numerical integration of the full Boltzmann
transport equation for carriers in semiconductors (which
would require a heavy and somewhat unwarranted corn-
putational cost), it is usual to resort to an augmented set
of equations usually referred to as hydrodynamical mod-
els. ' Simpler models, usually referred to as energy
transport models, can be recovered from the
hydrodynamical-like equations by an appropriate limiting
process. ' Hydrodynamical models are obtained from the
moment equations of the Boltzmann transport equation
suitably truncated at a certain order X. The truncation
procedure requires solving the following two important
problems: (i) the closure problem, and (ii) the modeling of
the production terms.

The closure problem consists of finding an appropriate
expression for the (N+ l )th moment which appears un-
der the divergence operator of the Xth moment equation.
Likewise, modeling the production terms consists of ex-
pressing them as suitable functions of the first X mo-
ments. In Refs. 14—16 Anile and co-workers proposed a
solution to the closure problem which, contrary to the
previous treatments, was not ad hoc but was based on the
application of the entropy principle within the frame-
work of extended thermodynamics. ' The production
terms, however, were modeled as in the Baccarani and
Wordeman model, and this leads to some difficulties in
the framework of irreversible thermodynamics, as we
shall see in the sequel.

In this paper we take a fresh look at this problem and
model ihe production terms consistently within the
framework of extended thermodynamics: as pointed out

by Hansch and Miura-Mattausch, modeling the produc-
tion terms is crucial in order to obtain a proper descrip-
tion of phenomena like saturation velocity. We also sup-
port our approach by comparing the results with (i) ap-
proximate solutions of the Boltzmann transport equation
by applying Grad's expansion method, and (ii) Monte
Carlo simulations for silicon in a stationary and homo-
geneous state.

The plan of the paper is the following: in Sec. II we set
up the general formalism for the Boltzmann transport
equation for semiconductors, and derive the moment
equations assuming a single-band and efFective-mass ap-
proximation. In Sec. III we define the states of partial
and global thermal equilibrium for the system and apply
the entropy principle of extended thermodynamics in or-
der to find a closure for the unknown moments. We re-
mark that, within this approach, the heat-Qow vector is
fIIux limited. In Sec. IV we point out the difficulties in
modeling the production terms vis a vis the Onsager re-
ciprocity principle. We show how to circumvent this
difficulty in a satisfactory way. In Sec. V we show that
our model gives rise in a natural way to velocity satura-
tion. In Sec. VI we introduce the concept of the Max-
wellian iteration in order to obtain constitutive equations
for the heat Aow and viscous stresses. In Sec. VII we ap-
ply Grad's method in order to find explicit expressions
for the production terms. In Sec. VIII we describe the
Monte Carlo simulation for silicon, and compare the re-
sults with the previous ones. Finally, in Sec. IX we draw
conclusions about the validity of the proposed model.

II. GENERAL FORMALISM

We start from the semiclassical Boltzmann transport
equation for electrons in the conduction band of semicon-
ductors,

Bt
+v(k).Vf qE V f=Q, —

for the one-particle distribution function f(x, t, k), where

q is the absolute value of the electron charge, k is the
electron momentum, k&B (where B is the first Brillouin
zone), and v(k) is the electron group velocity given by
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v(k)=Vg@ .

For convenience we shall use units such as Planck's con-
stant Pi= 1. The electron energy 8(k) is defined by the
band structure of the crystal, and Q is the collision term

Q= fdk'[w(k, k')(1 —f)f' —w(k', k)f(1 —f')],

with f'=f(x, t, k').
The scattering rate w(k, k') is given by

(2)

w(k, k ) —2~~m& z ~ tnt(co& z )5(@j,—6z —
col, z )

+[nii(co& z. )+1]5(@z—6z+coz z, ) )+2m~ Vt, z,
~

5(6z —Cz, ) .

Here the first term represents scattering with phonons
(acoustic and optical), the second with impurities, mI,
and V& I, are the corresponding matrix elements, and
col, I,. is the energy transferred in the scattering with pho-
nons.

En order to focus on the essential issues we limit our-
selves to the case where the effective-mass approximation
holds:

g2
v(k)=

2@i with

BO(l ) BO(l )r 2nQE(l Zl )+ + =Q&,"&,Bx" m*

fdk Qk'
Q'=—

m

Multiplying Eq. (1) by k'k J and integrating, for the trace-
less part we obtain

v(k) =

with m* the effective electron mass.
Then, for consistency, the boundary of the 6rst Bril-

louin zone is moved toward infinity, and B is approximat-
ed by X'.'

Let us define the particle density n (x, t ) as

(3; + AJ;
——', 5; Al", )

(lj)

denoting the trace-free part of the tensor A;, and where

fdk fk, k k„

n(x, t)= fdkf(x, t,k),
and

and the mean velocity u(x, t ) as

fdkv(k)f(x, t, k)
u(x, t)=

dk Qk, k.

For the trace part we obtain the energy balance equation

then the particle Aux is

J=nu .

By integrating Eq. (1) in k space we obtain, assuming
as usual that f(x, t, k) vanishes sufficiently fast at infinity,
the particle continuity equation

n +V (nu)=0 .
Bt

Multiplying Eq. (1) by k' and integrating, we obtain the
momentum balance equation

B(nu ') B8'J nqE'
Bx~ m*

where

with

+V S+nqE u=Q
Bt

W= fdk fA(k)

the energy density,

S=fdk f6(k)v(k)

the energy Aux, and

the energy rate of change. Furthermore we need the en-
ergy Aux equation

as, as,,+ . +q Eg;)+ WE; =Q;,
a~ ax j m* (10)

and where
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fdk fA(k)k;ki
S; =—

ij 42

fdk QC(k)k;

ofk,

k=m'(u+c),
(11)

and then

O'J=nu'u J+ fdk fc'c~ .

The tensor e," can be decomposed into its isotropic and
anisotropic parts

eij 3 err ~ij + e&ij }

with

8&,"&=—,'(8;1+81; 2I8„,5—; —)

The tensor

8'~= fdk fc'cJ

is then split into an isotropic and traceless part

e'J =-'e"s'J+e &'J &

k

where

err
fdkfk'

8"„=fdkfc'.
Then

Therefore Eq. (4) can be rewritten as e'J=nu'u J+ —,'e S'J+e &'J& .k

If we define the electron temperature T as

B(nu') +
Bt axj

nqE'
m*

3nk~ T
e~k

m

Likewise we can decompose S," into its isotropic and an-
isotropic parts:

Sij 3 Srr5ij +S& ij &
~

then the energy density is written as

2
(17)

Hence Eq. (10) can be rewritten as

BS; 1 BS«BS&,J& 58E;+—,+ . +q +E8(;& =Q;.
Bx' BxJ 3m*

Furthermore we can decompose the energy Bow S as

S= Wu+nk ru+h+m u e &iJ&e;,

where h is the heat-Bow vector:

m. THK CLOSURE PROBLEM
AND EXTENDED THERMODYNAMICS

Let us rewrite the moments equations derived in Sec.
II. They are the continuity equation

h= fdk fc'c .

Finally the Aux of energy Aux S," can be written as

S; =8'u;u +2nk&Tu, uj+ —,'u nk&T5;.

Bn +V (nu)=0
Bt

the rnomenturn balance equation

B(nu ') B8'J nqE'
Bt gx& m'

(12)

(13) where

+ (2u„u 8&; &+2u;u„8&, &+u 8(; &)

+u.h;+u;hj+ure;, +e; „„,

the stress equation for the traceless part of e&; &,

Be&; } Be&;j&„2ngE&;u
(14)

81„= fdk fcc c„,

8J„,= fdk fc;cjc„c, .

the energy equation for the trace of 8;,
BS' +V S+nqE. u=Q
Bt

and the energy Aux equation

BS; BSJ+ . +q EJ8~+, 8'E; =Q; .
OxJ ' " m* (16)

It is convenient to introduce the random component c

In this section we consider only the left-hand sides of
Eqs. (12)—(16) assuming the right-hand sides are known
(an explicit representation for them will be discussed in
Sec. IV). The variables appearing in the 13 equations
(12)—(16) are the 13 variables n, u ', T, 8&;J &, and h;, plus

eij r and ejirr ~

In order to obtain a closed system we need explicit ex-
Pressions for eiJr and e,j«. One of the most commonly
used models is that of Baccarani and Wordeman, ' in
which the closure problem is considered at the level of
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the first five equations (12), (13), and (15) representing
particle number, momentum, and energy balance. The
closure is achieved by assuming that the stress tensor is
isotropic,

8(,q) =0,
and that the heat-fiow vector h is related to the tempera-
ture gradient by the Fourier law

h= aVT—,
with ~ the thermal conduction coe%cient.

The first assumption can be justified on the basis of
Monte Carlo simulations showing that in many cases of
interest the anisotropic part of the distribution function is
negligible. In fact, in the regime of small field
(ks TL »qEA, , where A, is the mean free path of electrons
and Tl is the lattice temperature) the distribution func-
tion is obviously nearly isotropic. In the regime of strong
field qEA, »co, (where co, is the optical phonon energy)
the distribution function is also nearly isotropic because
of the strong coupling to optical-phonon scattering. An-
isotropy e6ects could be important in the intermediate
field case (ksTL &qE «co, ), where ballistic behavior
could occur (however, this can be realized only at a
sufficiently low lattice teinperature).

The assumption of a Fourier law for the heat-How vec-
tor is simply a petitio principii and leads to serious
difBculties when a comparison is made with results aris-
ing from a direct numerical solution of the Boltzmann
transport equation. In particular Stettler, Alam, and
Lundstrom, in the simulation of the n+ —n —n+ diode,
found that the heat-6ow vector h is not zero when the
temperature gradient vanishes, and that there is a small
region near the channel-drain junction where h actually
Bows against the temperature gradient.

Other authors have sought a better criterion in order
to achieve a rational closure. Historically this has been
based on the assumption that the distribution function
could be approximated by a drifted Maxwellian, ' ' '

which could be justified if the scattering among the car-
riers were suKciently strong for the carrier system to be
in thermal equilibrium at temperature T and drift veloci-
ty u. There have been opposite opinions on the latter
point. ' The drifted Maxwellian approximation implies
the following closure relations for 8; „and 8;„:

8(; k) =0, (19)

from which

8 Jk
=—5(h;5~„+hj5(„+hk5,J ) .

framework of extended thermodynamics. Here we report
their results and comment on their relevance for the clo-
sure problem, clarifying their physical implications for a
silicon device.

The critical assumption is that 8;J„and 8;,„can be con;
sidered as functions of the lower ord-er moments. As it
stands this is a more general and weaker assumption than
that of a Maxwellian distribution function. However, it
still needs to be justified and this can be done as follows.

Hansch obtained an asymptotic solution of the sta-
tionary and homogeneous Boltzmann transport equation
and found that at high energy the distribution function
can be approximated by an exponential (multiplied by a
power law). In this asymptotic solution few parameters
( & 13) appear, which must be determined by taking the
moments of the whole distribution function. The full dis-
tribution function can be described by a thermal equilib-
rium Maxwellian at sufFiciently low energies and the
Hansch asymptotic solution at high energies. Therefore
it is reasonable to assume that the unknown parameters
could be determined by the first 13 moments of the distri-
bution function.

Also, lately Tang, Ramaswany, and Nam' have ana-
lyzed the n+ —n —n+ diode using the Monte Carlo
simulation, and their results imply that the Aux of energy
Aux S'~ can be parametrized by the previous moments.
Therefore we can reasonably assume that 8;, and 8;.,„are
functions of the 13 moments n, u', T, 8&; ~, and h'. We
shall assume that the production terms Q;, Q, Q;, and

Q&; &
are also functions of the first 13 moments. The va-

lidity of this assumption will be discussed in Sec. IV.
In order to determine 0,", and 8, „„,Anile and Pennisi

applied the methods of extended thermodynamics and
the entropy principle. ' This amounts to assuming the ex-
istence of a specific entropy g and an entropy flux W, also
to be considered as functions of the first 13 moments
(constitutive functions in the language of continuum
mechanics), such that the entropy balance law

+7'.4? =g
at

(21)

F"=(n,nu', 8&;J&, W, S'),

holds for all solutions of the evolution equations
(12)—(16) (g is the entropy production) once the depen-
dent variables 8,&„, 8;.„„Q;,Q&;.&, Q, and Q; have been
expressed as constitutive functions of the independent
variables n, T, u;, 8&; ~, and h;. Furthermore the entropy
production g is positive definite and vanishes only at glo-
bal thermal equilibrium.

Let us introduce the vectors

Moreover,

Sn(ks T)
~ij rr ~ij

2m
(20)

F"J=(nu J, 8;,8&;.&„,S~,S'~),

The closure problem is of such paramount importance
for building hydrodynamical models that its deserves a
thorough investigation starting from first principles.
Such an investigation has been performed by Anile and
Pennisi, ' ' and Anile, Pennisi, and Trovato' within the

Q nqEku", Q; —
q E—"8;„+ WE,.

m

with A =1,2, . . . , 13. Then Eqs. (12)—(16) can be writ-
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ten in compact form:

BI BI' "
BxJ

(22)

holds for every value of the independent, variables and
their first-order derivatives.

By exploiting this result it is possible to obtain
di6'erential relations ' which yield a useful characteriza-
t1OIl foI the unknown quaIltlt1es 8&jp p 8&j pap p Q p and 4 &' as
functions of the fundamental variables. In particularly
simple cases it is even possible to determine the constitu-
tive functions explicitly. This is the case, for instance, of
the radiation field for which the stress tensor (second-
order moment) can be explicitly determined as a function
of the energy density and the energy Aux, thereby deter-
mining uniquely the nonlinear Eddington factor. ' In the
general case it is not possible to solve explicitly the
di6'erential relations arising from I.iu's theorem. It is
then mandatory to resort to approximation schemes,
which should be related to the physical phenomena under
investigation.

In the following we shaH deal with electron conduction
in an infinitely long silicon device. A Monte Carlo simu-
lation performed for such a device (see Sec. VIII) shows
that the energy relaxation time r (which is the charac-
teristic time in which the electron energy relaxes to the
lattice energy) is substantially larger than the relaxation
times for momentum, heat Aux, and anisotropic stresses
(see Fig. I).

-s
10

The entropy principle states that all the smooth solutions
of system (22) satisfy (21) once F", F ~, and P have
been expressed as functions of the fundamental variables.
According to I.iu's theorem this is equivalent to assum-
ing the existence of multipliers A z which are functions of
the independent variables such that

8 84J "dF BF"J

Bx' ~t Bx'

In fact most collisions are of elastic type and therefore
a large number of collisions is necessary in order to relax
the carrier s energy to its equilibrium value (kii TL, where

TI is the lattice temperature), while momentum, heat-
Qow, and anisotropic stresses relax to the equilibrium
values (zero) within a shorter time. During the relaxation
to global thermal equilibrium an intermediate state arises
where the electron Quid is in its own thermal equilibrium,
a state which can be called partial thermal equilibrium.

The state of partial thermodynarnical equilibrium is
characterized by u'=0, 8(;/) =0, h'=0, and @'=0 (but
TATI ) and therefore near partial thermal equilibrium
u', 0&,"&, and h' are first-order quantities. Therefore it is
natural to expand the di8'erential relations arising from
Eq. (23) around partial thermal equilibrium (up to second
order).

A crucial assumption is that the entropy density and
the entropy Aux do not depend upon u. In fact u is the
relative velocity of the electron gas with respect to the
lattice; hence the entropy, being an additive quantity,
cannot depend on it. It can be proved that this is also a
consequence of the entropy principle applied to the mix-
ture consisting of the lattice and the electron gas. '

Only with the definition and justification of the partial
thermal equilibrium state can the Inachinery of extended
thermodynamics be applied, and the following results are
obtained

8( Jk& 0

5n(k~ T)
EJTI' g lJ2m

which are exactly those [Eqs. (19) and (20)] obtained with
the drifted MaxweHian assumption.

Therefore the above closure relations are completely
independent of the drifted Maxwellian assumption, and
hence the question of the importance of the carrier-
carrier scattering is completely irrelevant in this context.

Now we prove that the above closure leads to a ft.ux-
limited heat How h. In fact, from Schwarz's inequality
we have

***4*
%v +++++ t, ooooo g, xxxxx

10
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E
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~o 10
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It follows that

where c, =(5k~ T/3m ')' is the adiabatic sound speed.

IV. MQDKLING THK PRQDUCTIQN TERMS
AND THKRMQDYNAMIC RKSTRICTIQNS

10
10

I

3
10

Field (v/cm)

I

4
IO 10

FIG. 1. Relaxation times ~ (energy), ~~ (momentum), ~~ (en-

ergy fIIow), and ~ (shear stress) vs electric field obtained by
Monte Carlo simulations for silicon.

In order to close system (12)—(16) it is necessary also
to express the production terms Q', Q&; ), Q, and Q; as
functions of the fundamental variables n, T, u', 0&,. &, and
h'.

In most hydrodynamical models ' ' the production
terms are assumed to be of the relaxation type, i.e.,
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nQ

7 p

8'—S"0
(25)

are considered, the Onsager reciprocity principle relates
two cross coefficients of the particle Aux J and the total
entropy Aux J, „,. It is easy to see that the total entropy
Aux Jz «, to first order around thermal equilibrium coin-
cides with the vector

S;
Tq

H=S+q(C~ —P)J .

The final expression for H is

(27)

with vp, w, vq, and w relaxation times which are func-
tions of the temperature T (and in some cases also of the
electron density n and impurities number density N;).

Now we show that the above representation for the
production terms leads to a serious inconsistency with
one of the fundamental principles of linear irreversible
thermodynamics, the Onsager reciprocity principle
(hereafter ORP). Let us assume that the distribution
function is almost isotropic (which is borne out by Monte
Carlo simulations ). Then we can safely set

qn~ dT'"H= kB T +ln
2~,

"
n

with
r

7 dT—+1
2 2 n

—vpkB T ln
d T3'2

V6"F+AV'T '

kBT

5 dT'"
2 n

(30)

8(gJ ) 0

Then the momentum Eq. (13), in the stationary limit,
yields

and by comparing it with Eq. (29) we find that, in order
for the ORP to hold, the following relationship must be
veri6ed:

7p 7
q

0 (31)

, [V(nk~T)+nqE] . (28)

By introducing the quasi-Fermi potential
r

BT n
ln 3/2 +const

dT

with P the electrostatic potential, E= —VP and
d =(2mm kz ),Eq. (28) can be written as

n~ 5 dT'"J= —qVE + —+ln V(k T) . (29)
2 nm

which can be rewritten in terms of the quasi-Fermi poten-
tial c.F as

5&qS= ~ qnk TVA-B F

+ —+ln7
2

nkii TV(kji T)
r

As discussed in the book by de Groot and Mazur,
Chap. XIII, Sec. 6, where electrically conducting systems

Likewise, near partial thermal equilibrium we can ap-
proximate

5nk, T . .gij fiij
2m

and then the energy flux equation (16) in the stationary
limit yields

5VqS=—— IV(nk&T) +qnk&TEJ,

In Fig. 1 a Monte Carlo simulation for silicon shows
that equality (31) is only approximately true at high ener-
gy and is violated at low energy (see also Ref. 9); in fact

and r differ at low energy by as much as 100%%uo. We
ascribe this discrepancy not to a failure of the ORP (be-
cause at low energy and therefore near thermal equilibri-
um they are a statistical consequence of microscopic ir-
reversibility) but to an inadequate modeling of the pro-
duction terms. In this case the assumption which must
be abandoned is that ~ and ~, in the general nonhomo-
geneous situation, can be modeled as functions of the
temperature alone. In fact, as will be seen in Sec. VII,
Grad's method of moments when applied in order to
evaluate Q and Q near thermal equilibrium yields expres-
sions of the more general kind, i.e.,

Q= —(aJ+bS),
Q= —(ZJ+bS) .

(32)

(33)

This implies that ~ and ~q are functions of J and S in ad-
dition to the temperature T. By utilizing the above ex-
pressions in the momentum and energy fiux Eqs. (13) and
(16) and proceeding as before, we finally find that the
OPR is equivalent to the following relationships:

a+ ,'bkji T= ', kii T(a—+,'bkii T) —. — (34)

In a recent article, the authors discussed the ORP for
their hydrodynamical model. We remark that their con-
clusions are fallacious because they impose the ORP not
on the total entropy Aux vector H but on a different vec-
tor, for which Onsager's theorem does not apply.

Another consequence of Eqs. (32) and (33) is obtained
for the entropy production



16 734 A. M. ANILE AND O. MUSCATO 51

g =g~+g~+O3

where g„gz, and 03 are terms of first-, second-, and
higher-orders, respectively, in the deviation from partial
thermal equilibrium:

3nk~(T Tl—)

2TI
1' 2

g
—

g + g g(J)
nkB T'.

7p

qE
Pl Ud

(41)

where x =k& T.
In the case of a uniform one-dimensional semiconduc-

tor and electric field, the carrier concentration remains
uniform and diffusive phenomena do not occur: as a
consequence, the average velocity reduces to the drift ve-
locity vd. Then if we substitute Eqs. (24)—(27) in the pre-
vious equations, we can express the relaxation times v. ,
~p, ~q, and ~

g2=aJ +PJh+yh
=qnEvd, (42)

1 +5bk~ T

nk~ T
—4a —9bk T+ (a + 'bk T)—

5k T8

4y=
nk~T'

b—b+
5k~ T

The quadratic form g2 is positive defined if z &0 and gz
is positive definite. The conditions for g2 to be positive
definite are o. & 0, which implies

The term g& is linear in T—TI and corresponds exact-
ly to the rate of variation of the lattice entropy produc-
tion (considering the solid as a rigid body) due to its in-
teraction with the electron gas. The term gz then
represents the rate of entropy production due to the dissi-
pative nature of the interaction of the electron gas with
the phonons. The coefficients of the quadratic form g2
are given by

k~T—,5 nq E
2~* S (43)

(44)

(a ——', ax)J+(b ', bx)S=O —. — (45)

The values of the drift velocity, temperature, energy
Aux, and stress can be obtained by Monte Carlo calcula-
tions in steady-state conditions. With our Monte Carlo
code (see Sec. VIII) we obtain the previous quantities as
functions of the electric field, and also the relaxation
times: in Fig. 2 we plot the percent error for the relaxa-
tion times versus the electric field. The agreement is very
good for the momentum relaxation time 1z ( (0. 1%) and
reasonable for 7, r~, and 1. (a few percent). This shows
that deviations from partial thermal equilibrium remain
on the order of a few percent to within first order off par-
tial thermal equilibrium.

Another consequence of Eq. (40) and Eqs. (32) and (33)
is

1
27 (35)

P —4ay (0 . (36) 10

A Monte Carlo simulation for silicon (see Sec. VIII)
shows that these inequalities hold.

V. STATIONARY AND HOMOGENEOUS
REGIME

I.et us rewrite Eqs. (12)—(16) in the stationary and
homogeneous case. Then we obtain

llq

Pl

10
( 3K 3K 3K ~ 3K

( X

Xo 0=~o'I„

Q+-+
+

-1
~~ 10

I-

l
O

LU

10

++++ Tp, OOOOO q, XXXXX

OOQQOQOO
ooo 00

3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K
X X X X3K3K3K3K3K3K3K XX 00

@gXXX /XXXXX
xxxxyxx$8&& Qoo XXXX
00 0

3K
3K X

oo 3K

0 3K

0
+

+
+ ++ + ++ +

rnQ= Q~;,
n

2nq
Q(jj l E(g a/l

(38)
-3

10
10 10

Electric Field (V/cm)
10 10

Q; =
—,'xQ, , (40)

and, to within first order off partial thermal equilibrium, FIG. 2. Percent error between relaxation times given by Eqs.
E,
'41)—

4,
'44) and those obtained by Monte Carlo simulations for

silicon vs electric field.
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8
10 .

7
o 10
Q)
N

Eo

o0
Q&

6
10 .-

10
10

++++ Monte Carlo, oooo Fluid Model

I

10
Electric Field (V/cm)

I

10 10

5 bx J'
2 b ——', bx

Now from Eqs. (32) and (37) we have

—aJ —bS= nqE
m

and by using Eq. (45) we obtain

J=npE,
where p is the mobility:

q 1

a —
—,'ax—a+b

b ——'bx
2

(47)

(48)

FIG. 3. Drift velocities obtained by Monte Carlo simulations
for silicon and hydrodynamical model vs electric field.

In Sec. VIII, with a Monte Carlo simulation, we obtain
the parameters a, b and Z, b, and from Eq. (48) we can
evaluate the drift velocity of the Quid model: we notice
that our Quid model gives the physical saturation veloci-
ty. The agreement between the Monte Carlo and the
fluid drift velocity is good (see Fig. 3).

(tt 'ax )—+——'x(b ——'bx )
J/

b ——'bx
2

(46)

and, by using Onsager's relation (34), Eq. (46) reduces to

From the previous equation and the definition of S we
can express the heat flux vector (18) as follows:

VI. MAXWKI. I.IAN ITERATION
AND CONSTITUTIVE EQUATIONS

In Sec. III for the moment equations we obtained a
closed system (12)—(16), in the 13 variables n, u', T,
8&;.&, and h ', by using the techniques of extended thermo-
dynamics. However, the above system is still too compli-
cated to be used for device simulation and therefore we
now derive a reduced system. First we consider the stress
equation (14) with (27):

B8&; &
B8&; &

Buk 2 Bh; Bh 2 Bhk nktt T Bu; Bu 2 Buk
+Qk +0(]. ) + . + .

—— 5; + . + . —— 5,"Bx" Bx" 5m Bx Bx' 3 Bx" m' Bx Bx' 3 Bx"
L

(49)

Now we shall apply an iteration technique to Eq. (49) following Ref. 29. In Sec. III we dealt with a state of partial
thermal equilibrium for the electron fluid, which is characterized by u'=0, 8&1 &

=0, and h '=0, whereas u ', 8&; &
and h '

and first derivatives are first-order quantities: we define the zeroth iterate in the previous equilibrium state. In the left-
hand side of Eq. (49) we substitute the zeroth iterate of h, u, and 8&,J &. Then the right-hand side of this equation yields
the first iterate for h, u, and 8&,"&, once nonlinear terms of orders higher than the first in the deviation from partial
thermal equilibrium have been neglected. It is immediate that the first iterate gives

0 ~

Then we consider the equation for the heat flux: by taking Eqs. (12)—(16) with the closure Eqs. (19) and (20), and

8~;~ &
=0, we obtain a differential equation for h:

Bh; . Bh; 7h; B„k 2h B i 7hj Bu, 5 nk T B(k T)'+uj '. + ' " + ' ".+ +-
Bt Bxj 5 Bx" 5 Bx' 5 Bxj 2 m Bx'

Q
Q,.

—m u'uiQ —m Q; ——'u;(2Q —m Qju J) ——'k~TQ;, (50)
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where Q is given by Eq. (25), and Q; and Q; are given by
Eqs. (32) and (33). In the spherical band approximation it
is possible to show that J, h, and S are collinear, i.e.,

S=Se, J=Je, h=hc, e2=1,
and we have

The choice h leads to the same expression (47), and
by continuity the correct solution of Eq. (S3) is that with
the minus sign:

2Mb = (P—J G—) [(P— 4M—N )J +G

—2(P —SMk~ T )JG ] '~

1 S=a+b—,
'r J '

1 — J=&+I'—.S

(51}

(52)

The constitutive equation (54) for h is not the usual
Fourier law because it has a nonlinear dependence on the
temperature gradient. For large 6 Eq. (S4) reduces to

(55)

Again we shall apply the previous iteration technique to
Eq. (50). We obtain

5 nk~T B(k~T) g 5 k~(T To)—+- J'+ —,'k T

If 6 &0 then the heat Aux is limited, consistent with nu-
merical simulation; if 6 & 0 then h can become unbound-
ed with 6, diverging to Srst order in the Maxwellian
iteration.

According to the Monte Carlo simulation (see Sec. VIII
and Fig. 1) r~ ((r~, and therefore we can neglect the
second term on the right-hand side. Also, from expres-
sion (18) for S we obtain

5 nk~T B(k~T)
m' Bx'

h, ~ TJ, 1

Since the three vectors J, S, and h are collinear, substitut-
ing from Eqs. (51) and (52) we obtain a second-order
equation for h:

Mh +(PJ G)b+NJ— ,'k~TJG=—O—,

where

5 nk~T6:=— e.V(kqT),

(53)

M:= —b+ —,'k~ Tb,
N:= 25k+ T[ —a+ 2k~T(a b)+( ,'k~T)—b], —

8&0, N&0, M&0,
and the discriminant of Eq. (53) is non-negative. Then
this equation admits two solutions.

In order to choose the sign let us analyze the case
6=0 (i.e., constant temperature): we obtain the two
solutions

h = —
—,'k TJ,
5 bxJ

h
2 b —5bx

2

The choice h+ is not admissible because it leads to

S= ,'k~ TJ+h=( ,'k~ TJ—+b+)e=O, —

which is not physically reasonable: the convective energy
Aux must depend on the scattering process.

P:=—(d+ 2k~Th)+ ,'k~ T—(a —b)+—(—,'k~ T) 2b .

Let us assume that Onsager's relation Eq. (34) holds:
then we obtain

VII. GRAD'S METHOD OF MOMENTS

In previous sections we found a set of closed equations,
which are consistent with the principles of irreversible
thermodynamics. Now the problem arises of determining
the relaxation times, which appear as unknown parame-
ters. The above equations are valid in the single-valley
case, whereas in practical situations we deal with mul-
tivalley semiconductors.

Therefore these equations should be rewritten for each
valley together with the coupling continuity equations,
since an additional term (Bn /Bt ), has to be introduced in
the second member of Eq. (12} to take into account the
intervalley transfer. A rough but useful approximation
consists of averaging all relevant quantities over all val-
leys of the considered band structure: by doing so, these
equations can still be applied to a rnultivalley sernicon-
ductor. Then the relaxation times and the effective mass
can be determined from a Monte Carlo simulation under
steady-state conditions, and inserted into our system.
Thus, at least, this method has the advantage of provid-
ing steady-state results which are exact within the band
model used, since all operating parameters are analytical-
ly 6tted with Monte Carlo calculations.

The advantages of the hydrodynamic simulation with
respect to a Monte Carlo one are short CPU usage and
results without noise: these are very important aspects
for industrial purposes. However, this procedure has the
defect that if we change the characteristics of the device
(i.e., number of dopants, external bias, type of semicon-
ductor} another Monte Carlo simulation is needed. Thus
it is of great interest to obtain information about the re-
laxation times by analytic methods.

%'hat can be done is to develop the distribution func-
tion for electrons around the state of global thermal equi-
librium, where the electrons, in the material, lie close to
the bottom of the conduction band. We shall assume that
the electron gas is not degenerate, such that the collision
term Q linearizes:

Q= Jdk'[w(k, k')f' —w(k', k)f),

with f ' =f( t, xk').

According to a well-known procedure due to Grad, '
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n —c/k~ To
e

(2am'k T )

k
(m 'ks T() )'~

Then we insert Eq. (56) into the Boltzmann equation (1)
and moments (3), (5), and (7) by using the orthogonality
properties of Hermite polynomials and the quasi-isotropy
of the distribution function. We obtain

f=a+k;P',

a=f
q

1+ —1
T
0

f.q 7P;= J.
nkvd To

3

ka To

E, 1 i 2E,

Now from Eqs. (24)—(26) and the approximate expres-
sion for the distribution function, we can determine the
relaxation times if we know the scattering rates.

In the following we shall deal with silicon at room tem-
perature ( To =300 K) and, for the sake of simplicity, we
shall consider only phonon scattering (acoustical and op-
tical). The band structure of silicon is such that electrons
which contribute to charge transport, even at high elec-
tric field, are those in the six equivalent ellipsoida1 valleys
along (100) directions at about 0.85(2m. /a ) (where a is
the lattice constant) from the center of the Brillouin
zone.

Electrons in silicon are subject to intravalley elastic
scattering with acoustic phonons and inelastic intervalley
scattering with nonpolar scattering with optical phonons
(of types f, i.e., between perpendicular valleys, and g, i.e.,
between parallel valleys). According to selection rules,
intravalley nonpolar scattering for optical phonons is for-
bidden, whereas anelastic intervalley scatterings of types
f and g is allowed; the matrix elements of such processes,
in the approximation of spherical valleys, can be found in
Ref. 30. Since we consider spherical valleys in homo-
geneous conditions, the six valleys can be considered
equivalent: we approximate the material with a single
valley and the intervalley scattering reduces to intravalley
scattering.

With such a hypothesis we obtain

Tp

=3 82X10 ' s,
S=a+b—,J '

1 — J=b+a —,
7 S ' (58)

where

we expand the distribution function f(x, t, k}, in Hermite
polynomials:

oo

f—f g a(P) H(P) (y)
r=o

where

b=42. 8 ps ', a=1.07 (eVps)

a = —0.0589 eVps ', b =6.178 ps

These results will be compared with a Monte Carlo simu-
lation in Sec. VIII.

For a quasi-isotropic distribution function the devia-
toric stress tensor vanishes and therefore v is not
defined. We note that v is constant and this due to the
fact that the Grad expansion holds near thermal equilib-
rium.

Similar equations are obtained by Hansch by expand-
ing moments in a power series of energy. That is not ad-
missible because the distribution function fHL', and it
is not possible to expand it in a convergent power series
of energy.

VIII. MONTE CARLO SIMULATION
AND COMPARISON %'ITH GRAD'S RESULTS

The Monte Carlo solutions of the Boltzmann equation
have been well investigated over the years. The Monte
Carlo method provides an accurate description of carrier
transport in submicron semiconductor devices, even un-
der highly nonequilibrium conditions, because various
scattering mechanisms and band-structure models are
considered.

In order to evaluate the production terms Q;, Q, Q;,
and Q&;~& we observe that they are defined as moments
over the right-hand side of the Boltzmann equation (1)
[see Eqs. (6), (8), (9), and (11)]. According to the
definition of the collisional operator Eq. (2), the produc-
tion terms can be evaluated via Monte Carlo simulations:

N„ll „ll 5t

1 6c
X

+coll coll

5(cv, )

coll

5(v(;vj &)

Q&ij& ~ X
coll

where 5( ) indicates the variation of the quantity ( ) after
and before the collision, 5t is the time between two col-
lisions, the summation runs over all scattering events,
and N, ll is the number of collisions. We observe that, in
order to avoid transient e6'ects, we gather statistics for
times greater than picoseconds and we run the simulation
until a static and steady-state regime is reached.

The relaxation times for energy, momentum, heat Bow,
and shear are then obtained from Eqs. (24}—(27), and
these are the standard definitions. ' ' In order to com-
pare the analytic results of Sec. VII we develop a Monte
Carlo code for this purpose. We consider a parabolic
band structure and acoustic-phonon and optical nonpolar
scatterings for silicon at room temperature, as in Sec.
VII.

In this work a homogeneous electric profile, frozen in
the material along the x direction (1—80000 Vcm ) is
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FIG. 4. Average energy and temperature obtained by Monte
Carlo simulations for silicon vs electric field.

FIG. 6. 1/v~ vs J/S obtained by Monte Carlo simulations
for silicon and Eq. (58) obtained by the Grad method.

considered, and the test device is unbounded. In Fig. 1

we show the relaxation times ~, w, ~, and ~ as func-
tions of energy, obtained with our Monte Carlo simula-
tor: we notice that w~ &&~, and that momentum is re-
laxed faster than energy. In Fig. 3 we plot the drift veloc-
ity obtained by the Monte Carlo simulation and the fluid
model, and in Fig. 4 the average energy and temperature
versus the electric field. In Eq. (17) the kinetic energy is
negligible in comparison to the thermal energy ( —,

'
nkvd T).

In Fig. 5 we plot I/r versus S/J and in Fig. 6 1/r
versus J/S: these plots are not linear (although some au-
thors claim they are' ), i.e., in Eqs. (51) and (52) a, b and
a, b are not constant but they should be functions of T
and X;. Grad's method evaluates these quantities around
global thermal equilibrium: the straight lines given by

1=ao+a1T +a2 + bo+b +I2 J7p Q To TQ Tp2 J

T -T' T=ho+bi +b2 2
+ o+y( +a2

Tq Q To p To

(59)

where, if J/S ~ 6.568 eV

(60)

Eqs. (57) and (58) are tangent to the Monte Carlo data
(Figs. 5 and 6).

A fitting of 1/r~ and I/r~ can be obtained in this way:
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FIG. 5. 1/v~ vs S/J obtained by Monte Carlo simulations
for silicon and Eq. (57) obtained by the Conrad method.

FIG. 7. Percent error in Onsager relation Eq. (34) obtained
by Monte Carlo simulations for silicon vs electric field.
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FIG. 8. Percent error in Eq. (45) obtained by Monte Carlo
simulations for silicon vs electric field.

o 0 6721 0'& =2.4533, a2 =0,
6o = 27.3229 6 ] = 1 ~ 1622 62 =0

Otherwise

Qo= 0.8712 Q& =3~ 3903 ~2 = 2 581

ho= 33.1229, b& =36.9863, b2= 1.6339 .

For the other coefficients, if S/J ~ 0. 1346 eV, then

ao= —11.0807, a, =33.7494, a2= —21.5443,

6o = 185.8055 b ( =204.6364 b2 =24.8215

Otherwise

ao =2.3104, a, = —6.4247, a2 =0,
bo =163.2724, bi = —0.6763, bq =0 .

The units of a,. and b, are in ps ', b; in (ps eV), and a;
in (eV ps '); To is the room temperature.

With Eqs. (59) and (60) we checked the Onsager rela-
tion Eq. (34): in Fig. 7 we plot the percent error versus

the electric field. We observe that the OPR is fulfilled
only at low fields ( ~ 5000 V/cm). In Fig. 8 we plot the
percent error for Eq. (45): since this error is less than
10%, our fiuid model is given by Eqs. (12)—(16). The clo-
sure Eqs. (19) and (20) and the relaxation times (59) and
(60) and those for r„and r are self consistent.

IX. CONCLUSIONS

In this paper we have constructed a hydrodynamical
model for electron transport in silicon which is consistent
with the principles of linear irreversible thermodynamics.
The details are as follows.

(i) The closure of the moment equations (at the level of
the flux of the heat flux) is achieved by imposing the en-
tropy principle and not by assuming any specific ad hoc
expression for the distribution function.

(ii) The form of the production terms of the momen-
tum, energy, and energy fIux is such that at low energies
the Onsager reciprocity principle is obeyed. Furthermore
the conditions for the thermodynamical stability of the
partial thermal equilibrium state are also satisfied.

(iii) The resulting system of partial difFerential equa-
tions (PDE's) is therefore equivalent to a symmetric hy-
perbolic one, and enjoys nice mathematical properties. '

The model we have constructed is consistent with (a)
the results obtained by applying the Grad method near
global thermal equilibrium, and (b) Monte Carlo simula-
tions for silicon under stationary and homogeneous con-
ditions.

In order to be a viable model for device calculations,
our model must be tested against Monte Carlo simula-
tions in nonstationary and inhomogeneous cases. Fur-
thermore the model must be extended to cover the bipo-
lar case (electrons and holes) according to the methods
expounded in Ref. 16. Work along these lines is in pro-
gress and will be presented elsewhere.
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