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Simple fit to the ground-state energy of the two-dimensional electron gas in the
fractional quantum Hall regime
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We present a parametrization of the ground-state energy Es(v) of the two-dimensional electron
gas as a function of the 6lling factor v, in the fractional quantum Hall regime for the lowest Landau
level. The cusp structure is included via an approximate model of the quasiparticle energies p+(v)
at the cusps. The parametrization depends only on a 8ingle parameter fitted to the known E~
at v = 1/3. The energy functional is useful in density functional calculations for inhomogeneous
systems and for approximate predictions of Es, lsd(v) at values of v for which more fundamental
calculations are not available.

I. INTRODUCTION

The fully spin polarized two-dimensional electron gas
(2DEG) in the strong-field fractional quantum Hall
(FQH) regime has been studied extensively. i Its rich
structure, consisting of an interplay of a sequence of
competing incompressible ground states, ' quasi-Fermi
liquids, and Wigner crystal phases, ' is refIected in the
complicated, highly structured functional form of the
ground-state energy Es(v) as a function of the filling fac-
tor v. The filling factor v is the number of electrons per
flux quantum, and varies from zero to unity (filled Lan-
dau level) for the strong field limit considered here. The
behavior of E~ as a function of v is fundamental to the
study of quasi-2DEG systems found in layered semicon-
ductor structures and in nanostructures. The objective
of this paper is to present a functional form which de-
scribes in sufficient detail, and with sufficient accuracy,
the forin of Es(v), inclusive of its cusp structure and con-
sistent with available microscopic calculations. Thus the
present effort goes beyond the work7 of Levesque, Weis,
and MacDonald (LWM) who fitted the Eg of simple FQH
Huids for which v = 1/q, and of Fano and Ortolanis (FO)
who provided a fit to include nonsiinple FQH Huids where
v = p/q, with p g 1. However, both LWM and FO did
not include cusp structure and v values in between the
FQH fractions. Nevertheless, many authors have sim-
ply used these smooth functional forms for general v and
even assumed that these forms can be used for computing
derivatives. Any attempt to treat the in-between regions
need some modeling. Here, we include the cusp struc-
ture using the electron and hole quasiparticle energies at
the FQH cusps. Incompressible-Huid ground states are
experimentally observed if the fIuid at the filing factor
v = p/q is more stable than the Wigner crystal (WC)
which is the preferred phase for small v. A reasonable
choice for the set of observed FQH ground states is

( ) = (') + (*'),
(i) = 2/11, 1/5, 2/7, 1/3, 2/5, 3/7, 4/9, 5/11, 6/13,

(*i) = *1/9, *1/7, *3/7, *2/9, +3/13, *3/11, *4/13, *4/11.

The (*) &actions have been observed only as structure in
the diagonal resistance, or in optical experiments. The
FQH state at each cusp persists for a "window" b, v due
to sample-specific effects. Competition of the WC with
FQH states leads to reentrant behavior and WC states
have been claimed on both sides of v = 1/5. However,
very little is known about Eg for v in between two "adja-
cent" v '. Ideally, given any pair v,- ' and v,.+~, one can
define other fractions p/q which fall between them. Then
we have a densely discontinuous function Es(v) which is
mostly unknown since exact diagonalizations, or calcula-
tions based on Laughlin-type wave functions exist only
for a limited number of filling &actions v' . It is also
believed that v = 1/4, 1/2, 3/4, etc. , probably4 form a
special type of Fermi liquid and their Eg are so far un-
known. Any attempt to model such a complicated system
seems hopeless. However, we have found a simple scheme
which depends only on a single Gtted parameter and yet
reproduces the ground-state energies Es(v' ~) with high
accuracy. The somewhat speculative procedure which en-
abled us to guess this functional form for the energy also
yielded functional forms for the quasiparticle excitation
energies p~(v). Unlike the ground state energies, micro-
scopic calculations for the quasiparticle energies (QPE)
are available only for a few v as they are more difficult
to calculate. DifFerent QPE calculations may differ by a
factor of 2 or more. The QPE calculated froin our func-
tional forms were found to be within the spread of re-
ported p~(v' ~) obtained from microscopic calculations.
Hence, the model presented here may be cautiously used
for arbitrary values of v within the first Landau level,
when more fundamental calculations are unavailable.

II. THE GROUND-STATE ENERGY FUNCTION

A. Wigner crystal regime

Lam and Girvin calculated the energy of the Wigner
crystal in a magnetic Geld using a variational wave func-
tion which includes electron correlation effects. If the
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electron number density per unit area is n, and the ex-
ternal magnetic Geld appled perpendicular to the 2DEG
is B, the fllling factor v = n/(2vrAo) Here, Ao is the mag-
netic length given by Ao = hc/eB. Measuring energies in
units of e /eAo, the Lam and Girvin expression is

the Eg of fluid states if and only if v = 1/q, and does
not give the Es of v = p/q where p g 1. Note that
Eq. (3) contains four fitted parameters, two of which are
nonlinear. Eg(v) calculated using LWM is given in the
first row of Table I.

Eg(v) = E,i, + 0.2410v / + 0.160v / (2)

where E,~» ———0.782133v / . Lam and Girvin esti-
mate that the crossover from the liquid to the WC occur
around 1/v, = 6.5 + 0.5 using an estimate of the liq-
uid phase obtained from the smooth functional form of
LWM which has been Gtted to the Laughlin liquids at
the simple fractions 1/q.

C. Liquid regime —FO energy function

Fano and Ortolani also presented a continuous Gt valid
for the lowest Landau level, using the available ground
state energies for v = Ji/q, where p ( q. Their first form
was replaced by a manifestly particle-hole conjugate form
given by

B. Liquid regime —LWM energy function

A many-body ground state wave function of FQH liq-
uids at filling factors v = 1/q, where q is an odd integer,
was given by Laughlin where he also presented a map-
ping to a classical plasma. The E~ of the classical plasma
can be obtained by hypernetted chain (HNC) integral
equation methods or by molecular dynamics (MD) sim-
ulations. The E~ from HNC and MD approaches agree
very well and LWM (Ref. 7) presented a smooth fit which
included an approximate Wigner crystal energy for the
small v regime. The LWM energy per particle is

Eg(v) = E,i, + 0.2110v ' —0.012v '

This form does not explicitly satisfy particle-hole conju-
gation and should not be applied directly if v ) 0.5. If
v ) 0.5 the ground-state energy can be calculated via
particle-hole conjugation. Denoting v* = 1 —v,

v*Eg(v ) = vEg(v) + CHF(i * —p)

Here, CHF = —(vr/8) / = —0.6266571 is the Hartree-
Fock energy of a full Landau level. The LWM form yields

Eg(V) = CHFV + E~]~s + 0.683V(lJ )
—0.806v / (v*) /

The FO form has no cusp structure typical of the FQH
regime. As in Lam et al. , and in LWM, the E,~, term
implies a smooth crossover to the classical solid (WC)
limit. The derivatives of Es(v) calculated from the FO-
Gt need not have any meaning, just as in the case of
LWM. Eg(v) calculated using the FO form is given in
the third row of Table I.

D. Liquid regime —energy function with cusp
structure

In the following, we present a functional form which
reproduces the Quid state energies and the known cusp
structure of the FQH regime. The fluid state energy need
not smoothly reduce to the crystal energy at small v and
hence this limit is not forced into our functional form.
At first we consider a hypothetical model plasma which is
Hartree-Fock-like and has some additional Coulomb cor-
relations but does not have FQH-like strong correlations.
Since Coulomb correlations in 2D go as the electron spac-

TABLE I. The ground-state energy, quasiparticle energies y, + and energy gaps Es ~ in units of e /eAO, at some filling factors
for which microscopic calculations are available. The parametrization of LWM (Ref. 7) for 1/q fractions, row 1, is to be
compared with our Eg l, given in row 2 where the single adjustable parameter is fitted to the energy at 1/3. Row 3 gives the
FO (Ref. 8) for v = p/q. Row 4 gives the ground state energy E b from many-body calculations. The result from our fit is in
row 5.

LWM: Eq. (3)
Eg. Eq. (8)
FO: Eq. (5)
E~g (Ref. 3)

Es, our Eq. (12)
p, our Eq. (14)
p, other works
p+, our Eq. (15)
p+, other works
Eg~p &

our value
Eg p ot her works

1/3
-0.410
Gtted
-0.410
-0.410
-0.410
-0.155
-0.132
0.254
0.231
0.100
0.099

1/5
-0.328
-0.329
-0.329
-0.328
-0.328
-0.059
-0.076
0.123
0.107
0.063
0.031

2/5
-0.443
-0.443
-0.439
-0.433
-0.434
-0.109

0.163

0.054
0.061, 0.135

2/7
-0.384
-0.384
-0.385
-0.381
-0.379
-0.058

0.102

0.044
0.024,' 0.063

3/7
-0.456
-0.457
-0.450
-0.441
-0.445
-0.084

0.119

0.035
0.049

2/9
-0.343
-0.344
-0.345
-0.339
-0.340
-0.037

0.071

0.034

4/9
-0.463
-0.464
-0.456
-0.448
-0.451
-0.066

0.094

0.028

Reference 11~

Reference 16.
Reference 19.

"Reference 20.
'Reference 21.
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ing parameter r, oc n ~, this additional correlation be-
yond Hartree-Fock would be expected to be of the form
v / since 2vrAov = n. Hence, we take the form

E = CHFv —cv / (1 —v) /, (6)

where c is an unknown constant and the superfix 0 on E
indicates the model plasma. This and the following equa-
tions do not manifestly satisfy particle-hole conjugation,
just as in the case of LWM. However, this is no limitation
as they will be used for v ( 1/2 or suitably corrected for
v ) 1/2. In order to go beyond the model plasma with its
continuous E~(v), we introduce the scaling ansatz which
asserts that FQH like correlations for v = 1/q can be
introduced into Eq. (6) by simply replacing v by v / .
Thus

1/2 (7)

A rationalization of this ansatz will be attempted in the
Appendix. Using this ansatz we have, for the simple
fractions vz ——1/q,

E(i) ( ) ~ i/2 i/4(1 i/2)l/2 (8)

This equation applies if and only if v~ = 1/q. This is

indicated by the superscript (1) on Es . We fix the value
of c to reproduce the known energy at v = 1/3, giving
c = 0.098. Using this value of c it is found that Eq. (8)
closely reproduces the LWM energies at arbitrary values
of v & 1/7. This is seen by comparing rows 1 and 2 of
Table I. These are FQH —ground-state energies only for
v = 1/q &actions.

To calculate Eg(v) for nonsimple fractions v = p/q
where p g 1, without introducing additional fitting pa-
rameters, we proceed as follows. If plq ( 1/2 we can
calculate an energy E(p/q) f'rom the model plasma and
apply the ansatz. This gives us an energy

E(plq) = &HF(plq)' ' —c(plq)' 't1 —(plq)' '1' ' (9)

&(q) = [E," "(vQ) —E,"(v,*)]/(q —1),

&'(q) = (E" "(1/q) E'(v,*)jl(q —1).—

(10)

The latter equation is for the hypothetical model plasma
and will be useful when we consider the quasiparticle
excitation energies. Using Eq. (10) our expression for
the FQH —8uid energy at v = p/q, v ( 0.5 is taken to be

E.(plq) = E,"(plq) + &(q)(p 1). —(i2)

This completes our expression for the ground-state en-
ergy at FQH —filling factors v = p/q. The predictions

which is simply Ez~ l(p/q), i.e, the energy estimate from
the LWM form which is incorrect for p g 1. We can ap-
proximately correct for this inaccuracy by noting that we
know the exact energy for p = q —1. That is, from Eq. (8),
knowing the energy Egl (vz) we know, from Eq. (4) the
energy Ei' "(vq) = Eg(v') at v* = (q —1)/q. Hence, we
define the quantities

of Eq. (12) are given in row 5 of Table I and should be
compared with row 4 containing results of microscopic
calculations, and with the FO fit given in row 3. The
agreement of our one parameter fit is excellent.

E. Liquid regime —energy function between FICHE
CLlSPS

Using Eq. (12), we can calculate Es at any &action
p/q, q odd, for a 2DEG in the lowest Landau level. The
ground-state energy Eg has downward cusps at these spe-
cial filling factors. If we are slightly away Rom a given
v;, say at v; + bv, then the energy of the system can be
calculated if the quasiparticle energies are known, since

p~ = d(vEg(v))/dv~~.

Hence, the two gradients on the two sides of the cusp
can be evaluated and the energy at v, + bv can be es-
timated. Such an energy estimate is good only if bv is
suKciently small. Using the spacing L; found in the set
of observed FQH fractions (v, ') listed in the introduc-
tion, we have decided on a suitable set bv,+. applicable at
each cusp. Thus, in the range of two adjacent cusps i and
i + 1, we have the energies at the four points v;, v, + bv,+,
v;+q —bv, +~, v;+q. We use these four known energies to
interpolate (cubic splines) for other v values between v;
and v;+~. This is merely a prescription and need not pick
up the correct physics of these largely unknown regions.
However, the resulting functional form respects the cusp
structure at the observed filling factors, and is guided by
the correct gradients on the two sides of each cusp.

In treating the energies near v = 1/2, we interpolate
between v = 6/13 and its conjugate fraction 7/13. Such
a procedure need not produce the correct physics at v =
1/2. However, given more information for such unknown
regions, the functional form of Eg can be modified to
incorporate the new information.

F. Model for the quasiparticle energies of FQH fiuids

The ground-state energy Eg(v) of a FQH fluid can be
determined either by basis-set dependent "exact" diag-
onalizations for a finite number N of electrons, ' or us-
ing methods based on a form for the many-body wave
function. ' ' The diferent methods are in satisfactory
agreement for the ground-state energy. However, the cal-
culations of quasiparticle energies turn out to be more
difBcult and less concordant than those for Eg. The
hypernetted chain method now requires calculations of
distribution functions in the presence of a quasiparticle
or quasihole —i.e., three-body distributions. Although
the quasihole energies calculated using integral equa-
tion methods tend to be in reasonable agreement with
finite-N diagonalizations, this is not the case for electron
quasiparticle energies. We have argued that the treat-
ment of inhomogeneous hypernetted chain equations
found in the FQH literature uses incorrect limiting pro-
cedures in going to limitingly low quasiparticle concen-
trations. It is also found that the quasiparticle ener-
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f (v) = CHFv —0.5c(v* —v)v'/ /(v*)'/,

I (p/q) = (-1/q) IE'(v) + &(v) + &'(q) l (14)

p+(p/q) = (1/q)[E (v) + f(v / ) + A(q)(p —1)]. (15)

No new fit parameters have been introduced into the
model in constructing the quasiparticle energies. That
is, the model still contains only the single fit parameter
c = 0.098 obtained by fitting the ground-state energy
at v = 1/3. The quasiparticle energies and gaps calcu-
lated using these expressions are given in Table I. The
agreement with microscopic calculations for v = 1/3 is
reasonable and the energy gap Ez ~ ——p++ p is in good
agreement with microscopic calculations. The quasipar-
ticle energies for 1/5 are similarly acceptable, while the
energy gap is overestimated. Quasiparticle energies from
microscopic calculations for other fractions are not avail-
able in the literature. However, some gap energies are
available and the results from our model fall within the
reported ranges of values. We have used our values of p~
to determine the derivatives on the two sides of the cusps
in the ground-state energy and constructed the functional
forms shown in Figs. 1 and 2.

gies and energy gaps reported by different microscopic
calculations may differ by a factor of 2 or more, even
for well established fractions like 2/5. Given these diffi-
culties, it is not surprising that no microscopic results
exist for most of the observed fractions. Hence, we
seek a scheme which produce quasiparticle energies in
grosso modo agreement with published values, and calcu-
lable &om the energy parametrization scheme presented
above. As explained in the Appendix, our parametriza-
tion method for the ground-state energy emerged from
our belief that the lowest Landau level of a 1/q FQH
Quid acquires a sub-Landau level structure containing q-
sublevels. is The FQH gaps correspond to gaps in the sub-
Landau levels. Creation of electron-quasiparticles corre-
sponds to introducing particles above the gap. Creation
of holes involves modifications in the already occupied
sub-Landau levels below the gap. Using the hypotheti-
ca/ model plasma energy E (v) which is difFerentiable,
and then using the scaling ansatz etc. , as discussed in
the Appendix, we adopt the following expressions for the
quasiparticle energies:

-0.35—

-0.37—

-0.39—

-0.45—

-0.47—

-0.49
0.25 0.30 0.35 0.40

filling factor

4/9 w

5/11
6/13

0.45 0.50

FIG. 1. Solid line: our ground-state energy Es(v) inclusive
of the cusp structure. The LWM (Ref. 7) continuous fit to
the 1/q energies as well as Lam and Girvin (Ref. 5) Wigner
crystal energies are shown. The FO (Ref. 8) fit to the p/q
energies is not shown and follows LWM closely in this range
(0.1 ( v ( 0.25). The Wigner solid shows reentrant behavior
in regions where the solid line goes above the dotted line.

-0.24

gion is between 2/7 and 1/3, as observed experimentally.
The exact value of the intersection of the Wigner-crystal
energy curve and Quid energy curve depends somewhat
on the interpolation and the values of the gradients on
the two sides of each cusp. Nevertheless, we believe that
the results presented in Figs. 1 and 2 provide at least a
semiquantitative picture of the behavior of the ground-
state energy of a 2DEG in a strong magnetic field.

The LWM and FO forms of E~ did not include the cusp
structure of the 2DEG ground-state energy. Such func-
tional forms are not able to treat the reentrant behavior
of the Wigner-FQH phases.

In constructing our energy function we were guided by
certain physical ideas which are of course not necessary
for using the functional forms. That is, Eq. (12) etc. ,

couM be regarded as mere functional forms with an ad-
justable parameter which successfully reproduce the en-

ergies, etc. Some remarks about the physical ideas that
point in the direction of the present parametrization are
given in the Appendix.

The energy fits discussed here apply only to the strong

III. DISCUSSION -0.28—

We see &om Table I that the cusp values of the ground
state energy at the FQH-filling factors v = p/q are well
reproduced by our one parameter fit. The ground state
energy, with interpolation for in between regions, is dis-
played in Figs. 1 and 2, together with the LWM, FO and
the WC energy (Lam and Girvin form). The reentrant
behavior of the Wigner crystal phase for in between fill-
ing factors for v less than about 0.3 is clearly evident. In
fact the first reentrant region is between v = 4/13 and
1/3. The &action 4/13 has not been clearly identified as
a Hall plateau and hence the first effective reentrant re-

-0.32—

-0.36
0.10 0.15

filling factor
0.20

"3/13
025

FIG. 2. Same as Fig. 1, but for the range 0.25 ( v ( 0.5.
Here, we have included the FO (Ref. 8) fit as a dash-dot-dash

( ——) line.
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field limit. Since the Hartree energy for a uniform system
is zero, the Eg(v) fits are in fact the exchange-correlation
energy functionals needed in density functional theory.
When we go to weaker fields the higher Landau levels
cannot be neglected and the assumption of full spin po-
larization breaks down. Thus, the energy has to have
the form E~(v", v~) and should reduce to the zero field
ground state energy of the 2DEG as B goes to zero.
However, more details regarding the behavior of the two-
component 2DEG is needed before a parametrization of
the exchange correlation energy could be attempted.

l = 0, 1, . . . , N —1 with a total angular momentum
;„=N (N —1)/2, and a filling factor v = 1. When

an arbitrary number of states with I )I;„is available,
the filling factor is v = L/L; . For a given number N
of electrons, with N large, v oc N . However, for cer-
tain filling factors the competing requirements of elec-
tron exchange and Coulomb repulsion can be optimized
by having compact droplets where the ground state is
formed by L, i NN, i/2 where the electrons occupy
the N, ~ smallest-l orbitals. This effectively constrains
the v oc N relation to a v (x. N, or, v is scaled to v /

This is our scaling ansatz.

APPENDIX

1. Scaling ansatz

In Eq. (7), we scaled the filling factor v at the FQH—
filling factors to get v„i = v ~ and used them in Eq. (6)
to pick up the special correlations typical of FQH fluids.
The physical reasoning that lead us to try this scheme is
based on the following picture. At the special FQH—
filling factors v~ = 1/q, the lowest Landau level is re-
placed by q sub-Landau levels (sLL) with gaps. The sub-
Landau levels themselves give rise to sub-sLL of the hi-
erarchy scheme, as in a &actal structure. The exchange-
correlation effects manifest themselves as a Chem-Simons
type field (arising &om an exchange-correlation vector
potential) which replaces the external field B by an effec
tive field B'+ = B/q. Hence the effective energy scale in
the gaped plasma depends on e2/eAP with Ao

——Aoqi~2.

Equivalently, the new energy scale is e v~ /eAo where a
v / appears.

Another way of looking at the scaling ansatz is to con-
sider an ¹ lectron droplet. The ¹ lectrons in the low-
est Landau level occupy the angular momentum states

2. Quasiparticle energies

(I/q) = (I/q) [E'(v9) + f(v.)j (A1)

To approximately treat the case v = p/q and make some
corrections for particle-hole conjugation effects we add
the term 4 (q) and obtain the form given in Eq. (14).
The quasiparticle energy for adding a flux quantum arises
&om creating a hole in the correlated fluid, i.e, in the
filled sub-Landau level below the gap. Thus our first
guess for p+ is to use the scaling ansatz and replace vq

by v~~ in Eq. (Al). The generalization to v = p/q now
involves the approximate correction A(q)(p —1) as indi-
cated in Eq. (15).

In writing down the quasiparicle energies we begin with
the model plasma energy of Eq. (6) and assume that when
an electronlike quasiparticle is created (a flux quantum
is removed), the quasiparticle is placed in the empty sub-
Landau level above the gap and hence it has no special
correlation effects associated with the compact droplet.
Thus the first guess for the electron-quasiparticle energy
is to use E in Eq. (13). This gives us
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