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An effective Hubbard model for one-hole d-like states and two-hole singlet states is derived
from the original p-d model to describe the low-energy electronic spectrum of the CuO; plane in

cuprates.

By using the projection technique for the two-time matrix Green’s function in terms

of Hubbard operators a two-band spectrum for d-like holes and singlets as well as the density of
states is calculated. It is found that the hybridization between d-like holes and singlets results in a
substantial renormalization of the spectrum. In addition, the dispersion relation depends strongly
on the antiferromagnetic short-range spin correlations in the spin-singlet state: For large spin-
correlations at small doping values one finds a next-nearest-neighbor dispersion. With doping, by
decreasing the spin correlations, the dispersion changes to an ordinary nearest-neighbor one.

L. INTRODUCTION

An important contribution to the understanding of the
low-energy electronic spectrum of copper oxides has been
done by Zhang and Rice! who pointed out the remark-
able role of singlet formation for doped oxygen holes
due to strong Coulomb correlations. Starting from the
original p-d model proposed by Emery? and Varma et
al.® they have derived an effective one-band t-J model
for the copper-oxide plane. The appearance of singlet
quasiparticle states inside the p-d gap was proven by dif-
ferent methods based on exact diagonalization,* cluster
calculations,®® projection technique,” and other calcula-
tions. It should be noted that the commonly used local-
density approximation® cannot describe such a singlet
band formation due to the insufficient treatment of elec-
tronic correlations, which questions the results of these
calculations.

Recently,®'° the original Zhang-Rice procedure has
been considerably improved in terms of the so-called cell-
perturbation method (see also Refs. 11, 12). It results in
simple analytical formulas to reduce the p-d model to an
effective singlet-triplet model. Applying the equation of
motion method for Green’s functions (GF) it has been
found, however, that the coupling between singlet and
triplet band is very small.l® So we are left with a one-
band t-J-like model. One can also use this formalism as a
basis to investigate the pairing, which may be induced by
either the electron-phonon or the exchange interaction.!3

The reduction to a ¢t-J model has some disadvantages,
however, which may be listed as follows: First of all, it
neglects completely the charge fluctuations between the
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singlet and the one-hole d-like states. As will be seen
in the following, such a hybridization modifies the spec-
trum in a considerable way and cannot be neglected. Sec-
ond, the t-J model does not reproduce in a correct way
the spectral weight transfer that occurs with doping.141®
More important difficulties may arise if one would like
to calculate the pairing induced by the exchange inter-
action: The J term in the Hamiltonian describes this
effect only in a static and instantaneous way. That is
quite similar to the BCS Hamiltonian for the electron-
phonon mechanism. It does not deal with the dynamical
effects of the exchange interaction as has been done, for
instance, in Ref. 16 in analogy to the Eliashberg theory of
the electron-phonon case. To solve all these problems we
present in the following the reduction to an effective Hub-
bard model for one-hole d-like states and two-hole singlet
states and avoid the further second-order perturbation
theory to obtain the J term in the Hamiltonian. That
keeps the possibility to describe the dynamical effects of
the exchange interaction in terms of Green’s functions.

The main purpose of the present work consists in the
presentation of a new Hamiltonian in large analogy to
the Hubbard model. In contradistinction to the usual
case, one ends up with an asymmetric model with dif-
ferent hopping integrals for the singlet and the one-hole
bands. That may give a good starting point to study the
differences between electron and hole doping. The use
of such a Hamiltonian has also some practical reasons
since several techniques are easier to apply for a Hub-
bard model than for a ¢-J model. That is especially true
for the Green’s functions decoupling scheme that is used
here.

Then we apply the projection technique for the two-
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time matrix GF in terms of Hubbard operators. One ends
up with a self-consistent system of equations for the one-
particle GF. Their solution gives a two-band spectrum
for d-like holes and Zhang-Rice singlets. We consider in
the present work only the paramagnetic state, which may
have, however, strong short-range antiferromagnetic cor-
relations (spin-liquid state). The system of equations de-
pends on these spin-correlation functions as parameters.
The second task of our calculation consists in an analysis
of the strong influence of short-range antiferromagnetic
spin fluctuations on the dispersion relation of the one-
particle GF. It will be shown that its character changes
dramatically by decreasing the spin-spin correlations.

The paper is organized as follows: After presenting the
reduction procedure from the p-d model to an effective
two-band Hubbard model in Sec. II, we define the one-
particle GF in Sec. IIL. In Sec. IV we derive the self-
consistent system of equations. We present the results of
a numerical calculation in Sec. V. Finally, we summarize
the results.

II. TWO-BAND MODEL HAMILTONIAN

We consider the original p-d model®? in the limit of
strong correlations at the copper sites, Uy — oo. By
taking into account only the most important terms, it
can be written in a simple form

H = €d Z J-L-Jia + €p Zp:ngpma
1,0 m,o

+t Y Sim(dlopme + He) (1)

i,m,o

where J:-'a = d}a(l — n;5) denotes the creation of a hole
on a copper site ¢ provided there is no other hole with
spin & = —o; p! _ creates a hole on an oxygen site m
and S;,, = %1 depending on the position of the site m
in the unit cell ¢ in agreement with Ref. 1. The hopping
p-d integral t and the difference between the hole energy
levels for oxygen and copper, A = ¢, — €4, are the only
two parameters in model (1).

To derive the singlet band, it is reasonable to simplify
this Hamiltonian (1) further, following mainly Refs. 9
and 10. Let us summarize the main steps: introducing
the symmetric combination of oxygen operators pz(f,) in
the unit cell ¢ according to Ref. 1, we can define the
orthogonal Wannier states c¢;, by the equation

Py = % D SimPme = D Vij Cjo - (2)
m j

The overlapping parameters

1 1 s
Vit =5 2 \/ 1— 3 (cosky +cosky)e™=0  (3)
k

decrease rapidly, but nonexponentially with the distance
(=0 vo =vj; ~096,1, =v; ita,,, =~ —0.14, and
V2 = Vjjta,+a, = —0.02 (see Ref. 9). Taking into ac-
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count in the following intercell perturbation theory of all
the Wannier coefficients v;;, we would obtain an artifi-
cial sharp cusp in the dispersion curve at the I' point
[k = (0,0)].1° That is a known artifact of the Wan-
nier representation for nonisolated bands.!” Therefore,
we consider in the present calculation the Wannier coef-
ficients v, V1, and v;, only. Using the orthogonal Wan-
nier states c;, in (2), we can write the Hamiltonian in
the form

H = Z{ed‘izajiv + epc;racia + VW (Jl—:,cia +H.c.)}
io

+ 3 Vi{dl,cjo + Hel (4)

i#jo

where V;; = 2ty;; and Vy = 2tyg. Since |Vj;| <« Vo,
one can consider the last intercell term in (4) as a small
perturbation to the intracell part given by the first term
in (4).

As was shown in Refs. 9 and 10 the first intracell part
can be diagonalized within one unit cell. That gives for
the lowest one-hole d-type state

|Ds) = cos 6y d|0) —sin6, cf|0), (5)

and the two-hole state with the lowest energy is the sin-
glet state

1
V2

where the vacuum state |0) has no holes and tan26; =
2Vo/A, tan26y; = 2\/§VO/A. The corresponding one-
hole Ep and two-hole energies E, are given by

1
(ca+ep) = 3/ A% +4VE, (7)
VA2 +8VZ . (8)

Another one-hole p-type state has higher energy than
the d-type state (5) and can be neglected in the subspace
of one-hole states. The singlet states (6) are the lowest
among the two-hole states and have to be filled first with
doping. At small doping, we can also neglect the triplet
states with the energy E, = (eq4 + €p) since the mixing
between singlet and triplet bands is rather small.!®

By introducing the Hubbard operators in the subspace
of the one-hole states |D,) (5) and the singlet states |v)

(6)

|9) = cos 0 —=(dlc] — dlcl) |0) —sin6; clcf [0), (6)

Ep =

N =

N | =

1
Ey = 5(ea +3¢p) —

quo’ = |Di0><Di0'|’ quo = |D10)<0| ’ (9)

X722 = i) (el , XP° =)0, X7 =|¢:)(Dio|,

(10)

we can write the intracell part of the effective Hamilto-
nian in the form
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Ho=Ep Y X{"+E,Y X2 (11)

By projecting the original p and d operators in the
intercell part of the Hamiltonian (4) onto the subspace
of one- and two-hole states (5), (6)

cf, =20A4.X% —sinf,; X°°,
(12)
dt" = 2044X% + cos 0, X°° |

where 20 = £1, we can write the intercell term in (4) in
the form

Hie = Y {thX2 X7 +t]X7°X07
i#£jo

D -4 o o &
+20tiP (XX + XX} (19)
The effective hopping parameters are given by!°
t:{; = ‘/”K,/"/,, K¢¢ = 24A4A.,
t;; = Vi; Kpp, Kpp = —2sinf; cos by,

t;/;Dz‘/in¢D, K,,,D:AccosOl—AdsinHl,

(14)
with the coefficients
Ag = —-L sinf#; cos@
d \/-2— 1 2
1
A.=5sin6; sinfy + —=cosf,; cosbs . (15)

V2

Therefore, the total Hamiltonian of the two-band model
for d-like holes and singlets takes the form

H = Ho + Hint — pN (16)

where we have introduced the chemical potential x4 and
the number operator

N = ZN = Z(zx,?z + EX{"’) . (17)

It is easy to prove that the number operator (17) acting
in the subspace of one- and two-hole states (5) and (6)
satisfies the necessary condition [N, Hy + H;n] = 0. This
condition is not satisfied for the number operator for the
original p and d holes in (1) written in terms of the Hub-
bard operators given by (12) since the higher-energy one-
and two-hole states were ignored in the model Hamilto-
nian (16).

To prove the importance of the hybridization term in
(13) between D holes and singlets, we estimate the hop-
ping parameters (14) for the case of strong intracell cou-
pling: 2t = A = ¢, — €4. Direct calculation in (14) gives
us

K¢¢ ~ —-0.477, KDD ~ ——0.887, K¢D ~ 0.834 . (18)
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This estimation shows that the t-D hybridization is
rather strong being much larger than the singlet-triplet
coupling Ky, considered in Ref. 10: Kyp >>| Ky, |~
0.08. In the limit of small p-d hybridization, t/A — 0,
while all the coefficients Kyy, Kpp, and Ky, tend to
zero, Kyp has a finite value, Kyp — 1/v/2. Therefore,

in this limit the effective hopping parameter t¥P van-

ishes linearly with V;; oc t while all the others, tf’j,tg ,
are proportional to (t2/A). As a result, the interband
1¥-D hybridization gives a rather strong renormalization
of the singlet band dispersion being of the same order of
(t2/A) as the original one t:ﬁ

The two-band Hubbard-like model (16) in comparison
with the original p-d model (1) takes into account the
formation of a new singlet band for doped p holes due
to strong Coulomb correlations on copper sites. The ap-
pearance of the singlet band due to many-body corre-
lations was proven by different methods (see Refs. 4-7)
while it cannot be obtained in the framework of standard
band-structure calculations based on the local-density
approximation.® On the other hand, the one-band t-J
model for singlets ! considers the one-hole d-like band
only in a static way by an effective exchange J term
and it neglects charge-carrier fluctuations that prevents
a proper study of charge transport in the CuO, planes.
In general, the two-band model (16) can be considered as
the standard Hubbard model with one-hole and two-hole
(lower and upper) subbands but with highly asymmetric
hopping parameters (14) and the single-site correlation
energy U ~ A = ¢, — €4. Therefore, we can apply to
this model well-developed methods in the theory of the
standard Hubbard model.

ij

III. GREEN’S FUNCTIONS

To consider the hole spectrum for the two-band model
(16), we employ the equation of motion method for the
two-time GF. By using the projection technique we ob-
tain the Dyson equation, which will be solved in a gener-
alized mean-field approximation neglecting finite lifetime
effects.

To study the two-band problem, we have to introduce
the matrix Green’s function

Gijo(t —t') = (Xin (t); X1, (¢)) (19)

where we have used Zubarev’s notations!® for the anti-
commutator GF for the two-component operators

- Xo2
X’if’ = (Xz()a' ) )

By differentiating the GF (19) over time t we get for the
Fourier component the following equation:

X, = (X X2°). (20

wGijo(w) = 8% + (Zio | X1, Nw (21)

where Z;, = [X'i,, H] and

>z=(x¢ 0) (22)

0 xp
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with the matrix elements

xo = (xb) = (XP? + X7°)
p = (xi2) = (X7 + X°) . (23)

Here and in what follows we consider a spin-singlet state
for which the correlation functions (23) do not depend
on the spin o. For the two-band model (16), we have

XP+) X7+ X2 =1 (24)

that implies xp = 1 — xy.-

Now, we project the many-particle GF in (21) on the
one-hole one by introducing the irreducible (irr) part of
the Zia operator

(Zio | X1) =" Bio(Xno | XL,) + (257 | X1, -
k
(25)
The projection is defined by the condition
{287, =0, (26)

which results in the equation for the frequency matrix

XLhxt. (27)

Here {A, B} and [A, B] are the anticommutator and the
commutator for the A, B operators, respectively. After
performing the necessary commutations of the Hubbard
operators with the Hamiltonian (16), we obtain the fol-
lowing representation for the matrix (27):

Eijo’ = ({[Xiaa H]7

B =8 E¢—ED~;L+A$¢ AgD
e = B apt Ep— i+ ADP
D
5 Ky
+(1 - 6,‘1‘)‘/,;]' . (28)
D
K¢ KBP

The components of the matrix are determined by the
energy shifts

A%y = Z"ik(Kw(X?&XZz) + Kpp (X7 X7°)),

AZPxp = =) Vie(Kypy (X7 XZ) + Kpp(X7°X0°)),
ki
A¥Pxp ==Y Vi(Kpp(X7*X7°) + Kyy (X7°XT?))
ke
—20 % VaKyp (X7 X7 + X7°X07), (29)

and by the renormalized hopping parameters

K,J, Xy = K1/)¢<XW.X],, + X7°X7%) — Kpp(X{*X2°),
K22 xp = —Kyy(X2X3°)
+Kpp(xiaxs, + X{7X77),
K2 xp = —20Kyp (Xt xE, — X{TXT7 + XP2 X2 .
(30)
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For E Ja , we have the equation

E'A]a X = ( zga)*XD . (31)

Now we introduce the zero-order GF in the generalized
mean-field approximation by neglecting finite lifetime ef-
fects due to Zi:

GYo(w) = {whodij — Eijo} %, (32)

where 7y is the unity matrix. By writing the equation of
motion for the irreducible part of the GF in (25) with re-
spect to the second time t’ and performing the same pro-
cedure as in (25) for the right-hand side operator X ;a ),
we get

irr ) 5 (irr 5 (irr)t P, A
(28D | RN =428 280"y 17 @Y, () -

%
(33)

By using (21), (25), and (33), we can obtain the Dyson
equation for the GF (19) in the form

éijo'(w) = 1]0 w) + ZGtka(w Mkla(w)GlJG'( )’ (34)

where the self-energy operator Mkw(w) is defined by the
equation

Tijo(w) = Mijo(w) + D Miko(w)GYyy (w)Tijo(w) . (35)
kl

The scattering matrix is given by the equation

-

Tijo(w) =

Equations (32) and (34)—(36) give an exact representa-
tion for the one-hole GF (19). To calculate it, how-
ever, one has to apply some approximation for the many-
particle GF in the scattering matrix (36), which describes
the finite lifetime effects.

A._ irr 5 ir'r ~—
W2 | 250y, Y (36)

IV. SELF-CONSISTENT SYSTEM
OF EQUATIONS

In the present section, we consider an approximate so-
lution for the zero-order GF (32). For that we introduce
the g representation for the GF (32) and the matrix ele-
ments in Eq. (28):

Z GOJO' (w)e_zq 3

K2P(q) = ZKS;KZ —iaj

G2 (q,w)

v(q) =2 Z voje " = y1(q) + 2(a),  (37)
J#0

where 7; and 7y, correspond to the nearest-(nn) and next-
nearest neighbors (nnn), overlapping parameters v;;(3).
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Then we can solve Eq. (32) in the form

Go(qw) = {wro — Eo(q)} 'R, (38)

where the q representation for the matrix (28) can be
written as

@ = (il ) @

Here, the energy spectra for unhybridized singlets and D
holes are defined by the functions

wy(q) = By — Ep — p+ ALY + V¥ (a),
wp(q) = Ep — p+ A2P + VPP
p(@) = Ep —u+A;7 + V.77 (aq), (40)

while the hybridization interaction is given by
WEP = ALP + VP (a) . (1)

The effective interaction in (40) and (41) according to
(28) and (37) has the form

Ve(a) = 1 S VKA (k) . (42)
k

By using the matrix representation (39), the zero-order
GF takes the final form

A0 _[lw—wpl@lxy -WIPx
Go(q,w) = { —W?""sz v [w —w¢(q)]D)(D }
{lw - (@]lw - 2@}, (43)

where the hybridized spectra for singlets (¢) and D holes
are given by

1 1
Qy,0(q) = 5wy (a) + wp(@)] + F{lwy(a) — wp(a@)]®
+AWPPWPY/2 | (44)
To obtain a closed system of equations, we have to cal-
culate self-consistently the correlation functions in (29).
The energy shifts AP (29) can be readily calculated

by using the spectral representation for the one-hole GF
(43). For instance, one has

af 8\ __ t afd 5
.Z.V""(Xi X7%) = 5 D v(@(XgPX3%)
J#i q
t o dw
= N;*r(q)/_w Fpnperm
1
X[~ | X3 | - (49)

But to calculate the two-particle correlation functions in
Kf]‘ﬁ (29), we have to adopt some approximations. For
instance, according to a procedure proposed by Roth!® a
two-particle correlation function, e.g.,

(XX = (X X72X30) (46)

can be calculated from an equation of motion for the
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subsequent many-particle GF
(X (1); X72X7%) (47)

Such a technique was used for the original Hubbard
model?? giving the spectral function in good agreement
with exact diagonalization results. It was found, how-
ever, that the Roth procedure underestimates slightly the
value of the nearest-neighbor spin-spin-correlation near
to half filling. Therefore, we consider in the following
calculation the spin-correlation functions like parameters
and deal with their doping dependence only phenomeno-
logically.

In the present paper, we decouple the product N;N; of
the numbers operators IV; (17) on different lattice sites
i # j like in the Hubbard-I approximation but we keep
spin correlations. By using the representation

5 1
P o5 __ oo 22
Xty + X77 = 2(% X774+ 2X; )
1 oo oo o
+‘2‘(Xi - X7%) + X;

1

= §Ni + 2087 + 57, (48)

where 20 = £1, §7 = £1/2, and 57 = Sii, we can write

(XL + (XZ7XZ7) = (AN; + 20S) (AN, + 2057)
+5752)
~ XXy + (S:S;) (49)

and analogous expressions for (X?anDo)’ (xgxﬁ,) We
neglect also correlations in the creation and annihilation
of pairs

(XP2XP) = (XP2)(XP%) = 0. (50)

For a spin-singlet state without long-range magnetic
order, the GF (43) and the one-hole spectrum (44) do
not depend on the spin o = £1/2. But short-range mag-
netic fluctuations may give a considerable contribution
for the spin-correlation function (S;S;) in (49). As it is
well established, antiferromagnetic spin fluctuations are
very strong in CuQO; planes even in the metallic region at
low temperatures and they should be taken into account
in the renormalization of the hole spectrum.

Now, by using the corresponding 7;(q) and v2(q) in
(387), we can write the following equation for the effective
interactions (42):

V¥4 (q) = tKyyxy Z’n(q)(l +x0/x5),  (51)

VP (@) = —20tKypxy Y vi(@)(1 — x{? /xyxp) ,

k2

(52)
where 7 = 1 for nn and 7 = 2 for nnn. We have also
VPY%(q) = V¥P(a)(xp/xw) while VPP (q) is given by
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(51) with the appropriate change of indexes, ¥ — D.
Here we have introduced spin-correlation functions for
nn

X = (S:Sixa,,) 59)
and for nnn
x? = (SiSita,+a,) > (54)

which are site independent for a spin-singlet state. These
correlation functions will be considered in the numerical
calculations in the next section as phenomenological pa-
rameters.

Now we can perform self-consistent calculations for the
one-hole spectra of D holes and singlets and the corre-
sponding density of states. To study the doping depen-
dence of the spectra, we have to find out also the position
of the Fermi level p from the equation for the average
density of holes

1 oo
n=y T = (Sxee+ zx32>
- lz ®_dw _EIm[Gw( w + i8)
SO B al e Gl

+GPP(q,w + i&)]} . (55)
There is also a useful relation

X,/,=1—-XD=’I’7,/2, (56)

which follows from (24). In the next section, we consider
some numerical results of the self-consistent solution of
the obtained system of equations.

V. NUMERICAL RESULTS

We will analyze three cases with hole numbers n =
1,1.2, and 1.4, respectively. There are strong antiferro-
magnetic correlations in the undoped case n = 1. We
use in the present calculation the nearest- and next-

nearest-neighbor spin-spin correlations x,(f) of the two-
dimensional Heisenberg model. Within the linear spin-
wave approximation, we obtain xgl) = —0.336 and ng) =
0.202.2! That corresponds to an infinite spin-spin cor-
relation length £. Neutron scattering experiments for
Lag_,Sr;CuOy4 (Ref. 22) show a decreasing correlation
length ¢ with doping. Therefore, we expect reduced ab-
solute values for x,(f) in the doped case n = 1.2. For sim-
plicity, let us assume a Lorentzian shape for the static

spin susceptibility xq
1 iad
(SS;) = D xqe™ (57)
q

which is peaked around the antiferromagnetic wave vec-
tor (m,m):
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_ c()
1+€2[1 4 L(cosqs +cosgy)]

Xq (58)

The value of C(§) is determined by the condition
(S;S;) = 3/4. Assuming for n = 1.2 a spin-spin correla-
tion length & of the order of the lattice constant £ = 1, we
obtain from (57) and (58) X = —0.10 and x{¥ = 0.03.
These values will be used for n = 1.2. For the overdoped
case n = 1.4 we expect no antiferromagnetic spin-spin
correlations and we set them equal to zero.

We calculated also the influence of the energy shifts
(29) on the spectrum. It turned out, however, that they
are very small and their influence on the spectrum can
be neglected. Therefore, we will present the results of
our calculations without the inclusion of these energy
shifts. Then, besides the spin correlations, the param-
eters Xy, XD, and the position of the Fermi level depend
on the doping. The Fermi level will be determined self-
consistently from Eq. (55), while x4 and xp are given
from (56). So, with doping, the parameter x, which is
proportional to the spectral strength of the singlet band
increases and the corresponding parameter x p of the one-
hole d-like band decreases.

In Figs. 1(a)-1(c), we show the dispersion relation for
both bands (44) for n = 1,1.2, and 1.4 with the spin
correlations discussed above. We chose the parameters
A = 3 eV and t = 1.5 eV. For comparison, we present
also the result if we would neglect the hybridization be-
tween singlet and one-hole band. One may note that
the hybridization between D hole and singlet band is
very crucial to obtain the correct dispersion relation for
n =1 and 1.2, but less important for n = 1.4. To study
the influence of spin correlations, one should compare
Fig. 1(a) with Fig. 1(c). First of all, one observes a
complete change of the dispersion due to the spin cor-
relations. Without them, in Fig. 1(c), one has a simple
nearest-neighbor dispersion as for free holes. Qualita-
tively, the same behavior may also be observed in all the
slaved boson calculations or in the first analysis of the
singlet-triplet model'® neglecting the influence of the spin
system on the quasiparticle dispersion. The strong an-
tiferromagnetic correlations suppress nearly completely
the nearest-neighbor dispersion. They allow only a mo-
tion on one sublattice, dominantly, which gives rise to
a next-nearest-neighbor spectrum. Decreasing the spin
correlations from their value in the undoped system to
zero, one obtains a continuous change of the shape of dis-
persion. Figure 1(b) shows an intermediate stage where
the dispersion of the singlet band is very flat between
(m,0) and (7, 7). A similar change of dispersion has been
found recently in a variational study of the ¢-J model.23

Besides the dispersion relation (44), we also calcu-
late the density of states, i.e., the imaginary part of the
Green’s function —2Im(G¥¥ + GPP). That quantity is
normalized such that it gives the number of holes if one
integrates up to the Fermi level. The density of states is
shown in Figs. 2(a)-2(c) for the same parameters as the
band structure Figs. 1(a)-1(c), respectively. To clarify
the amount of hybridization between singlet and one-hole
d-like band, we present also the mixed Green’s function
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——%ImG‘/’D . The most remarkable detail consists in the
occurrence of Van-Hove singularities near to the bottom
of the singlet band in Figs. 2(a) and 2(b). We find the
Fermi level in the singlet band near to the maximum of
the density of states for the doped case Fig. 2(b). That
may give a possible foundation for the Van-Hove sce-
nario of high-temperature superconductivity. The very
high density of states in Fig. 2(b) in comparison with
Figs. 2(a) and 2(c) is due to the flat dispersion region
in Fig. 1(b). The Fermi level of the overdoped system
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n = 1.4 is far away from the Van-Hove singularity. An-
other interesting detail consists in the ratio between sin-
glet and D-hole band. With doping, the integrated spec-
tral weight of the D-hole band decreases, but the spectral
weight of the singlet band increases in agreement with
other studies of the spectral weight transfer.14:10

Let us discuss some details of the singlet band disper-
sion in the undoped case. In Fig. 1(a), we find min-
ima of the singlet dispersion at (w/2,7/2) and (w,0),
which are nearly degenerate, but (,0) is lower in en-
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ergy. These two minima correspond also to the double-
peak structure in the density of states. If we would ne-
glect in the present calculation the next-nearest-neighbor
hopping v2, we would obtain a complete degeneracy be-
tween (7/2,7/2) and (m,0). The reason for that consists
in our special decoupling procedure such that the spin-
correlation function

X = (SiSix2a,,,) (59)

Indeed, it was shown in Ref. 24 that
the inequality ng) < x§3) gives rise to a minimum at
(m/2,7/2). So, it might be that an improvement of the
present calculation shifts the minimum to (7/2,7/2).
That would also be in agreement with other studies of
the one-hole motion in an antiferromagnetic state.2%:26 It
was shown by variational studies?”:23 that the antiferro-
magnetic long-range order is not a necessary condition
to observe such a dispersion and that the main features
are also preserved in a spin-liquid state with only short-
range antiferromagnetic correlations. In that case, how-
ever, the degeneracy between (w,7) and (0,0) is lifted
and one finds (7, 7) to be higher in energy [see Fig. 1(a)].

It is clearly visible in Fig. 1 that the change of the dis-
persion for the singlet band with doping occurs mainly at
the point (7, 7) and not at the I point. It results mainly
due to the suppression of x4 at the point (m,7) by de-
creasing £ in (58). Furthermore, there is a flat disper-
sion region around (7, 0), which is even enhanced in the
doped case [Fig. 1(b)]. Interestingly, such a flat disper-
sion region was observed recently, both in experiment?®
and in a Monte Carlo calculation.2® In agreement with
the experiment,?® we find the Fermi level in the singlet
band below the band position at (m,0) [Fig. 1(b)]. The
energy difference, however, is too small, only 5 meV in
contrast to the measured 30 meV. But to find all these
details in agreement with experiment is beyond the scope
and the accuracy of the present calculation. Another dis-
agreement is the position of the point (7, 7) in the singlet
band above the Fermi level for n = 1.2. That gives also
rise to a wrong feature in the Fermi surface shape. Be-
sides this wrong detail, the Fermi surface for n = 1.2 has
some similarities to the large Fermi surface of the usual
band-structure calculations within the local-density ap-
proximation. It should be noted, however, that our ap-
proach does not fulfill the Luttinger theorem, i.e., there
are only 33% occupied k values for n = 1.2 in contrast to
60% from the Luttinger sum rule. Even for n = 1.4, we
find less occupied k values (57%) as it should be (70%).

does not occur.

VI. CONCLUSION

In the present paper we proposed a new model to de-
scribe the physics both in the low-energy and charge
transfer excitation regions of the copper-oxygen plane of
cuprate superconductors (11) and (13). It describes the
one-hole d-like states and the two-hole singlet states in
large analogy to the original Hubbard model. We cal-
culated all its parameters in an effective and analytical
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way from the more realistic p-d model by means of the
cell-perturbation method. In difference to the commonly
used t-J model, it allows to take into account the charge
fluctuations between singlet and D-hole states, describes
more correctly the spectral weight transfer, and has the
possibility to deal with the dynamical aspects of the ex-
change interaction. In difference to the original Hubbard
model, it is an asymmetric one with different bandwidths
for the singlet and the D-hole band. That may give a ba-
sis to explain the asymmetry between electron and hole
doping, but that deserves further studies.

Further on, we analyzed the one-particle properties of
this model. The 2 x 2 matrix Green’s function for the
effective two-band model can be written in terms of a
Dyson equation (34) with the self-energy operator de-
fined by Egs. (35) and (36). The zero-order GF can be
obtained by the projection technique with the frequency
matrix (39). To obtain a closed set of equations, we de-
coupled the density-density correlation functions like in
the Hubbard-I approximation, but we kept the spin-spin
correlations as parameters. The results of the numeri-
cal calculations show that the spectrum is influenced by
the spin correlations in a dramatic way: For strong an-
tiferromagnetic correlations near to half filling, we ob-
serve a next-nearest-neighbor dispersion very similar to
known results for the one-hole motion in antiferromag-
nets. Our calculations within the spin-liquid ground state
show, however, that the long-range antiferromagnetic or-
der is not a necessary condition for such a dispersion.
Remainders of the antiferromagnetic correlations are also
observed in the band structure of the doped case. But
the overdoped system shows a simple nearest-neighbor
dispersion.

One should be aware of the limitations of our quite
simple calculation for the electronic structure of the sin-
glet band. Most importantly, we neglected to calcu-
late an additional renormalization of the singlet quasi-
particle spectrum due to finite lifetime effects described
by the self-energy operator in the Dyson equation (34).
Therefore, we cannot obtain the division of the sin-
glet band into a rather narrow quasiparticle spin-polaron
band and a broad incoherent contribution, which is pre-
served even for finite concentration of doped holes.3° In
addition, the spin-spin correlations should be calculated
self-consistently from the one-particle Green’s function
itself. Nevertheless, our model and the analysis of the
one-particle properties seems to be a good starting point
for further studies of the spin dynamics or exchange me-
diated pairing in cuprates.
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