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Electron correlation and dimerization in trans-polyacetylene: Many-body perturhation theory
versus density-functional methods
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Structural and energetic aspects of the Peierls-type lattice dimerization were investigated in infinite,
one-dimensional, periodic trans-polyacetylene (t-PA) using many-body perturbation theory (MBPT) and
density-functional theory (DFT). Cohesive properties and dimerization parameters were obtained first
for the classical Coulomb potential in the Hartree approximation and then by gradually turning on ex-
change and correlation potentials. Besides the nonlocal Hartree-Fock exchange, several other exchange
functionals were used incorporating gradient corrections as well. For MBPT, electron correlation was
included up to the fourth order of the Mufller-Plesset scheme and the behavior of lattice sums for
different PT terms was analyzed in detail. The electrostatic part of the infinite lattice sums was comput-
ed by the multipole expansion technique. In solving the polymer Kohn-Sham equations, the perfor-
mance of several different correlation potentials was studied again including different gradient correc-
tions. Atomic basis sets of systematically increasing size, in the range of double-zeta to triple-zeta (Tz)
up to TZ (3df, 3p2d), were used in all calculations to construct the symmetry-adapted (Bloch-type) poly-
mer wave functions, to fully optimize the structures, and to extrapolate different physical quantities to
the limit of a hypothetical infinite basis set. Comparison of the different DFT results with MBPT and
with experiments demonstrated the importance of gradient terms both for exchange and correlation. On
the other hand, the best DFT functional, using a medium-size atomic basis set, excellently reproduced
the cohesive and dimerization energies obtained for infinite t PA at the -MP4/TZ(3d2f, 3p2d) level and
provided dimerization parameters close to experiment. The experimentally observed lattice spacing of
2.46+0.01 A will be correctly predicted both at the MBPT and DFT levels with 2.48 and 2.44 A, respec-
tively.

I. INTRODUCTION

Trans polyacety-lene (t-PA), the simplest organic poly-
mer, still remains the prime model as a Peierls system
with broken-symmetry ground state and as a testing
ground for theories of electronic interactions in quasi-
one-dimensional solids. ' In crystalline form, PA can
be doped to change its conductivity over many orders of
magnitude and it forms crystals of high enough quality
to study its three-dimensional (3D) structure by x-ray, '

neutron diffraction, as well as by nmr spectroscopy.
The PA crystals consist of two dimerized chains per unit
cell and have either the P2, /n (Ref. 4) or P2, /a (Ref. 6)
space group. The experimentally found dimerization am-
plitude, which is the displacement of a C atom projected
onto the polymer axis (Fig. l), is uo =0.026 A. '

To identify the driving force behind this lattice dimeri-
zation, a large number of theoretical studies have been
devoted to different aspects of this problem. According
to the Peierls theorem, which is rigorous for nonin-
teracting fermions in a strictly 1D system, the equidistant
nuclear configuration of solids with partially filled energy
bands (metals) is unstable against nuclear distortions that
enlarge the unit cell and introduce a forbidden gap into
the single-particle energy spectrum at the new Brillouin-
zone boundaries. The Peierls model couples phonons of
wave vector 2kF, ;, with band electrons at the Fermi
surface thereby lowering the energy of the occupied levels
and raising that of the unoccupied ones. For small dis-

tortions u, the electronic energy is proportional to u lnu,
while the elastic energy is quadratic in u, so that the sys-
tem becomes unstable for an arbitrary small electron-
phonon coupling. Though the argument of Peierls does
not strictly apply for interacting fermions even at the
Hartree-Pock (HF) level, investigations of the second
variation of the HF total energy may point to instabilities
that could be interpreted as precursors of a Peierls-type
lattice dirnerization. ' ' The Peierls distortion is, fur-
thermore, not a transition in a strict sense' since, within
the framework of the Born-Oppenheimer approximation,

FIG. 1. The geometrical structure of the quasi-one-
dimensional trans-polyacetylene (t-PA) chain also defining the
conformational variables optimized in structure determinations.
The polymer was always kept planar in these calculations.
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the dynamical aspects of the dimerization process are not
included. The HF instabilities may still provide an ex-
tremely useful hint on how to optimize the nuclear frame-
work to reduce not only the HF, but also the exact total
energy.

There is, on the other hand, considerable evidence of
the importance of electron correlation effects both in
finite polyenes and in t-PA itself and, therefore, the gen-
eralization of the Peierls theorem including electron-
electron interactions has been of great recent interest. '

The main goal of the present paper is to systematically
study the role of diFerent forces (electrostatic, exchange,
and correlation) on the dimerization amplitude of t PA-
starting from first principles and to compare the descrip-
tion of the corresponding exchange-correlation effects us-
ing different orders of many-body perturbation theory
(MBPT), a well as various functionals in the framework
of density-functional theory (DFT). Our investigations
will focus on two aspects of the dimerization process in
t-PA: (i) on the individual role of (classical) Coulomb, ex-
change, and correlation interactions in the structural and
electronic properties of the infinite one-dimensional chain
and (ii) on the possibility of describing electron correla-
tion effects in those interactions by using different
exchange-correlation potentials within the DFT ap-
proach. Besides experiments, it will also be of interest to
compare the DFT results with different orders of MBPT
for the same system. A number of atomic basis sets of
systematically increasing size will be employed for both
schemes to be able to extrapolate the computed quantities
to the limit of a hypothetical infinite basis set.

From the previous DFT investigations of the t-PA lat-
tice dimerization problem, Mintmire and White' found a
dimerized ground state using the linear-combination-of-
atomic-orbitals —local-density-functional (LCAO-LDF)
approach with the Gaspar-Kohn-Sham potential. The
fact that the bond alternation provided by this method is
less than the experimental value by roughly a factor of 3
was traced back by these authors to their low value of 0.3
eV, obtained for the band gap. Similar results with a
nonvanishing, but definitely too small bond alternation
were obtained by Vogl and Campbell. ' ' Ashkenazi
et al. ' employed the linearized-augmented-plane-wave
method within the local-density approximation. Despite
the use of highly converged basis sets and an estimated
accuracy of the total energy of 0.07 millihartree (mhar-
tree) per CH unit, they did not find an energy minimum
for nonzero lattice distortion. Springborg et aI. ' utilized
the linear-muon-tin-orbital method and found Ar values
in good agreement with experiments even though their
gap values of about 0.6 eV were similar to those of
Mintmire and White. ' Paloheimo and von Boehm' '

used the self-consistent linear-combination-of-Gaussian-
orbitals method with the exchange-correlation (XC) po-
tential of Ceperley and Alder parametrized by Perdew
and Zunger ' and obtained uo =0.01 A with AE =7
meV, in agreement with the results of Mintmire and
White. ' Interestingly, Paloheimo and von Boehm did
not get dimerization at the Hartree level, but this may be
a consequence of the fact that they did not perform a
complete geometry optimization far away from the neigh-

borhood of the experimental bond lengths, where the
Hartree lattice becomes Peierls instable (see below). They
observed, on the other hand, the important fact that the
most essential contributions for lowering the energy of
the dimerized t-PA come from the m-electron system.
For MBPT, the inhuence of electron correlation on the
dimerization of t-PA was investigated by the present au-
thor, using the Mdller-Plesset partitioning scheme at
second order. The HF dim erization amplitude of
u p

=0.046 A was shown to be reduced by correlation
0

effects of 0.037 A. Similar results were obtained by
Konig and Stojjlhoff; using a local ansatz for the wave
function and linearized coupled cluster equations to com-
pute the correlation contributions.

The present paper will be organized as follows: Section
II gives brief review of the methodological aspects of the
computation of the ground-state correlation energy in
infinite polymers, using the MBPT and the LCAO-DFT
approach. Section III presents the structural and ener-
getic properties of the equidistant and dimerized t-PA ob-
tained in the Hartree approximation. Section IV treats
exchange effects within the HF and DFT schemes, while
Section V introduces electron correlation. Finally, Sec.
VI discusses the results and summarizes the conclusions.

II. ELECTRON CORRELATION
IN EXTENDED SYSTEMS: PERTURBATION THEORY

VS DENSITY-FUNCTIONAL METHODS

The method of calculating electron correlation effects
for infinite systems using different orders of MBPT has
been described in more detail earlier with several applica-
tions to semiconducting and metallic polymers.
Here, we only provide a concise summary of the basic ex-
pressions to be able to define the various theoretical levels
as applied to t-PA. The computational procedure is a
generalization of the methods worked out by Pople and
co-workers over the past decades for molecules, ' to
the case of infinite crystals using additional symmetry
operations (translation and helical rotation) and difFerent
numerical procedures of solid-state theory. The comput-
er programs developed in our laboratory for electronic
structure calculations on crystals also make intensive use
of several techniques and modules of the Gaussian molec-
ular packages up to Gaussian 92/DFT.

After a number of successful applications in solid-state
physics, computational methods based on DFT are
developing to an economical, general tool in molecu-
lar and polymer physics29, 3o,46—so as well. Among
the first calculations along these lines, Mintmire and
White used an Xa scheme and Gaussian basis orbit-
als, ' von Boehm, Kuivalainen, and Calais solved the
Kohn-Sham equations by applying the Perdew-Zunger
exchange-correlation functional, while Springborn and
Anderson applied linearized muon-tin orbitals to the
same problem and te Velde and Baerends developed a
general program system to treat periodic systems of any
dimension within the LCAO-DFT approach. The tradi-
tional method of accurately calculating the electronic
properties of polymer crystals from first principles (ab in
itio in the quantum chemical sense) is to first perform a
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HF calculations&, s2 fol]owed by a s~bseq~~~t computa
tion of electron correlation effects using different orders
of MBPT. ' ' In the case of a careful Coulomb in-
tegral handling and using proper numerical schemes in
performing the infinite lattice sums, the first step scales
essentially as O(v —v ) for a polymer, where v is the
number of atomic basis functions in the (translationally
invariant) unit cell.

The computational expense of MBPT procedures, on
the other hand, starts formally with O(v ) in second or-
der and increases rapidly for higher orders. Though the
systematic use of localized Wannier orbitals and of ad-
vanced integral transformation and selection procedures
within the Mdller-Plesset (MP) PT scheme reduces this
burden and makes it possible to perform geometry optim-
izations and vibrational frequency calculations for poly-
mers with medium size unit cells (6—8 atoms) up to the
MP4 level, even using extended atomic basis sets (e.g.,
several d and f functions on first row atoms), such
calculations are clearly too demanding to become a rou-
tine in polymer theory. For the investigation of physical
and chemical properties that do not explicitly depend on
the wave function itself, DFT may provide an alternative
way of estimating the correlation effects at a relatively
modest cost, formally 0 ( v ), which may be reduced by an
eS.cient implementation. Therefore, DFT polymer
studies including electron correlation will scale again as
only O(v —v ), similar to the HF case. Since, further-
more, a number of refined exchange-correlation poten-
tials have been designed in the past years, most of them
containing gradient corrections to include the effect of lo-
cal fluctuations in the electron density, the quality of
DFT methods in relation to polymeric systems deserves
reconsideration and careful comparison both with experi-
mentally observable quantities and with the results of
high-quality correlated (MP2-MP4) calculations, using
the same atomic basis sets.

In order to construct the zeroth-order wave function,
C p= 4 HF we first have to solve the crystal HF problem.
In the case of the spin-restricted theory the correspond-
ing Fock operator consists of kinetic energy, nuclear at-
traction, Coulomb and exchange terms in the form

I'""(r, ) = f'+ f'+J+t

Pock equations of the crystal. ' In the MP partitioning
scheme of MBPT, the many-electron Hamiltonian &
will be taken as the Fock Hamiltonian plus a perturba-
tion:

&=A~+ V=+ P "(r, )+ &—g P "(r, )
l l

P'„(r)=g c,"„q,'(r),
a=1

(4)

where v is the number of basis orbitals, g", ( r ), per ele-
mentary cell of the crystal taken as a Bloch-type linear
combination of contracted Gaussian-type atomic orbitals
(CGTO's).

+N /2

P, (r)=(1V, + I) '~ g exptik R), Iy,"(r) . (5)
h= —N /2

The CGTQ y,"(r)=y, (r —R, —R), ) will be centered in
the cell h at R, +R&. The number of atomic basis func-
tions per CH unit is a crucial parameter at all theoretical
levels and it will be investigated in detail in the subse-
quent sections. The zeroth-order X-electron wave func-
tion of the crystal, NHF, will be written as a Slater deter-
minant built from the doubly filled Bloch functions,

=(x!)HF

X det[. . .(()"„(r,)a((r, )p"„(r;+i )p(o;+) ). ] (6)

The HF energy of the crystal will then be obtained as the
sum of the zeroth- and first-order terms of PT,

(oee)

E» ——&(o)+&")= y E'„+&+H.l&l+H. &,
(k, n)

while in higher orders we get correlation corrections to it:E„„=6' '+ 6' '+ 8( '. The second- and third-order
terms were previously analyzed for different polymers in-
cluding t-PA. ' Of special interest will be the analysis
of different contributions in fourth order, originating
from single (S), double (D), triple (T), and quadruple (Q)
excitation s:

The solution of the polymer HF equations,

P "(r, )P"„(r,)=s"„P"„(r,),
provides a set of one-electron Bloch functions, P"„(r(),
with quasimomentum k in band n that will be expressed
as linear combinations of symmetry adapted basis orbitals
in the form

p(r„r )

rl —r
g(4) —g(4)+ g(4)+ g(4)+ @(4)S D T Q (8)

where N, + 1 is the number of elementary cells, n
„

is the
number of atoms per cell, and Z~ is the core charge of
the atom A at position R~. The first-order density ma-
trix, p(rh, r ), will be constructed from the (doubly) occu-
pied Bloch spinorbitals by numerical integration over the
first Brillouin zone (BZ) and the Bloch orbitals P"„(r,) will
be obtained as self-consistent solutions of the Hartree-

where 4&' includes the so-called renormalization term,
with double excitations that partially cancel quadruple
terms. All four contributions in Eq. (8) are individually
size consistent. In presenting our results, it will be
reasonable to combine the fourth-order contributions
from double and quadrupole substitutions as @&&, since
@~' and 8&' both contain large terms from unlinked
clusters that partly cancel each other. The detailed
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form of the above MBPT terms for infinite systems was
published earlier for second, third, and fourth or-
ders, respectively.

In their local-spin-density (LSD) form, DFT methods
simply replace the HF exchange functional with an XC
functional of the local electron-spin densities p and
p&. Gradient corrected methods (frequently referred
to as nonlocal functionals) also include the spin-density
gradients 7 and V, to account for local Auctuations in1'a ~a'
the electron density. The Hohenberg-Kohn theorem
ensures that there exists a unique functional which exact-
ly determines the ground-state energy. Since the exact
form of the functional is unknown, several approximate
forms of the XC potential have been proposed. ' In
the most widely used formulation of I3FT, the Kohn-
Sham (KS) theory, an LCAO-type basis set expansion of
one-electron orbitals is obtained via a self-consistent pro-
cedure analogous to that of the conventional HF theory.
This allows correlation to be included at the SCF level at
some extra cost. An alternative to computing the KS
density is to obtain the electron density via the one-
electron orbitals resulting from a HF calculation and sub-
stituting it into the LSD expression. This hybrid method
involves performing a single numerical integration after
solving the HF problem and may be even more cost
effective than the KS procedure.

For the DFT formulation of the polymer electronic
structure problem, the Fock operator will be taken in the
form analogous to Eq. (1), with the diff'erence that the HF
exchange will be substituted with the appropriate
exchange-correlation term:

P =T+ P'+ J+Pxc,
and the crystal HF equations will go over to the corre-
sponding Kohn-Sham equations. The self-consistent
and gradient procedures for solids are again in complete
analogy to the molecular case and the appropriate
modules of the G92/DFT program package have been
utilized, after extension for translational and helical sym-
metry operations, for their solution. Several computa-
tional aspects of this procedure specific to infinite systems
(handling of infinite lattice sums, numerical accuracy of
BZ manipulations, etc.) will be reported elsewhere.

The functionals used in our computations consist of
separate exchange and correlation parts, respectively.

For the exchange part, we used the free-electron gas
functional proposed by Slater (S), the gradient-
corrected functional designed by Becke (8) (Ref. 60) to
correctly reproduce the exact asymptotic behavior of the
exchange energy density for a finite many-electron sys-
tem, and the mixture of the exact HF exchange with the
Slater functional, the BHH procedure. The correlation
part was either ignored (leading to the HFS, HFB, and
BHH theories) or it was treated by the local spin-density
theory as parametrized by Vosko, Wilk, and Nusair
(VWN), by the gradient-corrected functional of Lee,
Yang, and Parr (LYP), ' as transformed by Mielich
et al. , and by the functional of Perdew and %'ang
(P86). While the VWN functional reproduces exact
uniform electron-gas results, the LYP functional was
designed (initially by Colle and Salvetti ) to calculate the
exact nonrelativistic energy of the He atom from the HF
density. The correlation functionals can be combined
with exchange terms providing different computational
schemes: S-VWN, S-LYP, B-VWN, B-P86, B-LYP,
BHH-LYP. It also seemed worthwhile to test the com-
bination of the exact HF exchange with the gradient-
corrected LYP potential, the HF-LYP scheme. In the
subsequent sections, we will report results obtained
by the comparative application of these XC functionals
to t-PA.

III. CLASSICAL COULOMB EFFECTS:
THK HARTRKE SCHEME

To understand the role of exchange and correlation
effects in the structural and electronic properties of t-PA,
the first question to ask is as follows: What is the ground
state of the quasi-one-dimensional t-PA chain in the pres-
ence of a pure (classical) Coulomb potential when we first
neglect any exchange or correlation interactions? The
answer to this question will be given by the solution of
the corresponding crystal Hartree equations;

(10)

The Hartree-type Bloch functions of Eq. (10), P"„(r&),will
be expanded again in terms of CGTO's in the same
manner as discussed for the HF case and defined by Eqs.
(4) and (5), respectively. As a first step, we employed a

TABLE I. List of the applied sets of uncontracted Gaussian-type atomic basis functions, respective-

Symbol of
basis set

Uncontracted basis
Components

Contracted basis
Components References

65
65,66
65,66
66,67
66,67

(9s 5p /4s)
(9s5p ld /4s lp)
(9s5p2d y4s2p)

(11s6p2d 1f/6s 1p)
(11s6p3d2f /6s2pd)

28
37
46
55
73

DZ [4s2p/2s] 12
DZ(d, p) [4s2p ld/2s 1p] 21
DZ(2d, 2p) [4s2p2d/2s2p] 30
TZ(21f,p) [5s3p2d 1f/4s 1p] 38
TZ(3d2f, 2pd) [5s3p3d2f /4s2pd] 58

'The total number of uncontracted or contracted atomic basis functions, respectively, resulting in the
given basis set for the CH unit of t-pA.
The first reference refers to the isotropic part of the basis set, the second one to the polarization func-

tions used.
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E (hartree)

-33.2255
I I I I

I
I I I I

I
I I I I

I I I I I
I

I

double-zeta-(DZ-} type atomic basis set consisting of
nine s- and five p-type atomic orbitals on carbon and of
four s orbitals on hydrogen contracted according to the
scheme shown in Table I.

To find the ground-state configuration of the Hartree
solution, we optimized the geometry of t-PA, shown in
Fig. 1, in two steps. First, we constrained the bond
lengths r I and rz to be equal (equidistant chain) and opti-
mized the remaining conformational variables keeping
the polymer planar. The resulting Hartree total energy,
EH (equ), per CH units is depicted in Fig. 2, as a function
of r, ( =r2). It is interesting to note that even though
the polymer is stable in the Hartree approximation, with
a cohesion energy of —0.232002 hartree ( —6.313 eV) per
CH unit at the DZ level, the C-C bonds of the optimized
equidistant structure (ro = 1.8887 A) are unusually large.
A subsequent relaxation of the constraint r& =r2 leads to
an optimized bond alternating Hartree structure with
r, =1.8428 A and r2=1.9344 A, respectively, at this
basis set level. As we can see from Fig. 2, the bond alter-
nation [hr(H) =0.0916 A] significantly further stabilizes
the polymer, by —0.21 mhartree ( —0.0057 eV) per CH
unit. Figure 3 shows the optimized values of r2 (and the
resulting b, r) for fixed values of r I (all other variables be-
ing optimized as well}. This nearly linear r2 vs ri rela-
tionship is a general feature of the dimerization of t-PA
and it will also be observed at higher theoretical levels.
The E~ vs hr relationship shown in Fig. 4 reveals, on the
other hand, that the potential-energy surface of the di-
merization process is very Aat at the Hartree level and
the corresponding force constants are by an order of
magnitude smaller than those obtained after turning on
exchange and correlation efFects (to be discussed in the

2pp I
I ' »

I
I ' I I I

1 ~ 95

1.90

0.20

0.10

ppp I I I I I I I I I I I I I I I I I I

1 75 1 80 1 S5 1 90

r) (A)

FIG. 3. r, and hr=r2 —
r& as a function of r& (de6ned in Fig.

1) in the case of bond-alternating t-PA, obtained in the Hartree
approximation, using the DZ basis set.

next sections). This trend is similar to the dependence of
the stabilization energy of the bond alternation, hE, as a
function of Ar shown by Fig. 5: In the region of physical-
ly relevant values of hr, the corresponding Hartree values
of EE are approximately an order of magnitude smaller
than those obtained by including exchange and/or corre-
lation effects, respectively.

Since the Hartree energy differences between equidis-
tant and dimerized t-PA chains are rather small, it is
necessary to prove that the above results are independent
of basis set artifacts. For this purpose, the lattice optimi-
zation has been repeated by systematically increasing the
number of CGTO's applied in Eq. (10). Table I defines

(hartree)

-33.22645

-33.2260

-33 ~ 22650

-33.2265
-33.22655

I I I I I I I I I ! I I I I I I I I I I I

1.75 1.80 1.85 1.90 1.95

r& (A)

FIG. 2. The Hartree energy per CH unit of equidistant (equ)
and bond-alternating (alt) t-PA, as a function of the bond length
r&. For the equidistant chain, the constraint r& =r2 has been ap-
plied, while optimizing all other conformational variables. This
constraint was lifted during optimization of the bond-
alternating structure.

-33.22660

I I I I I I I I I ~ I I I I

005 010 015

FIG. 4. The Hartree energy, E~, per CH unit of t-PA as a
function of the bond alternation, hr (DZ basis set).
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Q, E (hartree)

1 I I I
f

I I I I
/

I I ~ I

0.000

-0.002

cohesion energy, E„h,the Hartree values turn out to be
relatively independent of the number of CGTO's. The
same trend was observed for bE as well. We may con-
clude, therefore, that electron-electron interactions lead,
even in the simple Hartree approximation, to a bond-
alternating lattice for t-PA though the extra binding en-
ergy, due to the dimerization is relatively small at this
level.

-0.004 IV. EXCHANGE EFFECTS:
THE HF AND DFT SCHEMES

-0.006

-0.008

I I I I I I I I I I I I I I I

0.00 0.05 0.10 0.15

FIG. 5. The stabilization energy per CH unit, due to bond al-
ternation in t-PA, AE =E„,(alt) —E„,(equ), obtained as a func-
tion of Ar, by using di6'erent methods at the DZ basis set level.

the atomic basis sets that were used in these studies. The
isotropic part of the basis sets refers to orbitals occupied
in the ground state of the corresponding atoms. The ex-
ponents and contraction coefficients of these orbitals have
been taken from the double-zeta (DZ) and triple-zeta (TZ)
schemes of Dunning. ' The exponents of the polariza-
tion functions used to complement the isotropic part
originate partly from the library of the Gaussian program
packages and partly from the correlation optimized sets
of Dunning. As shown by Fig. 6 in the case of the

The inclusion of the (exact) exchange part of the Fock
operator in Eq. (1) infiuences the physical properties of t
PA in several ways. Some aspects of the energetic and
structural properties of di6'erent PA polymers were dis-
cussed in detail at the HF level in a recent paper, where
references to earlier publications were also given. Here,
we only briefly mention those aspects of the HF descrip-
tion, at the DZ basis set level first, which will be relevant
for comparison with the new DFT and MBPT results, re-
spectively. At first, as expected, the appearance of the
exchange operator k in Eq. (1) substantially decreases the
cohesion energy of the lattice (Fig. 6) by about —105
mhartree ( —2. 86 eV) per CH unit (50%), in comparison
with the corresponding Hartree value. Furthermore, as
compared with the Hartree lattice, the C-C bond lengths
of equidistant t-PA will be reduced, due to exchange, by
nearly 0.5 A to ra=1.3962 A at the DZ basis set level
(Fig. 7). Atomic polarization functions of the d and f
type are also more important in calculating the matrix
elements of E than they were for J. Their effect amounts
to about —40 mhartree ( —1.09 eV) decrease per CH unit

EH/ (hartree)

I
)

I I I I [ I I I I
] I I I

h
(hartree)

-38.430

-0.250

-0.300 -38.432

-0.350 HF

-0.400 38 434 I I I I I I I I I I I I I I I I 1

1.30 1.35 1.40 1.45

-0.450 MP4
r& (Aj

40 60

CGTO

FICs. 6. The cohesion energy per CH unit in equidistant t-

PA, obtained as a function of the number of CGTO's at
difFerent theoretical levels.

FIG. 7. The HF energy, EH&, per CH unit of equidistant
(equ) and bond-alternating (alt) t-PA, as a function of the bond
length rl. For the equidistant chain, the constraint rl =r2 has
been applied, while optimizing all other conformational vari-
ables. This constraint was lifted during optimization of the
bond-alternating structure.



ELECTRON CORRELATION AND DIMERIZATION IN trans-. . . 16 S59

in E„&,at the HF level. The optimization of the lattice,
in the same manner as described above for the Hartree
method, results in the energetic picture shown in Fig. 7.
Due to E„,the extra stabilization energy of the dimerized
lattice, as compared with the optimized equidistant
chain, decreases by —2.017 mhartree (

—0.055 eV) per
CH unit at the DZ level. The relationship of the HF di-
merization parameters r„r2,and br (Fig. 8) is similar to
the Hartree case, though B(b,r)/Br

&
will be somewhat re-

duced, due to k. Furthermore, a comparison of Figs. 2
and 7 also reveals that the phonon frequencies of t-PA
will sensitively depend on the proper inclusion of ex-
change effects. (The detailed study of the corresponding
vibrational spectra of PA, including correlation effects as
well, will be the subject of a forthcoming paper).

From the dependence of the HF total energy on hr
(Fig. 9), we can infer that the energetically optimal value
of b,r (HF) increased by 0.0158 A from the corresponding
Hartree value (Fig. 4). To get a better insight into the
mechanism of the lattice dimerization in t-PA, it is in-
structive to gradually turn on the contribution of the
operator E in Eq. (1) and study its effect on the bond al-
ternation. The corresponding results, depicted in Fig.
10, exhibit a nearly linear relationship between hr and
E . The gradual increase of Ar is, of course, a small
geometrical change resulting from the superposition of
two larger opposite effects, namely, the overall shortening
of the C-C bonds, due to exchange (from nearly 1.9 to 1.4
A on the average) and the parallel increase of the bond al-
ternation. Finally, the basis set dependence of ro (HF)
for the equidistant chain and of b.r (HF) for the dimer-
ized chain are depicted in Figs. 11 and 12, respectively,
showing that while ro (HF) is somewhat more sensitive to
NcoTo, b.r (HF) will be nearly saturated at the DZ (d,p)
level. Extrapolations of the corresponding results to an
infinite basis set provide the values of ro (HF) = 1.3833

E
HF

(hartree)

-38.431 l
I

I I I I
I

I I I I
I

I I

-38.432

-38.433

0.05 0.10
I I I I I I

0.1 5

FIG. 9. The HF energy, EHF, per CH unit of t-PA, as a func-
tion of the bond alternation, Ar (DZ basis set).

A and hr (HF) = 0.1196 A at the HF limit. The depen-
dence on XcGTo of the lattice stabilization energy, due to
bond alternation (HF curve in Fig. 13), will be increased
by about 20% in going from DZ to TZ (3d2f, 2pd) and it
converges to the HF limit of —2.462 mhartree ( —0.067
eV).

Turning now to the investigation of the performance of
the exchange-only DFT formalism, we will first compare
the above discussed quantities with their pendants ob-
tained using the DZ basis set and the local (HFS) and
gradient corrected (HFB, BHH) exchange functionals, re-

1.480
1.460

z
&c

I
I I I I

I
I I I I

I
I I I

7/7

0.1 10

0.1 50

0.100

0.100

0.050 0.090

I I I I I

1.30 1.35 1.40

I 1(A)

FIG. 8. r2 and hr =r2 —
r& as functions of r& (defined in Fig.

1), in the case of bond-alternating t-PA, obtained in the HF ap-
proximation using the DZ basis set.

0 25 50 75 100

Percent of E„
FIC». 10. The bond alternation, hr„as a function of the ex-

change turned on stepwise in the Fock operator of t-PA.



16 560 SANDOR SUHAI

I I
I

f I I I l I I I I

Q E (mhartree)

I I
I

I I I
I

I I I
I

I

-1.0

1.420

1.400

MP4

-2.0
MP2

I & i i I

1.380 20 40 60

I I I I I I I I I I I I

CGTO

20 60

CGTO

FIG. 13. The difference in the total energy per CH unit of
bond-alternating and equidistant t-PA, as a function of number
of CGTO's at different theoretical levels.

spectively, mentioned in Sec. II. Table II summarizes the
corresponding results. We can see that the use of the
Slater exchange strongly underestimates the bond alter-
nation effect, both from the energetic and structural
points of view, respectively, as compared with the exact
exchange (or with experiment). The gradient correction
in the Becke exchange improves somewhat upon the situ-
ation and, finally, the mixing of the Becke exchange with
the Slater functional (BHH method ) leads to quite
reasonable values both for uo and hE, respectively. The

dr (X)

I I
I

I I I
I

I I I
I

1

0.1 20

HF

FIG. 11. The optimal C-C bond length, ro, in equidistant t-

PA, as a function of the number of CGTO's at different theoret-
ical levels.

cohesion energy will be severely overestimated by the
HFS method ( —0.430 hartree) but very reasonably
corrected by the gradient term in HFB ( —0.355 hartree)
and by the BHH procedure ( —0.343 hartree) to repro-
duce the value of —0.335 hartree per CH unit obtained
for the exact exchange.

In view of these first DZ results, we selected the BHH
functional to further study the role of the extension of the
atomic basis set in the description of the dimerization
process at the E„(DFT)level. As demonstrated by Figs.
14 and 15, two sets of carbon d- and hydrogen p functions
and at least one set of carbon f functions seem to be
needed to stabilize ro and b r for the (physically
significant) second decimal digit. A similar conclusion
can be drawn for the energetic aspects: the cohesion ener-

gy further decreases by about —18 mhartree, due to addi-
tional polarization functions (Fig. 16), while the dimeriza-
tion energy, b,E (BHH) (Fig. 17), decreases from —0.87
to —1.13 mhartree. The values of these quantities, extra-
polated for an infinite basis set, are collected in Table III
to facilitate the comparison of the different methods.

0.100
V. CORRELATION EFFECTS:

PERTURBATION THEORY VS DFT

0.080
MP2

I I I I I I I j I I

20 40 60

CGTO

FIG. 12. The optimized bond alternation, Ar, in t-PA, as a
function of number of CGTO's at different theoretical levels.

Looking first at the qualitative structural effects of
electron correlation at the DZ level of second order
MBPT (MP2), we may observe (comparing Fig. 18 with
Fig. 7) that E, substantially expands the equidistant tPA-
lattice. This effect amounts to about 0.025-0.030 A and it
is nearly independent of the atomic basis sets applied (cf.
Fig. 11). The bond-alternating structure is again more
stable than the equidistant one (Fig. 18), but the energy
difFerence will be reduced from —2.02 mhartree (HF) to
—0.91 mhartree (MP2) at the DZ level. Furthermore, rz
and br show the same linear dependence on r& as ob-
served previously for the HF method (Fig. 19). The com-
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TABLE II. Energetic and structural parameters of t-PA calculated at different theoretical 1evels, as
discussed in the text (DZ basis set). The total energy of the equidistant chain, E(equ), the cohesion en-
ergy, E„h(equ), and the energy difference between the alternating and equidistant chains, AE, are given
in hartree per CH unit, while the optimal C-C distance in the equidistant chain, ro, the bond alterna-

0
tion, hr, and the lattice dimerization amplitude, uo, are given in A.

Potential

0
HF
HFS
HFB
BHH

E(equ)

—33.226 422
—38.431 473
—37.895 804
—38.449 897
—38.438 898

1.8887
1.3962
1.4189
1.4392
1.4042

E„h(equ)
—0.232 002
—0.334 900
—0.430 406
—0.355 441
—0.343 644

AE(alt-equ)

—0.000 210
—0.002 017
—0.000 133
—0.000 167
—0.000 872

0.0916
0.1074
0.0182
0.0476
0.0819

0.0259
0.0304
0.0051
0.0135
0.0232

SVWN
SLYP

—38.476 187
—38.127 032

1.3994
1.3991

—0.481 434
—0.487 494

—0.000 071
—0.000 226

0.0158
0.0055

0.0045
0.0015

BVWN
BP86
BLYP
BHHLYP
HFLYP

—39.030 615
—38.698 375
—38.679 314
—38.669 905
—38.664 368

1.4183
1.4163
1.4189
1.3864
1.3711

—0.404 412
—0.429 384
—0.410 778
—0.400489
—0.393 635

—0.000 230
—0.000 175
—0.000 416
—0.000 932
—0.000 891

0.0223
0.0187
0.0120
0.0741
0.1009

0.0063
0.0053
0.0034
0.0210
0.0285

MP2
MP4

—38.529 520
—38.583 102

1.4250
1.4290

—0.378 641
—0.417 174

—0.000 906
—0.000 836

0.0834
0.0843

0.0236
0.0238

0
'Experimental value is uo =0.026 A (Ref. 6).

parison of the functional dependence of the MP2 total en-
ergy per CH unit on b.r (Fig. 20) with the corresponding
HF results (Fig. 9) demonstrates that the correlation
reduces the bond alternation. In the case of MP2 and
MP4, this effect only weakly depends on NcQTQ (Fig. 12)
and amounts to about 50%%uo, leading from the HF limit of
b, r(HF) = 0.1196 A to 0.0786 and 0.0794 A at the MP2
and MP4 levels, respectively. These latter values of hr
correspond to a dimerization amplitude of Qp =0.024 A

and they are in excellent agreement with the experimen-
tal value of 0.026 A. ' The alternating single and double
bond lengths at the MP4 level are 1.4428 and 1.3634 A,
respectively, providing a lattice constant of c=2.48 A
for t-PA, close to the experimental value of 2.46+0.01A.
The extra binding energy associated with Ar will be re-
duced by about 30—35% due to correlation (Fig. 13).
The gradual switching on of the E, potential at the MP2
level (Fig. 21) reveals that b.r linearly depends on the

I I
/

I I I
[

I t I

I I I
J

I I I
J

I

1.400
0.1 10

HFLYP

0.100

1.380
0.090

1.360

0.080

20 40 60

CGTQ

0.070

20 40 60

FIG. 14. The optimal C-C bond length, ro, in equidistant t-
PA, as a function of the number of CGTO's for different DFT
potentials.

NcGTo

FIG. 15. The optimized bond alternation, Ar, in t-PA, as a
function of the number of CGTO's for different DFT potentials.
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„(hartree)coh

-0.350 BHH

-0.400
HFLYP

BHHLYP

-0.450 I I I I k I I I I I I I

20 40 60

amount of correlation included in the calculation, simi-
larly to the exchange effect studied above.

The absolute values of the correlation energy, E„ex-
hibit the expected strong dependence on the size of the
atomic basis set both for MP2 and MP4, respectively
(Fig. 22). They will be more than doubled in going from
DZ to TZ(3d2f, 2pd) and extrapolations for NcoTo —+ 00

lead to the values of E, (MP2) = —209.2 mhartee ( —5.69
eV) and E, (MP4) = —243. 1 mhartree ( —6.62 eV) per
CH unit, respectively. E, also substantially contributes
to the cohesion energy of the t-PA lattice with —81.1

mhartree ( —2.21 eV) per CH unit at the MP2 level and
with —90.8 mhartree ( —2.47 eV) at MP4, which is quite

5 E (mhartreej

-0.9

-1.0

BHH

HFLYP

BHHLYP—

I I I I I I I I I I I I I I

20 40 60

CGTO

FIG. 17. The difference in the total energy per CH unit of
bond-alternating and equidistant t-PA, as a function of number
of CGTO's for different DFT potentials.

CGTO

FIG. 16. The cohesion energy per CH unit in equidistant t-

PA, obtained as a function of number of CGTO's for different
DFT potentials.

comparable to the binding energy due to exchange
—119.9 mhartree ( —3.26 eV) from Table III. The
dependence of 8 on the intercellular interactions was re-
ported earlier. Interestingly, the lattice sum contribu-
tion to E, in the third and fourth orders of PT turns out
to be rather small. This effect can be traced back to the
complex dependence of different PT terms, as functions
of the number of interacting units taken into account in
performing the lattice sums. Figure 23 provides an exam-
ple for this effect in the case of alternating t-PA, using the
TZ(3d2f, 2pd) basis set by systematically increasing the
radii to truncate the PT lattice sums starting with a single
CH group (N, =0). The opposite character in the dis-
tance dependences of 8' ' and 8'z. ' on the one hand, and
of 8~@' and C~z,& on the other hand, makes it plausible
that the intercellular contributions of these quantities
nearly cancel each other and their atomic values dom-
inate the final results.

Within the MBPT scheme, the proper account for elec-
tron correlation requires the use of atomic basis functions
of high angular momenta that increase (through their
nodes) the kinetic energy and thus result in a larger
correlation contribution by virtue of the virial theorem.
Thinking of electron-electron interactions in terms of the
exchange of virtual excitons, these short-range correla-
tion effects are related to quasiparticles with large
momentum, i.e., to high-lying conduction bands in the
extended BZ. Since, on the other hand, the PT energy
denominators associated with these excited states are
quite large, it is of interest to see how the balance of these
two opposite effects influences our results. Figures 24
and 2S present the various PT terms as functions of the
number of conduction bands included in the calculation
of the correlation energy. To obtain these Ggures, excep-
tionally, the unit cell consisted of two CH units so that
there were seven doubly 611ed valence bands and 3S emp-
ty bands in this t-PA model. The energy region of the
conduction bands was subdivided in steps of approxi-
mately one hartree and scattering to virtual excited states
was allowed within the number of conduction bands
shown in the 6gures. It is obvious that even the bands
with high energy substantially contribute to the different
terms and the correlation contribution to AE also
changes by about 50%.

Turning to the DFT correlation potentials, to get a
first impression of their capabilities in describing the
above discussed properties of PA, we calculated the
equidistant and dimerized geometries of t-PA using
several combinations of local and gradient-corrected
correlation functionals at the DZ basis set level. The cor-
responding results are shown in Table II. Taking again
as measures of quality the experimental value of Ar and
the MP4 value of AE, we can see that only the exchange-
correlation combinations of the type HF-LYP and
BHH-LYP lead to acceptable results. Basis set effects
and additional structural properties of t-PA were calcu-
lated, therefore, for these two functionals. The results
obtained for ro, Ar, E„h,and hE are depicted in Figs.
14—17 and the corresponding values extrapolated to
NCGTO 00 are collected in Table III.

Figure 22 presents the detailed dependence of E, on
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TABLE III. Energetic and structural parameters of t-PA calculated at different theoretical levels as
discussed in the text and extrapolated to the limit of a hypothetical infinite atomic basis set. The total
energy of the equidistant chain, E(equ), the cohesion energy, E„h(equ), and the energy difference be-
tween the alternating and equidistant chains, bE, are given in hartree per CH unit, while the optimal
C-C distance in the equidistant chain, ro, the bond alternation, br, and the lattice dimerization ampli-
tude, up, are given in A.

Potential

H
HF
BHH

E(equ)

—33.299 247
—38.471 820
—38.465 257

rp

1.8802
1.3833
1.3883

E„h(equ)
—0.239 946
—0.359 888
—0.361 717

EE(alt-equ)

—0.000 240
—0.002 462
—0.001 130

0.0986
0.1196
0.1104

up

0.0279
0.0338
0.0312

HFLYP
BHHLYP

—38.693 868
—38.697 553

1.3588
1.3712

—0.416 775
—0.420006

—0.001 162
—0.001 202

0.1137
0.0853

0.0321
0.0241

MP2
MP4

—38.680 974
—38.714 922

1.3979
1 ~ 3975

—0.440 952
—0.450 737

—0.001 787
—0.001 587

0.0786
0.0794

0.0222
0.0224

'Experimental value is up =0.030 A (Ref. 5).

the size of the atomic basis sets for different methods. It
is one of the most pleasant properties of the DFT pro-
cedures that their correlation energies are nearly indepen-
dent of the presence of polarization functions. This is not
the case for MBPT, which needs very extended basis sets
to properly describe correlation effects. Furthermore, the
previously obtained MP4 result ( —243. 1 mhartree corre-
lation energy per CH unit) is in reasonable agreement
with the corresponding HF-LYP and BHH-LYP values
of —222. 05 and —232. 3 mhartree, respectively. On the
other hand, the local correlation functional VWN with
—581 mhartree seriously overestimates E, . The cohesion

EMP2 (hartreeI

38 ~ 527

energy follows a similar trend: the combination of the
LYP functional with the HF and BHH exchanges leads
to E„h=—416.8 and —420.0 mhartree (Table III), re-

spectively, as compared with the MP2 and MP4 results of
—441.0 and —450.7 mhartree, respectively.

Interestingly, the use of the DFT correlation potentials
somewhat contracts the t-PA lattice (opposite to the PT
methods, cf. Figs. 11 and 14) and predicts ro values that
are by about 0.025 —0.030 A too short in comparison with
MP2 and MP4, respectively (Table III). The bond alter-
nation will be, however, reduced using the LYP potential
by 0.006 A for the HF-LYP combination and by 0.025 A
for BHH-LYP. This latter result of 0.0853 A agrees well
with the corresponding MP2 and MP4 values (Table III)
and the corresponding dimerization parameter of
Q p

=0.024 1 A excellently matches the experiment. The
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FIG. 18. The MP2 total energy, EM», per CH unit of
equidistant (equ) and bond-alternating (alt) t-PA, as a function
of the bond length r&. For the equidistant chain, the constraint
r& =r& has been applied while optimizing all other conforma-
tional variables. This constraint was lifted during optimization
of the bond-alternating structure.

1.30 1.35 1.40
(A)

FIG. 19. rz and hr=r2 —r„asa function of r& {defined in

Fig. 1) in the case of bond-alternating t-PA, obtained for the
MP2 method, using the DZ basis set.
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FICx. 24. The dependence of second-order correlation energy
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cluded in the calculations.
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FIG. 25. The dependence of various third- and fourth-order
terms, for the C2H2 unit of t-PA, on the number of conduction
bands included in the calculations.

the resulting Hartree cohesion energy of t-PA (
—0.24

hartree per CH unit) is only about 60—70% of the values
obtained at higher theoretical levels and, consequently,
the corresponding C-C bond lengths are by about 30%%uo

too long (ra=1. 8802 A for the equidistant chain), after
complete geometry optimization a dimerized Hartree
state develops nevertheless with a difference of
hr(H) =0.0986 A between the single and double bonds.
Scaling down the obtained Hartree bond lengths from
about 1.9 A to the chemically reasonable value of 1.4 A,
this bond alternation mould correspond to about
hr =0.06—0.07 A. The extra Hartree binding energy
due to dimerization ( —0.24 mhartree per CH unit) is, of

course, rather sma11 but definitely significant with respect
to the accuracy of our calculations.

Upon turning on the exact (HF) exchange potential,
the cohesion energy of t-PA decreases to —0.36 hartree
per CH unit, the C-C bond length of the equidistant
chain is reduced to ro(HF) = 1.3833 A, and the bond al-

0
ternation increases to b, r(HF) = 0.1196 A corresponding
to uo =0.034 A. The dimerization energy of the estimat-
ed HF limit, obtained by extrapolation to a hypothetical
infinite atomic basis set,is hE(HF) = —2.46 mhartree
( —0.067 eV) per CH unit. Electron correlation some-
what expands the equidistant lattice at both the MP2 and
MP4 levels (to ra=1. 3979 and 1.3975 A) and reduces
the bond alternation (to b,r =0.0786 and 0.0794 A, re-
spectively}. These values correspond to a dimerization
parameter of uo=0. 022 A, which is close to the experi-
mental value of 0.026 A. The predicted lattice constant
of c =2.48 A also reproduces the experimental one
(2.46+0.01 A). The absolute value of the correlation en-

ergy is —209.2 mhartree ( —5.69 eV) per CH at MP2 and
—243. 1 mhartree (

—6.62 eV) at MP4. Electron correla-
tion also provides a significant contribution to the
cohesion energy of t-PA (

—81.1 and —90.8 mhartree),
leading to E„h(MP2) = —0.441 hartree and E„h(MP4)
= —0.451 hartree, respectively.

Regarding the above quantities as benchmarks, it turns
out that the DFT procedures using Slater exchange (with
or without additional correlation potentials} all seriously
underestimate the bond alternation eCect, both from the
geometrical and energetical points of view, leading to
u0=0. 002—0.008 A and hE = —0.1——0.2 mhartree
(Table II), in agreement with previous investigations us-

ing similar functionals. . Gradient corrections have
proved to be very important both for E and E, . From
the DFT exchange potentials, the hybrid functional BHH
mixing the exact and the Slater exchange seems to be the
most successful. When combined with the gradient-
corrected correlation functional LYP, it not only proper-
ly describes cohesion (with E, = —0.420 hartree), but
also leads to the very reasonable value of Ar
=0.0853 A (uo =0.024 A) and to the dimer stabilization
energy of hE= —1.2 mhartree, comparable with the
MBPT values above. The BHH-LYP method is definitely
better than the simple HF-LYP, which tends to overesti-
mate Ar leading to uo =0.032 A.

In previous papers, ' we also reported the band
structures and forbidden gaps of t-PA, both for the HF
theory and for MBPT, using the quasiparticle (electron
polaron) picture to correct the valence and conduction
bands, respectively, for correlation e8'ects. Since the
Kohn-Sham eigenvalues of the DFT description do not
have a physical meaning themselves, " which would
relate them to the HF or to the quasiparticle band struc-
tures, it would not be a fair attempt to compare the DFT
band structures of t-PA obtained in this work either with
the previous results or with experiments. Instead, we are
going to use them as an input to compute the band gap of
PA within the framework of the GW method ' that
provides a physically more meaningful basis to compute
band structures for DFT. The corresponding results will
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appear in a forthcoming paper.
In summary, our results show that the exchange poten-

tials derived from the homogeneous electron gas model
are not capable of realistically describing the Peierls-type
dimerization in t-PA. Gradient corrections for the ex-
change and correlation terms are needed as well to im-
prove the theory. After introducing such corrections,
however, the BHH-LYP functional proved to be
equivalent to the computationally much more demanding
MBPT methods in predicting the structural and energeti-
cal properties of this polymer crystal. These experiences
encourage us to extend these investigations in the near fu-
ture to other solids of this kind, as well as to treat impuri-
ty efFects, vibrational, dielectric, and transport properties
of polymers within the same theoretical framework.
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