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This paper examines an eight-band k p theory of strained semiconductors yielding energy bands, wave

functions, and momentum matrices. Only if the symmetry of the strained crystal is accounted for in a1/

terms of the Hamiltonian, a consistent definition and calculation of the momentum matrix becomes pos-
sible. The band structure and wave functions are nonanalytical functions of strain and crystal momen-
tum. For strained crystals, the extrapolation from the I point into the Brillouin zone, such as the
effective-mass approximation for the optical-matrix elements, can be misleading. For certain cases, the
heavy- and light-hole isoenergetic surfaces form complex figures resembling the indicatrix of birefringent
biaxial crystals. The symmetry of the hole wave functions causes dichroism for photon energies close to
the gap energy, while the crystal becomes optically isotropic for larger photon energies. Numerical re-
sults are presented for the eight-band k.p model of biaxially strained bulkhke 1.3-pm —In„Gal AsyP] —y

on InP being an important material in optoelectronics.

I. INTRODUCTION

Strained tetrahedral semiconductors are superior to
unstrained materials with respect to various properties
and novel efFects. ' For this, they are subject to intensive
and comprehensive investigation. For theoretically mod-
eling the band structure near the band edges, the k.p
method' is the favorite tool. Calculating the electronic
properties of direct band-gap semiconductors around the
I point, at least an eight-band model is required, that
comprises conduction band (C), heavy holes (HH), light
holes (LH), and spin-orbit interaction split-off band (SO)
plus spin. A comprehensive derivation of the corre-
sponding Hamiltonian matrix elements has been given by
Trebin, Rossler, and Ranvaud. Using group-theoretical
methods, they extended the work by Bir and Pikus and
included an external quantizing magnetic field, in order
to extract the empirical k.p model parameters from
quantum resonances in the valence bands of p-type InSb.
The group-theoretical approach has the advantage of
more systematically accounting for symmetry, what facil-
itates the determination of independent model parame-
ters, and the classification of the system's behavior, e.g.,
optical transitions. Bahder has derived various terms by
explicitly performing the Pikus-Bir ' transformation,
with detailed treatment of the spin-orbit interaction
terms. This approach is more obvious and will be adopt-
ed here.

All papers we are aware of account for the strain strict-
ly up to first order. Being consistent within the order of
approximation, this has, nevertheless, two disadvantages.
First, it violates the von Neumann principle, that the
physical observables of a system exhibit the same symme-
try as this system. This is our main objective against

such a treatment. Second, the momentum operator,
pz.~=(m /art)BH&. ~/Bk, becomes inconsistent, when the
matrix elements of the Hamiltonian H&.~ are treated
nonuniformily. Furthermore, Kane's rotation of the z
axis on the k axis becomes useless. The goal of this paper
is to show that these shortcomings are removed immedi-
ately after applying the Pikus-Bir transformation to the
terms of second order in k also.

Often, it is said that a TE electromagnetic field (the
electrical field vector E~~xy plane) is (predominantly) ab-
sorbed or amplified by the heavy holes, while a TM field
(E~~z) is absorbed or amplified by the light holes. This
holds true at the I' point, if the z axis is the axis of quant-
ization. However, the corresponding electron-hole tran-
sitions take place not at the I point, since here the densi-
ty of states vanishes, but involve states with k & 0.
Nonhydrostatic stress lifts the degeneracy of the HH and
LH band edges (I s states) and can cause an HH-LH
band mixing and anticrossing of the I point (k &0; cf,
e.g., Chuang ). This means a significant change of the
symmetry of the HH and LH wave functions, which is
important for the efBciency of various scattering process-
es or for the interaction with electromagnetic waves. In
fact, the band energies are not analytical functions of
strain and crystal momentum. ' ' Calculating the wave
functions and the momentum matrix elements as func-
tions of crystal momentum and stress, the symmetry
changes of the wave functions will be shown to be the
clue to the understanding of the irregular behavior of the
momentum matrix and, thus, oscillator strengths in such
materials. In particular, the selection rules are strongly
modified for optical transitions near the I point.

Thus, this paper is organized as follows. In Sec. II, we
first write down the SX8 k.p Hamilton matrix with
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strain on the base of the Pikus-Sir transformation. All
terms used later for numerical computations are explicit-
ly given, in order to facilitate comparison with other ap-
proaches and the derivation of the momentum matrix.
Some remarks on Kane's rotation of the coordinate sys-
tern follow. Then, a consistent de6nition of the momen-
tum matrix will be given which continues to obey the f
sum rule and the exact relation' (vk~p~vk)
=(m/A')BE I, /Bk under strain. These results are com-
pared with other approaches. In Sec. III, their quantita-
tive consequences are illustrated through computations
for biaxially strained bulklike 1.3-pm —In Ga& As„P&
on InP. This is an interesting material for optoelectron-
ics, but so far its band structure has not been greatly in-
vestigated by means of an eight-band model. First, the
energy bands are considered. For certain parameter
values, the HH and LH isoenergy surfaces form figures
resembling the indicatrix of birefringent biaxial crys-
tals. ' The character of the band states is investigated by
means of the symmetry of the wave functions. The nu-
merical examination of the effective-mass approximations
for the oscillator strength will demonstrate that extrapo-
lations from the I point to the Brillouin zone k &0 are
not generally allowed. Section IV summarizes the re-
sults. The Appendix sketches the calculation of the oscil-
lator strengths by means of a projection operator method,
which circumvents the computation of the eigenfunctions
of the k.p Hamiltonian.

II. k.p THEORY WITH STRAIN

A. Hamilton matrix

A homogeneous strain is a singular perturbation. This
singularity can be removed by means of the Pikus-Bir

transformation, i.e., the transformation of the coordinate
system of the strained crystal [x,I to that of the un-
strained one fxI: x,=(1+a).x, where e, is the strain ten-
sor. Correspondingly, the crystal momentum is
transformed as k, = ( 1 —a ) k. Most results of the k.p
theory can be carried over from the unstrained to the
strained case just by replacing the crystal momentum
component k with (5 —s )k (a, a'=x, y, z; summa-
tion over repeated indices) and adding the deformation
potential contribution. In particular, the Hamiltonian of
the strained system, H, (k, a), can be obtained from the
Hamiltonian without strain, Ho(k), as

H, (k, a) =Ho[(1 —a) k]+D(e.),

where D(a) denotes the deformation potential contribu-
tion (cf. Ref. 5). It can be taken apart into

H, (k, a) =Ho+ Ha+D(a)+H, (k, )

+H (k ) k—:(1—a) k

where Ho represents the energies of the basis states, H&
the spin-orbit interaction, D( a ) the deformation potential
interaction, and H, (k, ) and H2(k, ) the k p interaction of
first and second order, respectively. Within the basis of
atomiclike states (the superscript T denotes the tran-
spose)

u„=(SJ,Xf, Y'f, Zf, S&,XJ„F&,Z&) (ko=0) (3)

of the eight-band model for the cubic, unstrained materi-
al, the dominant contributions are represented through
the following matrices (cf. Refs. 3 and 6):

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0
3

0 0 0

Ho=

0 0 0 0 0
3

0 0 0 Eg 0 0 0

0 0

(4a)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Eg is the fundamental gap of the unstrained material and 6 the spin-orbit interaction energy there. The upper valence-
band edge ( I's states) lies at the energy E =0, when including the k-independent spin-orbit interaction
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0 0
0 0
0 i
0 0
0 0
0 0
0 0
0 1

0
0
0
0
0

0 0 0 0 0
0 0 0 0 1

0 0 0 0 —i
0 0 —1 i 0
0 0 0 0 0

—1 0 0 i 0
—i 0 —i 0 0
0 0 0 0 0

(4b)

The Hamilton matrix of the deformation potential interaction reads

a, (e +s +E„)

D(s) =

with

D3(s)
0 a, (E„+e +E„)

0 D3(a)

(4c)

D3(a) =
I,E„„+m,(e +E„)

n calyx

nczx

n ~&xy

l, E +m, (s „+E„)
n c E'zy

n, c. ,
n c Fyz

l,e„+m, (e~~+ s „)
(4c')

where a„ l„m „and n, are deformation potentials. D3(a) exhibits the same symmetry as the Shockley matrix S given
below.

We neglect the 6rst-order k p coupling between the p-like basis states and the second-order k.p coupling between the
s- and the p-like basis states, since they are believed to be small. The form of these coupling terms is given in Ref. 4.
Then,

H4(k, )

H, (k, )= H4, (k, )
(4d)

with

H4, (k, ) =

0
—iPk,
—iPkyc
—iPk„

iPk, iPk, iPk„
0 0

0 0 0

0 0 0

k, —:k —gepkp,
P=x

(4d')

where P is essentially the real-valued momentum matrix element (Sf'~B„~Xl' ). The free-electron and second-order k.p
interaction contributions are contained in the matrix

H2(k, ) =

Ak,
0

0 0 0

S(k) 0 0

0 with k, =kx, +k, +k„, (4e)

0 0 0 S(k)

Lk„,+M(k, +k„)
Nk„,k,
Nk„k,

1Vk,k,
Lk, +M (k„+k„, )

Nk„k„,

Xk,k„
Nk, k„

Lk„+M ( k„,+ky, )

(4e')

S(k, ) is the Shockley matrix' modified through the
strain transformation of the reciprocal space coordinate
system. This modi6cation can be derived by noting that
the parameters I, M, and N contain the free-electron
term, A k /2m, and momentum matrix elements with the

I

remote states, R, e.g.,

fiL= +
2m m z~sx ~z E~ —E~
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Then, the transformation of the momentum operator in
the strained crystal, p, =(1—a) p+O(s ), is carried over
onto the quasimomentum k of the unstrained crystal [cf.
Ref. 5, Eq. (29.14)]. Remember that the functions R be-
long to the unstrained crystal and, thus, are strain in-
dependent. Analogously, the term Ak is treated.

The explicit formulas (4) show that the total Hamil-
tonian (2) exhibits the symmetry of the strained crystal
only, if all k p terms are transformed in the same way.
Some practical consequences of this point of view are ex-
amined in the following subsections.

B. Kane's rotation of the coordinate system
on ihe k axis in the case with strain

For k~~z, z being the unit vector in the [001] direction,
the representation (4) of the Hamiltonian (2) is particular-
ly simple; for shear-free strain (e„~=E„,= e~, =0), it even
diagonalizes into two 4X4 blocks and the HH band
separates. For this, Kane has introduced a k-dependent
rotation of the coordinate system (without strain) such
that the x axis of the new coordinate system, x', is always
paralle1 to the k vector. Qbviously, this idea applies to
the Hamiltonian with strain only, if all k s are replaced
with (k —E &k&). Of course, this replacement has to be
done in the transformation matrices as well.

This transformation works well for all parts of the ma-
trices (4), which are cubic-isotropic. For the Shockley
matl lx (4e), this would mean S~p c ) kq 5~@+c2 k q~ k qp,
where c i 2 are k independent. This is the case for
I.X=—L, —M —X =0. I.X =0 is never met, however, in

C. Consistent definition of the momentum operator

Within the k.p representation of the Hamiltonian,
Hz.z, without strain, the momentum matrix reads (Ref. 5,
Sec. 36)

& plplv& ™~~I, & plHg. plv& . (6a)

It should be stressed that this holds only for k-
independent basis functions ~p&, such as those in u„(3).
The discussion above implies that the strain can be in-
cluded simply through

& pip. lv& ™~&g & pl~&.p(k. , e) lv& (6b)

From H, (4d) and H2 (4e) we obtain for the x component
within the basis (3) the representation

p4 (k, )

p„(k, c, ) = p4„(k, )
(7)

with

contrast, LNAO is responsible for the characteristic
warping of the valence bands. Fortunately, the terms
which prevent the 4X4 block diagonalization of 82 are
small and can be neglected in most cases. ' More
difhculties are caused by certain non-negligible off-
diagonal matrix elements generated by the transforrna-
tion of 03(s). Here, further work is necessary.

0 iP 0 0
—iP 0 0 0

o o oo+g
0 0 0 0

2Ak„,

o

2I.k,
Xk,
Xk„

0 0

Nk, 1Vk„

2Mk, 0

0 2Mk

(7')

and similar expressions for the other components, p and
pz.

D. Comparison with other approaches

In a reexamination of the signs of the imaginary ele-
ments in 8& we have obtained the same ones as Jones and
O'ReiHy, ' while other authors have written down oppo-
site ones (e.g. , Refs. 6 and 9). These signs become impor-
tant when the phases of the wave functions are
significant.

Since both the first-order and the second-order k terms
are transformed in the same manner, all terms of the
Hamiltonian (4) exhibit the symmetry of the strained
crystal and the von Neumann principle is obeyed. How-
ever, in the second-order k terms (4e), the factor (1—a)
creates terms of the order E not usually included in the
transformation of the kinetic and potential energy opera-
tors. Probably this is the reason that most authors omit
the factor (1—e):(1—e) in the k terms. But it is evident

that this omission destroys the symmetry of the Hamilton
matrix with strain. We believe, however, that consisten-
cy in symmetry is superior to consistency resting on the
order of approximation.

As an example, we consider the momentum operator.
Obviously, the representation (7) exhibits the same sym-
metry as the Hamiltonian (4) and, thus, obeys von
Neumann's principle. As shown above, its derivation
seems to be natural, while any other variant either
violates the symmetry principle, or introduces artificial
terms or ad hoc assumptions.

Many authors keep only the k-independent "P terms"
[first matrix in p4„, Eq. (7)] and neglect the free-electron
contributions to the momentum operator and others from
the interaction with the remote states [second matrix in
p4„, Eq. (7)]. These contributions re6ect the intimate
connection between second-order perturbation theory for
the Hamiltonian and first-order perturbation theory for
the basis functions. All these terms vanish for k =0, but
may become significant for the Fermi momentum k
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values in highly doped or pumped samples, as will be
demonstrated in a numerical example below.

Any consistent definition of the momentum operator in
different representations should be compatible with the
following general relation, which is exact within the ener-
gy representation

~ pklplpk ~ = ~qE~(k) (8a)

[~JLtk) denotes the band state with energy Z„(k)]. Ac-
cording to the foregoing discussion, Eq. (8a) generalizes
under strain to

(yak, ~p, ~jLtak, ) = Vz E„,(k„a) . (8b)

Equations (8) parallel the relation v =Geo/Bk; i.e., the
mean velocity of an electron or hole in state ~yak, )
equals the group velocity of the corresponding wave
packet.

The omission of the free particle and remote states con-
tributions (k terms) in the momentum matrix leads to
the result that Eqs. (8) are no longer fulfilled (but at
k =0, of course). The proof is straightforward for a two-
band model. For the eight-band model, Eq. (8b) has been
verified numerically. ' Consequently, a consistent treat-
ment of the k p momentum operator requires not only to
keep the k terms, but to perform additionally the Pikus-
Bir transformation in the Hamiltonian and in the
momentum matrix for these terms.

III. NUMERICAL RESULTS AND DISCUSSION

%"e have computed numerically the band structure, the
wave functions, and the oscillator strengths from the
8 X 8 Hamiltonian (4) for biaxially strained bulklike

o.7ioao. 29Aso. 62&o.3s being closely lattice matched to
InP. It is an interesting material for optoelectronic appli-
cations (it lases at a wavelength of A, =1.3 pm), but has
not been greatly investigated by means of the eight-band
model. The material parameters are calculated from the
quadratic interpolation formula' and the values of the
binary compounds as listed by Adachi and Krijn, ' re-
spectively; see Table I. It should be noted that the accu-
rate measurement of the hole band masses in these

quaternary compounds is still an unsolved problem,
though for the qualitative results to be stressed in this
section, this plays a minor role.

The biaxial deformation tensor reads

0 0
120 c. 0, Cp ———2

0 0 Cpa.

(9)

Thus, E) 0 (s (0) means tension (compression) in the xy
plane.

A. Energy bands

The conduction band (C) and the split-off band (SO)
behave smoothly under strain. The band edges without
strain (k =O, s=O), Ec(0,0)=E~, and Eso(0, 0)= b, —
are shifted by b,EC (0,s ) =a, (2+ C~ )s and, in the linear
regime ( ~E~ ( l%%uo), by bEso(O, e) =(1/3)(&, +2m, )(2
+Cz )e, respectively. The effective masses, mc and mso,
change only little. The strain-induced coupling between
SO and LH affects the SO band only for rather high
strain values (say, ~E~ ) 1%). Therefore, we concentrate
on the I's valence-band complex, the heavy- (HH) and
light-hole states (LH). Figure 1 illustrates characteristic
features of the band structure for difFerent strains. The
splitting of the band edges and the drastic changes of the
efFective masses for k directions not parallel to the z axis
are typical for this class of semiconductors.

For tensile strain [Fig. 1(a)], the LH states are HH-like
in all k directions, except k~~z, and vice versa. This "ex-
change of effective masses" between HH and LH reAects
a repulsive interaction between both bands, which is due
to the symmetry reduction. For compressive strain [Fig.
l(c)], the HH effective mass in the x direction is smaller
than that of the LH. But the repulsive interaction just
mentioned causes an anticrossing of both bands. We will
return to this interaction when discussing the symmetry
of the HH and LH states.

Therefore, under stress, the notions HH and LH as
used in Fig. 1 lose their original meaning, since the
effective masses of both bands strongly depend on the k
direction. For biaxial stress with the stress axis in the z
direction [cf. Eq. (9)], the conventional band curvature is

TABLE I. Material parameters for unstrained 1.3-pm —In Ga& As, P& ~ on InP.

Parameter

Fundamental gap
Conduction-band mass
Heavy-hole mass in [100] direction
Heavy-hole mass in [111] direction
Light-hale mass in [100] directian
Spin-orbit split-ofF energy
Deformation potential of conduction band
Deformation potential of valence band
Shear deformation potential
Elastic constant
Elastic constant
Lattice constant, nominally unstrained

'Reference 26.

Notion

Eg
m,
mHH

mHHiit
mLH

ac
a„
b

ao

Value

0.96'
0.055
0.692
1.0
0.065
0.267

—5.672
+ 1.179
—1.695
1.0X 10"
5.2 X 10"

0.5867

Unit

eV
mo
mo
mo
mo
eV
eV
eV
eV
kgm
kgm
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(a) 1% tension

0.0
E

-0. 1

-0.2

(b) no strain

0.0

-0.1
CD

-0.2

tG) 1% compression

k, (E)=(0,0, +k, (E)); see Fig. 1(a). Figure 2 displays the
UVB and LVB isoenergetic surfaces for energies near and
equal to the energy E, =EUv[k, (e)]=ELv[k, (e) j. Note
the similarity to the indicatrix of a birefringent biaxial
crystals, cf. Ref.

B. Symmetry of the wave functions
and character of the states

A more detailed analysis of the band dispersions de-
picted in Fig. 1 requires calculation of the symmetry of
wave functions involved. In particular, a band anticross-
ing is accompanied with a change of the symmetry of the
involved states. The symmetry of the band wave func-
tions is determined by the contributions (portions) of the
atomiclike basis functions (3). For z the quantization
axis, the wave functions at k = c, =O can be written in a
comprehensive form as (cf., e.g. , Ref. 9)

iS&

0.0

-0.1

6)

-0.2

FIG. 1. Heavy- (HH, ) and light- (LH, ) hole bands in
strained and unstrained bulklike 1.3-pm —In„Ga& „AsyP] —y on
InP; conventional band labeling (see text). (a) tensile strain:
c= l%%uo, both bands cross at k=k, =(0,0, +k, ), EHH (k, )""z
=ELH (k, )=E„(b) no strain: c=o; (c) compressive strain:

z

e= —1%. The cases k)([010], k(([110],etc. are similar to k((x.
Crystal Inomentum, k, in units of k&z =+/ao (ao is the lattice
constant of unstrained crystal). Such high strain values have
been chosen in order to depict clearly the qualitative features.

preserved only in the z direction. In order to indicate this
change, we will label these states HH, and LH„respec-
tively. Actually, these bands energies are not analytical
functions of crystal momentum and strain at E=O (cf.
Refs. 4, 11, and 12). This singularity is also found in the
strain dependence of the effective masses. '

In principle, there are two possibilities to label the I 8

valence-band complex. (i) According to their symmetry
at the I point, k =G. This is the most usual form and
will be referred to as conventional ordering. It has been
used in Fig. 1. It involves that the HH, energy, EHH, de-
creases with increasing e (tensile strain in the xy plane),
while the LH, energy, ELH, increases. For ki~z, the HH,
band separates. For k not parallel to z, the bands are
deliberately assigned as follows: EHH (E„H for e )0 and
EHH )Ez H for c, ~ 0, respectively. (ii) Strict energetic
level ordering. This will be referred to as energetic order-
ing The energ. etically higher/lower states will be grouped
into the upper/lower valence band (UV8/LVB):
EUv ~ELv for c)O and for c. (0. Both schemes have
their advantages and disadvantages.

For the isoenergy surfaces, the energetic ordering is ap-
propriate. For no and compressive strain and suKciently
small k values, the isoenergy surfaces are warped ellip-
soids, cf. Ref. 10. For tensile strain, however, the UVB
and LVB touch in the HH, -LH, crossing points

(Z)
1

HH)

SOi

X i Y —2Z
v'6

X iY — Z
v'3 v'3

(10a)

C)

LH)

SO)

C2

HH2

I.H2

SO2

iSL
—iF Z
v'2g v'2g

2X+iY + Z
v'6 v'6

X iY Z—

v'3 v'3

iS 1'

X —iY&+ Z
v'2 v'2

2X —iY Z
v'6 v'6

X+iY
&+ Z

v'3 v'3

(10b)

C2 iS 1'

HH2 X —iY

LH2
v'2g

X+iY 2Z
v'6

X+iY Z
&3

Characteristic features are the isotropy of C and SO
states and lack of a z component in HH states. The C
and SO wave functions are only less affected by the strain
(9); therefore, their k dependence is very similar to the
strain-free case. For them, one obtains essentially the
same results as Kane did for InSb. Consequently, we
will concentrate on the strain and k dependence of the I'8
group states. For the understanding of the symmetry of
these states, it is essential to note that the eigenfunctions
for I being the quantization axis,
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E(k) = 0.9 E

2'

g = +10 (tension)

kJk,

0'

upper hole band

upper hole band

the bands to be optically isotropic in the cubic crystal.
For small k values, the composition of the LH wave func-
tions is determine y

'
ed b the spin-orbit interaction. or

rs e ualk 1 s it becomes, aside from phase factors, equalarge va ues, i ec
1 both en-to that of the HH wave functions. According y,

f. Fl . 1(b).ergy bands become parallel, c . ig.
d cr stal, this polarization by the direction

of quasiparticle motion may compete wit t e pre er
sed b the strain. The interplay of strain,

spin-or i in eb't ' t raction and k.p interaction in t e symme-
tryoft e anh HH d LH wave functions is depicte in 'g.

ine b3. For sma 11 k values, the composition is determine y
Th z axis exhibits fourfold rotation symme-the strain. e z ax'

ofold. Thish'1 the x and y axes exhibit only two otry, w ie ex
wave func-makes the z axis the axis of quantization. T e wa

iven b Eq. (10a). In the unstrained case, as
the wave func-here k~~x, x is the axis of quantization, an the wave

tions are given y q.E . (10b).
m onent decreasesAs the k„value increases, the X componen ecre

in Figs 3 a 3(d), and 3(f), and the states become HH-

g = +10 (tension)
/k,

and for y being the quantization axis,

FIG. 2. Isoenergetic surfaces of the upp er (VVB) and lower
(LVB) valence (hole) bands in pin k s ace: EUv~(k)
=Ei.v~(k) =E =const. Tensile strain: c= +0.1%. (a)

' (b) E =E . k values in units of k, . E, is the energy
of the HH, -LH, crossing point k, =(0,0,k, &, c . ig. a .

1.0-

X

0.5
0
L0
CL

0.0

(8) HH,

0. f% compression

(b) LH

no strain

Y

(y)
1

HH1

LH1

SO1

iS&
X Z

X+2i Y Z

—X+iY1+ Z
~3 &3

(c) HH,

0.0-

1.0-

X

(g) 0.5-—
0
0

(d) LH

Y, Z

0. f% tension
(10c)C2 iS)

HH2 X Z
&2 2LH2 —X+2iY ) Z

X+iY Z
&3 &3

functions of the (unstrained) Hamiltonian,are also eigen unctions o
m. The functionsH +H, and of the angular momentum. e unc

'

(10a)—(10c) are the limiting cases of the w
0

~ ~ ~ f the wave functions
r k~0 and It~[z, k~~x, and k~~y, respectively. Due to

the degeneracy of HH and LH at
unique limit or —+, uf k 0 b t a dependence on the direction

~ sIn the unstrained crystal, the k p interaction polanzes
the states along the direction of k. it in e
Y and Z for the valence bands [see Eq. (3)], the HH wave
f t has no component in the direc tion of k. As k

-band statesrotates, the composition of the valence- an
changes accor ing y.d' 1 Note that this is even necessary for
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Th th exchange of s- and p-like asis s ax g-

n- and the valence-band states caused ytween the conduction- an e va
the k.p interaction is carried almost completely y t e
alone.
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like. In contrast, the states in Figs. 3(b) and 3(e) become
I.H-like with respect to the axis of quantization x and the
spin-orbit interaction being the dominant interaction. In
the case of tensile strain and medium k values, k not
parallel to z, the standard labeling is misleading
[k„=10 —10 '

kBz in Figs. 3(e) and 3(f)].
For large k values, the k p interaction dominates. Be-

sides the factor (1—E) introduced by the Pikus-Bir trans-
formation, it is isotropic. Correspondingly, in all cases
shown in Fig. 3, the symmetry is HH-like. As the small
differences between the F and the Z portions are caused
mainly by terms of first order in the strain, the wave
functions in Fig. 3(e) [3(f)] are LH-(HH)-like, in contrast
to the standard labeling.

Consequently, for small k values, the standard labeling
is appropriate, while for larger k values, k not parallel to
z, the energetic labeling is. A similar behavior has been
found for biaxially strained semimagnetic semiconductors
in an external magnetic field 8~~x.

The symmetry of the states determines the optical
selection rules. Within the eight-band model, the oscilla-
tor strength for interband transitions and an electromag-
netic field being linearly polarized in, say, the x direction
is determined by the S component of the wave function of
one band state and the X component of the other one.
Thus, we obtain dichroism for optical transitions near the
band gaps and isotropy for larger photon energies.

C. Momentum matrix and oscillator strengths

The "irregular" behavior of the symmetry of the
heavy- and light-hole wave functions in dependence of c,

and k should be rejected in the dispersion of the oscilla-
tor strengths. In order to quantify the importance of a
consistent treatment of the momentum operator, we have
calculated numerically the interband oscillator strengths,

i&@oak, ip, ivpsk, )i'
f,„(k„s)= mo, E„,(k„s)—E,(k„s)
(p=c; v=HH, LH; p, o =1,2, the Kramers degenerate
subband indices). A projection operator technique has
been used, which circumvents the evaluation of the wave
functions (see the Appendix). In Fig. 4, some results ob-
tained by means of the exact formula (6b) are compared
with those of two common approximations for the
momentum matrix. In the first one, the k-dependent
terms [second matrix in p4, Eq. (7)] are neglected. The
second one is the effective-mass approximation,

E„,(0,s) —E,(0,s)
PaPv( E& ) PaPv( & ) E (k ) E (k &)pg g& VE F&

for allowed transitions.
Obviously, the deviations of both approximations from

the exact results are small in unstrained materials, while
the effective-mass approximation (12) fails principally in
strained crystals. The reason for that is the following.
Since the momentum operator has a defined parity (odd),
the oscillator strength becomes sensitive to detect the
symmetry of the involved states. The band mixing effects
discussed above result in nonmonotonous compositions of

CD
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FIG. 4. Oscillator strengths, f(k, e), of transitions C-HH,
and C-LH, as functions of k (k in units of k&z=m/ao). (a) C-
HH„e=O; (b) C-LH„c=O; (c) C-HH„c, = —10 (compres-
sion); (d) C-LH„c= —10 ' (compression). Full lines: con-
sistent definition of the momentum matrix elements and numeri-
cally exact diagonalization of the eight-band Hamiltonian; dot-
ted lines: effective-mass approximation, Eq. (12); dashed lines:
omission of the k terms in the momentum matrix, cf. Eq. (7').
The oscillator strengths shown are values averaged over the k-
space directions x, y, and z as f«q(k„e) =[f«„(k„„e)
+f"„„(k„E)+f"„„(k„,e)]j3. This neglects the angular disper-
sion of the energy bands, but the purpose here is to demonstrate
the qualitative failure of the effective-mass approximation for
strained materials.

the hole wave functions and, therefore, in nonmonoto-
nous dispersion of the oscillator strength. This behavior
cannot be reproduced by Eq. (12), since the gaps are
monotonous functions of c and k. Consequently, extra-
polations from the I point to the case k )0 are by no
means a valid approximation, especially in strained crys-
tals.

IV. SUMMARY AND CONCLUSIONS

We have reconsidered the k.p theory for homogene-
ously strained semiconductors with particular attention
to the second-order k terms and the momentum operator.
Our main results are the following. (i) The second-order
terms have to be multiplied with (1—s):(I—s), in order
to obey basic requirements of symmetry, although this
procedure introduces contributions which are of second
order in the strain s. (ii) The second-order k terms are to
be included in the framework of a consistent treatment of
the momentum operator. (iii) There is a heavy-hole and
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light-hole band mixing and anticrossing, except along
some higher-symmetric directions. Consequently, extra-
polations of k-dependent parameters from the I point to
values of k &0 are not straightforward. Moreover, the
notions of light-hole band and heavy-hole band can be-
come misleading for k & 0 when considering the symme-
try of these states, since the latter changes dramatically
as a consequence of state mixing. This is important to
recognize for the interpretation of the optical properties
of strained materials.

Numerical results for the band structure have shown
bulklike 1.3-pm —In Ga& As„P &

„nearly lattice
matched to InP as a representative of this class of semi-
conductors. Hence, our results for the momentum opera-
tor and oscillator strengths should apply to other materi-
als of this type as well. These are (i) that the neglection
of the k terms can result in signi6cant numerical devia-
tions for practically relevant cases, and that (ii) the
efFective-mass approximation for the k dependence of the
momentum matrix elements is applicable in special cases
only. In unstrained materials, the efFective-mass approxi-
mation produces, in general, a too weak k dependence of
the oscillator strengths; while in strained material, it is
not able to reproduce their nonmonotonous behavior at
all. Consequently, a realistic model of momentum-
related properties (e.g. , optical properties, momentum re-
laxation) requires (i) a consistent definition of the momen-
tum operator within the representation considered, such
as Eqs. (6) and (7) and (ii) the calculation of its energy
representation by means of an exact method (cf. also Ref.
4).
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APPENDIX: PROJECTION OPERATOR METHOD FOR
CALCULATING THE OSCILLATOR STRENGTH

WITHOUT WAVE FUNCTION

The projection operator

P,&(r, r') = g g„«(r)f„«(r')'
P

(A 1)

projects on the subspace of the eigenstates f, z(r) of the
Hamiltonian H to the band v and crystal momentum k (p
degeneracy index):

Thus, we have presented band structure, wave func-
tion, and oscillator strength calculations for 1.3-
pm —In~Ga& „AsyP& y on InP using an eight-band k-p
model and accounting for the von Neumann symmetry
principle and consistency of the momentum operator.
These results can be useful also as asymptotic values for
investigations on quantum wells of varying thickness, and
the formulas used may serve as a starting point for com-
puting the polarization and strain dependence of optical
properties of this material.

~(r, r')lt „«(r')= g 1t„~(r)f f f g„&(r')'

=E„gg,«(r),
P,g(r, r')Q„g(r)= g P, g(r) f f f f„g(r')'g„g(r')dr'=5„„$, „(r) .

P

The optical matrix elements entering the oscillator strength can be expressed as follows:

I &poklplvpk&l'= g f f f g„~(r)'pP.«(r)dr f f fg.«(r')'pg„~(r')«'

(A2)

(A3)

=tr(P„pP„p) . (A4)

The trace opens alternative calculational options, since it
is representation independent. The crucial point is that
there is another formula for the projection operator,
which is independent of the eigenfunctions of the Hamil-
tonian,

plication to the calculation of higher-order transition
probabilities entering the calculation of nonlinear optical
properties is in progress.

Finally, we remark that from Eq. (A 1), it follows im-
mediately that

H —E„kX1
P..= n

P+v vk Pk
y I &...Iy.«& I'=(P., ),....
P

(A6)

(1 is the unit operator). The proof is straightforward by
using (A3) and (A2). Therefore, P„z and p can be calcu-
lated most conveniently within the basis u„; the eigen-
functions of H are not needed. The formalism even
simpli6es, when both H and p block diagonalize. Its ap-

This means the portion of the basic state u„ in the eigen-
state P„«equals the corresponding diagonal matrix ele-
ment of the projection operator onto the eigenstate f
in the representation of these basic states f u„
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