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High-field hopping transport in band tails of disordered semiconductors
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Interplay between temperature T and high electric field F concerning their inAuence on the hopping
transport in disordered semiconductors is studied theoretically. A series of computer simulations of
transient and steady-state conduction is carried out with emphasis on the verification of the concept of
the so-called effective temperature. According to this heuristic concept the inhuence of T and F can be
parametrized by a single quantity T,ff(T,F). We show that such functions T,ft-(T, F) do exist for both
transient and steady-state phenomena; however, they do not coincide with each other for these two
cases, implying that there is no universal effective temperature for all transport phenomena. This con-
clusion is supported by a calculation of the conducting path of carriers under the inhuence of a high
electric field. Theoretical results obtained provide rather a good understanding of experimental data
available.

I. INTRODUCTION

Transport phenomena in amorphous semiconductors
under the inhuence of high electric field has recently be-
come the object of intensive experimental and theoretical
study. This was implied by observations of strong non-
linearities in the field dependences of the dark conductivi-
ty, ' of the photoconductivity, and of the carrier drift
mobility "at high electric fields.

We are not aware of any consistent theory which de-
scribes the nonlinear field dependences of the conductivi-
ty and drift mobility in a-Si:H. However, the corre-
sponding theory of low-field transport has been developed
for all regimes discussed, i.e., for the dark conductivity, '

the drift mobility, ' and the stationary photoconductivi-
ty. ' In all these theoretical descriptions, hopping transi-
tions of electrons between localized states in the exponen-
tial band tails play the decisive role and determine the
temperature dependence of transport, provided the
thermal energy kT is small comparing to the characteris-
tic energy of the band tail eo. At higher temperatures, all
these approaches converge to the conventional multiple-
trapping model in which hopping between localized
states is unimportant, the movement of carriers through
extended states determining the current. The field non-
linearities of the transport are most pronounced at low
enough temperatures, ' " when transport is determined
by hopping, and below we will discuss the inhuence of
electric field on the hopping of carriers in the band tails.

Studying the hopping transport in amorphous and
doped crystalline semiconductors subjected to a strong
electric field, Shklovskii' has shown that electric field
plays a role similar to that of temperature. In order to
obtain the field dependence of the conductivity o(F) at
high fields, Shklovskii' replaced the temperature T in the
well-known dependence o (T) for low fields by a function
T,tt(F) of the form

T,tt =eFa /2k, (l)

where e is the elementary charge, k is the Boltzmann con-
stant, and a is the localization length of electrons in the
tail states.

A very similar result was obtained later by Gruenewald
and Movaghar' in their study of the hopping energy re-
laxation of carriers through band tajls at very low tem-
peratures and high fields. It is easy to understand why
the electric field plays a role similar to that of tempera-
ture. Indeed, in the presence of a field the number of sites
available at T =0 is greatly enhanced in the field direc-
tion, and an electron can relax faster at higher fields.
From the formulas of Gruenewald and Movaghar' one
can easily infer that relation (l) should be valid for relax-
ation as well.

The same idea was used recently by Shklovskii'et al. ,
'

who suggested that, at T =0, one can calculate the field
dependence of the steady-state photoconductivity in
amorphous semiconductors by replacing the laboratory
temperature T in formulas of the low-field finite-
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temperature theory by an effective temperature T,s.(F).
At T =0, expression (1) was recovered. '

However, experiments are usually carried out not at
T =0, but at finite temperatures, and the question arises
how to describe the transport phenomena in the presence
of both factors finite T and high enough F. Cleve et al. '

suggested for the effective temperature T,z the expression
kT,&=kT+eF(R ), where (R ) is the mean jump dis-
tance in the field direction. A similar expression
kT,&=kT+eFal2 has been analyzed by Nebel' (mis-
takenly ascribing this formula to Ref. 14), and it was
shown that experimental data for the dark conductivity
and drift mobility cannot be accounted for by such an
effective temperature. For higher T, when multiple trap-
ping dominates the transport phenomena, the expression
T,a=max(T, eFalk2) has been suggested by Esipov, '

which, however, cannot be valid for the hopping regime.
In a recent attempt to develop an analytical theory for
the hopping regime, the stochastic nature of the hopping
transport process was obscured as a consequence of the
averaging procedure.

Recently, Marianer and Shklovskii ' solved numerical-
ly linear balance equations for electron transitions be-
tween localized states in the exponential tail under the
condition of finite T and F. They found a Boltzmann dis-
tribution for electrons with an effective temperature
T,s(T,F), which in the limit of eFa ))kT is close to
0.67eFalk. On the basis of the calculation, they found
the heuristic formula for the effective temperature at
finite T,

T,s.(F, T)= T + (y eFa jk ) (2)

where the numerical factor y has the value @=0.67.
Calculating conductivity, Marianer and Shklovskii found
that it is the effective temperature defined via Eq. (2)
which determines the conductivity of the system and
which accounts for the combined effects of the electric
field F and the lattice temperature T. Baranovskii
et al. studied the distribution function of electrons over
localized tail states by a Monte Carlo computer simula-
tion. They also obtained a Boltzmann distribution func-
tion with an efFective temperature described by Eq. (2)
with y =0.69+0.03, in good agreement with the result of
Marianer and Shklovskii. Transport phenomena, howev-
er, were not simulated by Baranovskii et al.

The concept of the effective temperature appears to be
useful for hopping in the quantum Hall regime, and has
also been suggested for the magnetic susceptibility of
hopping electrons. However, this hypothesis is far
from being proven either experimentally or theoretically.

Experimental results for the dark conductivity and for
transient transport phenomena ' under the inhuence of
a high electric field were compared with Eq. (2), and no
contradiction was established between this expression
and experimental data. However, the accuracy of the ex-
periments does not allow us to consider these experimen-
tal data as a confirmation of the concept of the effective
temperature, i.e., to claim that the theoretical description
of all transport phenomena in amorphous semiconduc-
tors can be parametrized by a single quantity T,ff(T, F).
Moreover, it has been claimed that this hypothesis is not

valid for such an important transport phenomenon as the
dispersive transport in amorphous semiconductors. The
dispersion parameter was claimed to be dependent on
temperature solely and not on the electric field strength F
at T)90 K. Careful analysis of the experimental data in
Refs. 2 and 6 also shows that the function T,ff(T, F)
describing the dark conductivity differs from that
describing the dispersion parameter. The effective tem-
perature approach was recently claimed to be valid for
the photoconductivity in intrinsic hydrogenated amor-
phous silicon, but the expression suggested for
T,ff(T, F) difFers from Eq. (2).

In order to verify the concept of effective temperature,
we have carried out a series of straightforward computer
simulations of the transport phenomena determined by
hopping of electrons in the band tails of amorphous semi-
conductors. In Sec. II, the algorithms and simulation re-
sults for transient dispersive transport are given,
confirming relation (2) with y=0. 6. The results of the
simulation show that the non-Markovian, homogeneous
dispersive transport theory is a rather good approxima-
tion for the description of the Markovian hopping trans-
port in real inhomogeneous systems under study. In Sec.
III, the simulation results for the steady-state hopping
conductivity are presented. They allow parametrization
with T,ff determined by Eq. (2), but with the value of
y=0. 9 different from that obtained for dispersive trans-
port. This implies that there is no universal quantity T,z
for all transport phenomena. In order to analyze the con-
cept of effective temperature more deeply, analytical
theory is developed in Sec. IV for the transport path of
electrons in the exponential band tail under the influence
of the high electric field at T =0, and it is shown that this
path differs from the well-known transport energy level at
F =0 and finite T even if the quantity T,z determined by
Eq. (2) is kept constant assuming the value y =0.67 cor-
responding to the equilibrium distribution function. '
Computer simulation of the transport path confirms this
result, thus also implying that there be no universal
effective temperature describing the various transport
phenomena. Nevertheless, the concept of an effective
temperature can be used as a rough but useful approxi-
mation. Concluding remarks together with discussion
are gathered in Sec. V.

II. CQMPUTER SIMUI.ATIGN
OF TRANSIENT CURRENTS

Photocurrent transients at low electric fields measured
under pulse illumination in a time-of-fiight or charge-
collection experiment at low temperatures are dispersive.
The initial current decay (at r (t„w rheet, is the tran-
sient time) is well described by a power-law dependence '

(I)r~ i'+

where I(t) is the current and a&(0, 1) is the dispersion
parameter.

Pollak has shown that this behavior can to some ex-
tent be treated by a non-Markovian, homogeneous trans-
port theory. In this theory carriers are allowed to hop
between sites of a lattice. A carrier on a site leaves this
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site a time t+ ,dt—afterarrival with the probability g(t)dt.
The model is homogeneous in the sense that all the sites
are assumed to have the same g(t) T. o produce the
current decay described by Eq. (3), the function g(t) must
have the form

v; =vpexp
27". .

for e.—e, —eF(x —x,.))0, and

(8b)

for e —e; eF—(x —x;) (0, where r, is th"e distance be-
tween the sites involved, x; and x being the coordinates
of the sites along the field direction, and vp is the
attempt-to-escape frequency. The quantity vp

' defines
the time scale of the simulation only. We have used
vp=10' s '. The value b =a was chosen in order to
eliminate the inhuence of the lattice structure on the
simulation results. The smaller b is, the easier the tunnel-
ing and the smaller the difference in the hopping rates be-
tween tunneling events to different lattice neighbors.
However, it is unreasonable to choose b smaller than a
because electron states are no longer localized on
separate sites if b &a. Hence b =a seems to be the most
reasonable choice. This small value of b implies that the
possibilities of hopping to many neighbors from each ini-
tial site must be taken into account. For the chosen pa-
rameters it was enough to consider the hopping possibili-
ties to 15X15X15 neighbors for each initial site. We
have checked that, the increase of this number to
19X 19X 19 did not change our simulation results. The
probability that a particle will jurnp to site j from site i is
given by

(4)

which can be the consequence of multiple trapping of
photocarriers from extended states into localized tail
states with exponential energy distribution

1Vp
g (e) = exp

Ep
(5)

6'p

Here the energy e is measured positive from the mobility
edge (e=0) toward the gap center, IDIO is the total con-
centration of tail states, and ep is the tailing parameter.
The dispersion parameter o. has then the temperature
dependence

kT
(6)

E'p

This multiple-trapping approach with activation of
trapped electrons to the mobility edge is valid in a-Si:H
for T & 170 K. ' At lower temperatures, the mobility
edge in the multiple-trapping description should be re-
placed by the energy level in the tail called the transport
energy, ' and hopping of electrons between localized tail
states dominates the transient photocurrent. Silver,
Schonherr, and Bassler showed that, in this pure hop-
ping regime, the transient photocurrent response is de-
scribed by the same equations (3) and (6), thus demon-
strating the equivalence of multiple trapping and hop-
ping.

At high electric fields F and low temperatures
50 & T & 160 K, the dispersive photocurrent response
determined by Eq. (3) was also observed, with the pa-
rameter a strongly depending on F. Below we describe
our computer simulation of the dispersive photocurrent
at various values of F and T, concentrating our efforts on
the study of the parameter a in Eqs. (3) and (4).

The simulation technique is similar to that used previ-
ously by Silver, Schonherr, and Bassler, and is only
briefly outlined here. A cubic lattice with 70X70X70
sites and a lattice constant b has been used. We employ
periodic boundary conditions, effectively making the di-
mensions infinite. In order to simulate the energy distri-
bution of sites described by Eq. (5), the energy e; of a site
has been chosen by a random number R; between 0 and 1

such that

(9)
~ik

kAi

The mean time required for the hop is

(10)
kWi

e, = —coin(l —R;) .

After the energies for all the 357911 sites have been
determined, a particle was sent across the system. The
starting site is chosen at random. The hopping rate v;-
from site i to site j is governed by

2p'; (e e; ) eF(x —x—;)—
exp

a kTv; =vpexp

(8a)

Thus to simulate the motion of a particle by hopping
through the described system, two random numbers
0 & R & 1 are needed per hopping event. The first random
number specifies to which site j a particle jumps from site
i. The other random number specifies the time for the
jurnp from i to j. After a particle has jumped, the calcu-
lation is repeated for the next jump from site j. The par-
ticle is followed until it reaches the plane x = 100, the ini-
tial plane being denoted as x =1. At that time, the com-
putation is terminated and another particle is started.
The calculations were made for 300 particles at each set
of F and T. Two quantities were studied, namely f(t),
averaged over all sites visited by particles, and I(t). A
typical curve for I(t) is shown in Fig. 1 for parameters
eo lk =500 K, F =510 kV/cm, and T =0.

The power-law behavior described by Eqs. (3) and (4)
was observed for all sets of ep&kT, eFa studied. It is
worth noting that the values of a in Eq. (3) coincide with
those in Eq. (4) in all simulation runs, thus confirming
that the homogeneous non-Markovian approach describ-
ing the current I(t) in terms of the waiting-time distribu-
tion P(t) is a rather good approximation.

We started our simulations at low-F values in the linear
regime. For the sets of parameters ep/k =500 K,
T =350 K and eolk =290 K, T =90 K, dependences (3)
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FIG. 1. Dispersive transient photocurrent at T=0 and high
electric field (solid line) for the simulation parameters given in
the text. Dashed line corresponds to Eq. (3) with o.=0.7.

t
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FIG. 3. Dependences of a on T at constant T,&=350 K in
Eq. (2) for y=0. 6 (0); 0.59 (); 0.58 (~). Solid straight lines
show the minimal squared deviation fits for the simulated data.

and (4) were obtained with a=0.70 and 0.31 correspond-
ingly, confirming the validity of Eq. (6) for the hopping
regime, in agreement with the previous simulations of
linear dispersive hopping transport. Then the simula-
tions were carried out at T=0. The values of F were
chosen such that T,fr determined by Eq. (2) with diff'erent

y values was equal to 350 and 90 K for t o/k =500 and
290 K, respectively. Again, dependences (3) and (4) were
recovered with values of a dependent on the choice of y
and hence on the choice of F =kT/yea. The values of
a(y) inferred from I(t) [see Eq. (3)] and P(t) [Eq. (4)], re-
spectively, are plotted in Figs. 2(a) and 2(b). If the con-
cept of eff'ective temperature described by Eq. (2) is valid,
then we must conclude from this figure that
y =0.59/0. 60, because only this value of y provides con-
sistency with the simulation results o, =0.70 and 0.31 for
eo/k =500 and 290 K, correspondingly, obtained for the

linear regime, i.e., small F and finite T. It is worth noting
that the value y=0. 6 does not depend on the choice of
the band-tail slope eo, hence being universal for difFerent
densities of states.

So far we have considered only the extreme cases T =0
and finite F, or finite T and very small F. Now we turn to
the case that the contributions of T and F to T,z in Eq.
(2) are comparable. We have simulated current transients
for the parameters set eo/k =500 K and T,~=350 K.
First the value of y was fixed and the values of T and F
were varied such that T,fr given by Eq. (2) was always
equal to 350 K. Then the y value was changed and the
whole procedure was repeated again. The corresponding
temperature dependences of cx are shown in Fig. 3 for
three di6'erent values of y. If the concept of efFective
temperature described by Eq. (2) is valid, a must be equal
to 0.70, as in the linear regime, and must be temperature
independent when T,ff =350 K is kept constant by adjust-
ing the electric field F. We see in Fig. 3 that this is the
case for y=0. 59. Moreover, this figure allows us to
evaluate the accuracy with which y is determined, name-
ly y=0. 59+0.1. Hence we can conclude that the con-
cept of an eff'ective temperature described by Eq. (2) with
this y value is valid for dispersive transient hopping
transport in a system with exponential band tails.

0.2— (a)-

0.6
Y

0.6—

0.4

0.5 0.6 0.7

FIG. 2. Dispersion parameter a at T =0 inferred from simu-
lation results for I(r) (a) and p(t) (b) at different values of y in
Eq. (2) with constant T,ff. Solid straight lines show the minimal
squared deviation fits for the simulated data. Dashed line shows
the corresponding cx values in the linear regime.

III. COMPUTER SIMUI.ATION
OF A STEADY-STATE TRANSPORT

In order to simulate the steady-state transport, a slight
modification of the algorithm described above has been
used. Each particular hopping event was treated in the
same way as described in Sec. II; however, many elec-
trons were treated simultaneously, thus taking into ac-
count the occupation of tail states by electrons. The
simulation algorithm was similar to that used previously
for studying the energy distribution of electrons in the
equilibrium except that one subroutine calculating the
conductivity (or mobility) of electrons was added. This
subroutine calculates the spatial displacement of a mov-
ing particle due to the external field and divides it by the
field strength F and the time required for the displace-
ment. The result was averaged over all moving particles.

The simulation parameters Xo = 1.25 X 10 cm
co=0.025 eV, vo=10' s ', and a =10 cm were used
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similar to those in Ref. 21. A density of n =10' -cm
carriers in a real system then requires a simultaneous
consideration of typically 200 carriers in the simulated
array of 64X64X64 sites. The routine starts by first
determining the time of the hop for each carrier, in ac-
cordance with Eq. (10). The carrier with the shortest
waiting time executes its hop. The site to which it hops
and the hopping time are determined as described in Sec.
II. After the hop occurs, the hopping rates of all carriers
are updated and the loop starts from the beginning. The
loop is repeated typically 10 times, consuming a CPU
time of about 10 min on a CRAY-Y-MP. Special atten-
tion has been given to avoid oscillations between sites
close both in space and energy.

This algorithm was first used to study the energy distri-
bution of carriers over the tail states. It was shown
that the distribution is well described by a Boltzmann
function with an effective temperature T,z determined by
Eq. (2) with y =0.69+0.03, in good agreement with the
result of Marianer and Shklovskii, ' who suggested
y =0.67.

The question arises whether or not the same expression
for the T,z determines the conductivity of the system. In
Fig. 4, the dependence of the mobility on the electric field
strength F is shown, the T,/r from Eq. (2) with y=0. 67
being kept constant and equal to 90 K. The values of the
mobility clearly depend on F, thus unambiguously show-
ing that equilibrium transport cannot be described in
terms of the same T,& that characterizes the energy dis-
tribution of electrons. '

Our simulation does, however, show that one can
parametrize the results for the conductivity at different E
and T by a single quantity T,s described by Eq. (2), albeit
with y =0.89+0.02. In Fig. 5, the results are shown for
the field and temperature dependences of the carrier mo-
bility in the thermal equilibrium obtained by the algo-
rithm described above. It is seen that field dependences
of the mobility at different temperatures, and its tempera-
ture dependences at different fields can be well
parametrized by the universal dependence of the equilib-
rium mobility on the effective temperature as shown in
Fig. 5(c). Expression (2) was used here for the effective
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temperature T,z with y =0.89.
We can conclude, therefore, that the equilibrium car-

rier conductivity depends on the single quantity T,ff(T F)
determined by Eq. (2) with y=0. 9. It differs from the
value y=0. 6 obtained in Sec. II for the dispersion pa-
rameter. This difference between y values for different
transport phenomena implies the necessity of more de-
tailed investigation of the interplay between T and F con-
cerning their inhuence on the hopping transport. In Sec.
IV, we try to analyze this interplay studying the trans-
port path of carriers in the exponential band tail.

IV. TRANSPORT ENERGY FOR HOPPING
IN A HIGH ELECTRIC FIKI.D

FIG. 5. (a) Field dependences of the mobility at di6'erent
temperatures. (b) Temperature dependences of the mobility at
difFerent fields. (c) The same data as in (a) and (b) represented as
a function of a single quantity T,& described by Eq. (2) with

y =0.89.

-7 =—

0
I I

40 80
F (kV/cm)

120

FICx. 4. Dependence of the mobility on the electric field at
constant T,&=90 K for y=0. 67 in Eq. (2).

It is well known that at low electric fields a particular
energy level in the band tail, called transport energy,
plays a crucial role in the hopping transport under both
equilibrium and nonequilibrium conditions and for both
steady-state and transient phenomena. ' ' In order to
better understand the interplay between the high electric
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field F and the temperature T concerning their inhuence
on the hopping transport, we try below to extend the
transport energy approach to the hopping of carriers at
high electric fields. Assuming a density of tail states de-
scribed by Eq. (5) and hopping rates described by Eq. (8),
we consider the behavior of a single electron in two cases:
(i) F =0, finite T; (ii) T =0, finite F.

(i) Let us consider an electron in a tail state at energy
e, . The typical rate of a downward hop of such an elec-
tron to a neighboring (in space) localized state with some
energy e. e; is eFx)eo . (18)

dent of the initial energy e,
(ii) Let us now consider the case of a strong electric

field F and T =0. An electron in a deep state at energy e;
will typically hop against the field direction due to the
huge increase of the density of states (see Fig. 6); i.e., the
nearest in space localized state with energy not higher
than e, will be usually situated in the direction against
the field, provided the distance of the hop x, parallel to
the field, fulfills the inequality'

vt(e; ) =vo exp

where

2R (e, )

' —1/3

Making such a hop against the field direction, an elec-
tron can increase its energy relative to the mobility edge
by an amount

5f =eFx .

R(e;)= (4n/3) f g(x)dx
l

(12)

The typical rate of an upward hop of such an electron to
a neighboring localized state with energy e e; is

vt(e, , 5, ) = vo exp
2R (e; —5, ) 5,

kT (13)

where 5, =e, —e ~0.
We will analyze these hopping rates for a given tem-

perature T and try to find the energy difference 5„which
provides the fastest typical hopping rate for an electron
placed initially at energy e;. The corresponding energy
difference 5, is determined by the condition

Bvt(e;, 5, )

B5,

Using Eqs. (5), (12), and (13), we obtain that the hopping
rate in Eq. (13) has its maximum at

3eo(4mN0 /3 )
' a

5, =t, —3eoln (15)

The second term in the right-hand side of Eq. (15) is
called the transport energy e, (after Monroe' ),

3eo(4m.NO/3)'~ a
e~ =3@0ln

2kT
(16)

W =(6eokT)'~

For states with e; ~ e„ the fastest hop is typically a
downward hop to a nearest neighbor at some energy
e~e; with the rate described by Eqs. (11) and (12). This
means that electrons in shallow states with e; & e, hop
normally into deeper states with e & e;, whereas electrons
in the states with e; & e, usually hop to states near e, in
the energy interval W determined by Eq. (17) indepen-

We see that the fastest hop occurs to the state in the vi-
cinity of the transport energy e„ independent of the ini-
tial energy e;, provided e,- is deeper in the tail than t „i.e.,
if 5, 0. The width of this maximum determined as the
energy range near e„where the hopping rate vt(e;, 5, )

differs by less than a factor of e from the value
v, (e, , e, —e, ), is"

This quantity 5f is analogous to the energy difference 5,
from (i). However, its calculation must be carried out in
a somewhat different way as compared to the calculation
of 5, . The quantities e; and 5f are related by equation

5f =eFR(e, eFR(e, —5—f))—eo, (20)

5f =eFR(e; —5f) . (21)

Solving this equation numericaljky, we come to the con-
clusion that, starting from a rather deep state at e;, an
electron hops upward in energy, making successive hops
so that each next hop is on average shorter in space than
the previous one and corresponds to a smaller energy
difference between two states involved. This inverse ener-

gy relaxation is illustrated in Fig. 7. The quantities 5f in-
volved in successive hops become smaller and the move-
ment of an electron upward in energy stops at an energy
ef when 5f becomes comparable to eo. Hence one can
evaluate ef, which is analogous to the transport energy e,

0

FIG. 6. Electron hop against an electric 6eld over distance x.

where the term eo takes into account that a typical transi-
tion occurs not horizontally in energy as shown in Fig. 6,
but to some localized state deeper by amount eo in the tail
than the initial state.

At deep energies e;, when 5f obtained by solving Eq.
(20) is much greater than eo, the term eo can be omitted
and the relation between e; and 5f becomes
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of case (i), from the condition

eFR (ef ) = eo . (22)

We see that the physical ideas which determine ef differ
somewhat from those which were used to determine e, .

Let us now compare the positions of these two levels e,
and ef for actual parameters of amorphous silicon under
the premise that the values of T [from (i)] and F [from
(ii)] correspond to the same eff'ective temperature T,tr. In
aSi H, for which E'p=0 025 eV, a = 10 cm,
&p = 1.25 X 10 cm, and the transport energy e, plays
the most important role for transport phenomena at low
electric Geld in the temperature range near 100 K. ' '

Hence we choose the value T,&=90 K for the compar-
ison between ef and e, In c.ase (i), T = T,&=90 K and
Eq. (16) gives e, =0.10 eV. Since e, is only a statistically
defined quantity featuring a width W [see Eq. (17)], the
effective transport energy is shifted by an amount
W=0.034 eV relative to e, defined by Eq. (16) for the pa-
rameters given above. In case (ii), we first have to choose
the value of y in order to Gnd the value of F correspond-
ing to T,fr=90 K. The following calculation is based
upon y =0.67. This value corresponds to the equilibrium
energy distribution of electrons in the band tail, as has
been established by different techniques, ' and it seems
reasonable to use it, at least under the equilibrium condi-
tions. The value F =116 kV/cm then transfers into
T,fr =90 K. Solving Eqs. (22) and (12), we obtain

ef =0.05 eV, i.e., our analytical consideration shows that
the level ef is shifted to the shallower region of the band
tail with respect to e, for the same T,z. Moreover, the
character of hopping in case (ii) is somewhat difFerent to
that in case (i), i.e., an electron initially situated at some
deep level moves in energy to the level ef by a series of
successive hops, as shown in Fig. 7, whereas, in case (i),
an electron comes to the vicinity of e, by a single hop
from any deep state. A numerical solution of Eq. (21)
confirms this conclusion, yielding ef =0.05 eV as that en-

ergy level at which 5f =0, consistent with the solution of
the more simplified Eq. (22).

In order to verify these rather intuitive arguments, we
have studied the energy distribution function of the states
visited by electrons in course of their equilibrium move-
ment via hopping in the band tail by a computer simula-
tion described in Sec. III. For this purpose, a counter
was introduced into the simulation algorithm whose pur™
pose is to check how many times each particular energy
range has been visited by electrons. The corresponding
distribution functions are shown in Fig. 8 for cases (i) and
(ii) at T,tf =90 K. Since the initial stage of thermalization
was excluded from the averaging procedure, the curves in
Fig. 8 correspond to the equilibrium state of the system.
We see that the maximum of the distribution in case (ii) is
situated at somewhat higher energy than that in case (i).
The positions of the maxima agree well with the values

ef =0.05 eV and e, =(0.1+0.034) eV predicted by the
analytical theory above. This picture confirms that, for
the value y =0.67, which yields the same energy distribu-
tions of electrons in the cases (i) and (ii), the transport
properties of carriers are nevertheless different. Elec-
trons in case (ii) contribute more to the conductivity as
compared to case (i), although the energy distributions
are the same. The reason is that transport proceeds via
energetically higher-lying states in the tail. This explains
why the electric field affects equilibrium transport more
strongly than the energy distribution of electrons, provid-
ing a higher value of y =0.9 in Eq. (2) for the conductivi-
ty as compared to the value y =0.67 for the energy distri-
bution.

So far we considered the role of the energy levels e,
and ef concerning the steady-state conductivity. It is
known, however, that the same energy level e, also deter-
mines the transient relaxation of electrons in case (i). '

The question arises then whether or not it is possible to
find some analog of the level ef for such transient relaxa-
tion in case (ii) as well. In order to answer this question,
we have studied the statistics of energy levels visited by a
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FIG. 7. Successive hops of an electron against the field direc-
tion increase its energy with respect to the local mobility edge
(e=O) by amounts 5f", 5f ', etc.

FIG. 8. Statistics of states visited by electrons in equilibrium
conditions at T,&=90 K in the cases (i) (C') and (ii) (~ ). Each
state was counted as many times as it was visited by carriers.
Curves are normalized to have maxima equal to unity.
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Suppose the conductivity o. is dependent on T,ff solely.
Then

0.8
0 do d eff

dF dT, ff dE
(24)

0.0
4 ~ ~

In the Ohmic transport regime at F «kT/ea, the con-
ductivity o. must be field independent, implying that

0.00 -O.to

g (eV)

-020 dTeff

dF
~0 as E—+0. (25)

FIG. 9. Statistics of states visited by electrons in their none-
quilibrium relaxation at T,ff=90 K in the cases (i) (~) and (ii)

(0). Curves are normalized to have maxima equal to unity.

carrier while relaxing through tail states within the algo-
rithm described in Sec. II. This has been done by intro-
ducing a counter similar to that in the steady-state simu-
lation into the algorithm of Sec. II. In Fig. 9, the energy
distributions of states visited by a carrier during its ener-

gy relaxation are shown for cases (i) and (ii) with the same
choice of T =90 K (i) and F =116 kV/cm (ii), as in the
steady-state simulation described above. We see that the
maximum of the distribution in case (ii) is again located
at higher energy than the maximum in case (i). More-
over, the energy positions of these maxima are very close
to those in Fig. 8. This is not surprising at all for case (i),
for which it is known that the same energy e, determines
both the steady-state and transient transport proper-
ties. ' ' For case (ii) the result is interesting. It shows
that at high electric field E and low T, a transport level ef
exists as well, and determines both the steady-state con-
ductivity and the transient relaxation of carriers.

V. DISCUSSION AND CONCLUDING REMARKS

We have studied the interplay between temperature T
and high electric field F concerning their inhuence on the
hopping transport in band tails of amorphous semicon-
ductors employing a straightforward computer simula-
tion. Both transient dispersive transport and steady-state
conduction were simulated. It is shown that for each of
these phenomena the inAuence of T and F can be
parametrized by a single quantity T,s(T,F), defined via
Eq. (2).

Unfortunately, we do not have a satisfactory physical
interpretation of Eq. (2). However, it is easy to under-
stand why the effective temperature T,ff cannot be a sim-
ple sum

T,s(T,F)=T+yeFa/k . (23)

The function described by Eq. (23) obviously does not
fulfill this condition. However, any function of the form

P &~P

T,s( T,F)= T~+

with P) 1 is in accord with the Eq. (25) along with the
necessary conditions T,ff=T at F=0 and T,ff~E at
T =0. Our simulation results for hopping transport
show that P=2, in agreement with the previous simula-
tion data for the equilibrium energy distribution of car-
riers within localized tail states. '

However, the coefficient y =0.6 determined from the
T and F dependences of the dispersion parameter a(T, F)
differs from the value of this coefficient y„=0.9 deter-
mined from the mobility p, (T,F). This results agrees well
with recent experimental data of Nebel et a/. The au-
thors of Ref. 6 searched for a universal quantity T,ff

which parametrizes their experimental data for the
dispersion parameter o, and the mobility p at different
values of T and F. They tried Eq. (2) with the fixed value
of y and found that one can parametrize the experimen-
tal data by choosing different values of the localization
length a for describing the dispersion parameter a and
the mobility p. If a is kept constant, then one can fit the
data in Fig. 16 of Ref. 6 by assuming that y /y„=6/9.
This agrees very well with our simulation results.

The difference between y and y„shows that the
heuristic idea of the effective temperature' ' ' does not
provide a universal description of different transport phe-
nomena, though being a good first-order approximation.
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