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Superconducting transition temperatures from anisotropic interactions
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The anisotropic electron-phonon interaction is used to calculate the transition temperature T, of a su-

perconductor. We derive constraints on the maximum value of the anisotropic interaction, and use these
extremal values to calculate the maximum increase in T, from the anisotropy. Calculations are done for
electrons on a two-dimensional square lattice using an Einstein model for phonons.

Recent research in high-temperature superconductors
has focused on whether the energy gap has d-wave or an-
isotropic s-wave symmetry. ' " Anisotropic s-wave gaps
are caused by an anisotropic interaction between elec-
trons on the Fermi surface of the conductor. ' ' Re-
cently we derived a theory of the anisotropic s-wave in-
teraction for two-dimensional electrons on a square lat-
tice. ' Here we wish to show how the anisotropic in-
teraction increases the transition temperature of the su-
percon. ductor. Calculations are done for the electron-
phonon interaction with an Einstein model for the pho-
nons.

Our objective is to determine the maximum amount
that the anisotropic interaction can increase T, over an
isotropic interaction. Earlier we showed that the interac-
tion can be given in terms of anisotropic coupling con-
stants A,41. Here we establish bounds on the values of
these coupling constants for I )0, which then determines
bounds on the increase in T, . In general, we find that the
importance of the anisotropic interaction increases as the
chemical potential approaches the Van Hove singularity
which is always present in two dimensions.

These calculations are an extension of our earlier work
in Ref. 12. The present calculations were inspired by the
recent paper by Zhao and Callaway' who calculate the
transition temperature of YBa2Cu3O7 using realistic band
structure parameters. They used the anisotropic
electron-phonon interaction. They find T, =63 K with an
isotropic interaction, while including anisotropy in-
creased the value to T, =90 K. Their result verified our
earlier ideas' that anisotropy increased T, . However,
their increase in T, is much larger than the values we
found. That raises the question of finding the maximum
increase in T, caused by anisotropy. That is the motiva-
tion of the present calculation. Our results do not find as
large an increase as they reported. However, we are do-
ing a calculation for a single conduction band, and they
emphasize that several bands contribute to their final re-
sult.

I. ANISOTROPIC INTERACTION

The interaction between electrons in a lattice must
conform to the group symmetry of the crystal. Fermi

+sscos(8$)cos(8$')+ . ] . (2)

The usual parameter which denotes the strength of the
interaction between electrons and an oscillator of fre-
quency ~p, such as a phonon or plasmon, is called A, . In
the present case there is a value of X41 for each Fermi-
surface harmonic. Below A,4I is defined in terms of the di-
mensionless density of states ho(u) =2K ( I —u )/tr,
where K is an elliptic integral and u =p/8' and 8'=4t
is the bandwidth for a nearest-neighbor hopping model.
The Van Hove singularity is at u =0. If the lattice has a
constant d and the planes are separated by a distance c
then the definition of the coupling constant is
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We will treat the parameters A.& and A, 8 as adjustable
within physical limits. Given their full range of possible
values, what kind of increase is achieved for the transi-
tion temperature? We find that even allowing any value,
only a small increase in T, is achieved.

Another set of parameters required for the expansion

surface harmonics are the set of basis functions which
conform to the crystal symmetry. ' ' Earlier' we
showed that a simple set of Fermi-surface harmonics for
the square lattice are cos(4IP), where l is an integer and

P =arctan( k /k ) is the angle which determines the posi-
tion of the electron on the Fermi surface of energy p.
This definition is useful when p &0 and the band is less
than half filled. Whenever p) 0 we invoke electron-hole
symmetry and relabel the band corner as the band center.
In two dimensions, the angle P is the only variable needed
to describe the position of electrons on the Fermi surface.

The square of the matrix element for the interaction
between two electrons on the Fermi surface can be ex-
panded

~M(P, P')
~
=g m~tcos(41$)cos(4lg')
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in Fermi-surface harmonics are those related to the densi-
ty of states. The dimensionless density of states for
cos(41$) is denoted as h4i(u).

d k
h (u) =4ntd f cos(4lg)o(4tu E—),

(2~) k

W(k, ik„)=g W„icos(41$).
I

Ignoring Coulomb repulsion, the gap equation for elec-
trons interacting with an oscillator described by an Ein-
stein model has a gap equation'

Ek = 2t[—cos(k d)+cos(k~d)] .

The angle P is chosen as tan(P)=k /k if u &0 and ac-
cording to tan(P)=(m —k d)/(m. —k d) if u )0. This
latter choice is due to electron-hole symmetry and makes
h4i(u) a symmetric function of u.

Earlier' we derived the relation between the wave vec-
tor k and the dimensionless energy u =E& /8'

lI' k)'ik(m)
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The function h 4 and h 8 play a key role in the calculation
of the gap anisotropy. Values for these functions were
given earlier. Generally we find that ho &h4 &h8. The
functions rapidly decrease in value with increasing value
of l.

II. MAXIMUM A,4i

2+k~ T,
8'

a =a(m + 1/2),

o(m, P)= X(m, d )

=g X4, (4,cos(4l P ),
l
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There are no bounds that we know on A,o. Our ap-
proach is to assume a value for A,o and then ask what con-
straints are on the anisotropic couplings (l )0). First
consider that we only include the first two parameters A, o

and A,4. The value of k4 is constrained by the requirement
that the square of the matrix element in (2) be positive,
which gives ~A, 4~ & A, o. We find that T, increases with A.~,
so the bound is obtained using its largest value A,4=ko.

Next we add two anisotropic coupling constants A,4 and
X8. Again the maximum T, occurs when A,4 and A, 8 are as
large as possible. Their values are constrained by the re-
quirement that the square of the matrix element in (2) is
positive. Neither A, 4 nor A, 8 can exceed Xo, and both can-
not equal it simultaneously. There is a critical value

s„;,=(1+1/&2)/2=0. 8536. Recalling that si =Xi/Ao,
for s8 &s„;,then A,4 can have its maximum value of A,o.
However, for s„;,&s& & 1 then Xz & +818(AO —

A, s). We
have searched through the parameter space and found
that the largest T, occurs when X4=ko and ks=kos„;,.
These values are used to calculate the effects of the an-
isotropy.

Our calculations show a significant increase in T, when
including A,4 but a negligible increase when including A, 8.
We assume that the contribution of A, ,2 and higher
coefficients is negligible.

III. GAP EQUATION

Earlier we derived an expression for the energy gap for
the square lattice. First define the gap function W(k, ik„)
of imaginary energy ik„asan expansion in Fermi-surface
harmonics,

COO %0+ 1 n(u)—
dub~&(u}
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Xo+n (u)+.
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(17)

n (u) = 1/[exp[(u —u ) W/k~ T, ]+1],
No = 1/[exp(coo/kz T, ) —1] .

(18)

These equations give our theory for the gap equations for
an anisotropic s-wave gap. Note that we are doing a
strong-coupling calculation which includes the electron
self-energy X(m, P) in the electron Green's function.

The integrals over dU were evaluated numerically. The
angular integral over dP was done analytically. We tried
several exact methods which gave poor results due to the
small values of g4 and gs. The angular terms in the
denominator of (12) have very small coefficients. Finally,
we did an approximate evaluation by expanding these
small terms into the numerator of the integrand and kept
enough terms in the expansion to get convergence.

IV. NUMERICAL RESULTS

We evaluated the above equations for A,0=1. This
value is arbitrary but does give the same T, as found by
Zhao and Callaway' for an isotropic interaction. We fix
this value even as we vary in the chemical potential. In a
realistic calculation the coupling will change with chemi-
cal potential. Changes in the density of states will change
the coupling, and also the screening of the coupling. This
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FIG. 1. T, (in K) as a function of the reduced chemical po-
tential u =p/W for three sets of coupling parameters: (i) lower
curve has A,o= 1, A,4= A, 8 =0, (ii) middle curve (solid) has
XO=A,4=1, A,8=0, and (iii) top curve has A.0=A,4=1, X8=0.8548.
The bottom of the band is at u = —1 and the midpoint of the
band is at the Van Hove singularity at u =0. The anisotropy
parameters A,4, A, S have increasing e8ect near the Van Hove
singularity where the energy band is more anisotropic.

FIG. 2. Ratio of 64{~=0) to 60(co=0) at T, when
A,0=A,4=1.25 and A,8=0. Both 60 and h4 are infinitesimal at the
transition temperature. Their ratio shows the degree of gap an-
isotropy. The result depends upon how close the chemical po-
tential is to the van Hove singularity at p=0.

effect is rather complex, and beyond the scope of the
present calculation. The phonon energy is cop=50 rneV.
This value is close to the midpoint of the phonon spec-
trurn of the cuprates, and close to the peak in a F at 60
meV found by Zhao and Callaway. This peak dominates
a F. The bandwidth was taken to be t=1.0 eV or
8'=4.0 eV.

The results are shown in Fig. 1. The lower curve
shows the value of T, as a function of —1 & u & 0 for the
isotropic interaction (A,z=k.s=0). We find that T, =66.5

K over much of the occupied band. The value of T, falls
at the left as the number of electrons in the band starts to
vanish. The value of T, seems unchanged for the isotro-
pic interaction as the chemical potential approaches the
Van Hove singularity which is at u =0.

The solid line in Fig. 1 is the result obtained using
Ap I4 1 and A, 8

=0. The value of T, rises near the Van
Hove singularity at u =0 but joins the curve with A,4=0
at the bottom of the band near u = —1. The difference
between the curves with and without A,4 mirnics the
behavior of h4(u). This function is zero at u = —1 and
rises at the Van Hove singularity. The function h4(u)
provides the coupling between A,4 and A,p. As we raise u,
this coupling (h~) increases, and the contribution of A,4
has a large effect. At u = —0.2 the increase in T, is
about 10% and at u = —0. 1 the increase is about 20%.

At values of u approaching zero, Fig. 1 shows a dashed
line slightly above the solid line. The dashed line in-
cludes the influence of A, 8. This curve was calculated us-
ing the values of kp=A, 4=1 and X8=0.8536. The cou-
pling parameter A,s enters through the function hs(u) or
else h4 and both of these are very small except very near

to the Van Hove singularity. Even at u = —0.04 the in-
crease in T, due to A, ~ is only about one degree.

Since we solve the gap equation at T, the energy gap is
zero. The matrix in (10) has eigenvectors, and those for
eigenvalue unity are the infinitesimal energy gaps
b4I(n+1/2). We extrapolate those to zero energy and
Fig. 2 shows a plot of A4/b, o at zero frequency. This is
graphed for Ap A4 1.25. It shows the admixture of gap
anisotropy as one approaches the Van Hove singularity.
The admixture is about 25% when p= —0.2. For the
same parameters the change in T, is only about 10%%uo.

This is the usual result in quantum mechanics, where per-
turbations change wave functions more than eigenvalues.

At u =0 the electron gas on the square lattice is anti-
ferromagnetic and not superconducting. The cuprates
must be doped to change the chemical potential away
from the Van Hove singularity before superconductivity
is achieved. This change in the chemical potential must
be on the order of at least 10%%uo of the bandwidth. At
u = —0. 10 the influence of A, 8 is negligible compared to
that of k4. We conclude that only the first anisotropy pa-
rarneter A,4 is important in actual materials. Then the
maximum increase in T, is less than 20%. This is a
much smaller increase than the 40% found by Zhao and
Callaway. However, their calculation showed several
electron bands participated in the conduction process.
The multiband aspect of their calculation could explain
the differences in our result.
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