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Fibrous composite systems characterized by a cylindrical Inicrogeometry and consisting of a
piezoelectric and a piezomagnetic phase with thermal effects are considered. These composites
exhibit a magnetoelectric effect that is not present in the constituents. Exact connections are
derived between the effective moduli of such systems. These relations are independent of the details
of the microgeometry and of the particular choice of the averaging model. In the case of overall
transverse isotropy the composite is characterized by twenty one constants. We show that there are
sixteen connections for a subset of twenty effective moduli. Simple expressions are also derived for
the effective constants of the composite cylinder assemblage microgeometry in such systems.

I. Introduction. Composite aggregates which consist
of a piezoelectric and a piezomagnetic phase exhibit a
magnetoelectric eEect which is not present in the con-
stituents. Such systems have been recently studied by
Harshe et a/. , ' Avellaneda and Harshe, and Nan. Mul-
tilayer media and particulate composites ' have been
considered in these works which include a list of further
references as well as a discussion of possible applications
of these composites. A special category of particulate
media is one in which the aspect ratio of the aligned in-
clusions is large. An idealization of these aggregates is
achieved by letting the fibers to be cylindrical so that the
transverse microgeometry is invariant. The present work
is concerned with such composites.

This Brief Report is a generalization of the proce-
dures used in the author's recent studies in piezoelec-
tric composites to the present systems. Section II
deals with the concept of exact connections between the
efFective moduli of the composite. The idea here is to
look for connections which need to be satisfied irrespec-
tive of the details of the transverse microgeometry and
of the choice of the adopted averaging scheme. Section
III gives a very simple derivation of the eBective mod-
uli of the composite cylinder assemblage model for the
present systems. Since the analysis in both sections is
along the same lines of the previous works by the au-
thor on piezoelectric composites, we have maintained it
here at a minimum, emphasizing only the results which
concern the piezomagnetic and magnetoelectric e8'ects.

II. Constitutive I.ass and Exact Connections Between
the Effective Moduli. Let us consider a two-phase com-
posite medium with a fibrous structure characterized by
the fact that the phase boundaries are surfaces which
can be generated by straight lines parallel to the x3 axis.
'The system of primary interest is that in which one phase
is piezoelectric and the other is piezomagnetic. Yet, in
order to have a unified analysis, both phases will be as-
sumed to be piezomagnetoelectric. The phases, as well
as the composite, will be assumed to be transversely
isotropic. The constitutive laws are given by

$7.(r) —L(r) e(r) er(~)E(~) g&(r)H(r) + p(r) ga
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(1)
where o("), D("), B("), e("), E("), H("), 00 denote, re-
spectively, the stresses, electric displacements, magnetic
Quxes, strains, electric field intensities, magnetic field in-
tensities, and the temperature. The elastic properties
are given by the fourth-order tensor L("), whereas the
piezoelectric and piezomagnetic properties are denoted
by third-order tensors e(") and q("). The second-order
tensors tc(") and p, (") are the dielectric and magnetic
permeabilities. Finally, )3 denotes the thermal stress
tensor, and p(") and m. (") are the pyroelectric and pyro-
magnetic vectors. The explicit expressions for I ("), e("),
m("), P ", and p(') can be found in the previous works

of the author. In the adopted matrix notation the
properties q("), p, ("), n("), and m. (") are given by
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Consider now a loading of the composite aggregate in
the form

u, (S) = e,, x, , P.(S) = E,' x;—
(S) = II, x;, t)(S) = —8o, .

where u;, P„and P denote, respectively, the mechan-
ical displacements and electric and magnetic potentials,
and e, , E",--, H, , and 0o are constant strains, electric
fields, magnetic fields, and temperature.

The loading in (3) can be decomposed into two parts
as follows:
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Q (S) = Ei x——E3 x, P (S) = Hi —xi —H2 x3 .

Making use of the described fi.brous microgeometry, the
transversely isotropic structure of the constituents, and
the steady state equilibrium conditions,

os j =0 Diz =0 Biz = 0 (6)

it can be readily proved that the fields induced under (4)
are decoupled from those induced by (5).

Next, we turn again to (3) and ask whether there ex-
ists a specific choice of (e, E, H, Op), denoted by
(i, E, H, Op) such that the strains and electric and mag-
netic fields be uniform throughout:
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e;, (x) =e;, , E, (x) =E;, H;(x) =II, , 0=op.
(7)

Following the procedure in Benveniste, it can be shown
that the only possible sets of (i, E, H, Op) resulting in
uniform fields are given by

(10)
B = q 6+ CXE+ PH+ XI100

2

) c (q(r)e(r) + ~(r) E(r) + ~(r)H(r) + ~(r)g )
r=l

where an overbar denotes a representative volume aver-
age, whereas (. .)(") stands for an average over the phase
r in that representative volume.

Subject now the composite to the boundary conditions
(4) with the specific choice of (eo, E, H, Op), given by
(8) and (9), so that uniform fields are generated through-
out,

;=;(.) =, , E = E(") = E H = H( ) = H . (»)
Next, substitute (ll) and (8) into (10) and equate the
coefIicients of g;, i = 1, 2, 3, 4. This provides a set of ex-
act connections between the effective properties. For the
sake of brevity, we state here only the connections which
are in addition to those given before for the piezoelectric
case:
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L, e, q, ~, ~, p, , P, p, xn can be represented by
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2
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where g;, i = 1, 2, 3, 4 are arbitrary constants and
2
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with k being the plane strain bulk modulus for lateral di-
latation without axial extension and E the cross modulus
in longitudinal uniaxial straining. ' It is thus noted that
uniform fields can be generated under the loading of the
type (4), but not in the case of (5).

These uniform fields allow the derivation of ex-
act connections between some of the effective prop-
erties. The effective law of the piezomagnetoelectric
composite aggregate described by the effective tensors

q33 —p c„ q33
(r)

r=l
(r)cr &33 —&33

(1) (2)
31 31

(15)

In Eq. (12), the parameter n denotes the modulus for
longitudinal uniaxial stretching. These relations are sup-
plemented by equations (59), (60), (62), (64), and (65) of
the previous paper by the author, as applied to the case
of overall transverse isotropy. Alternative, but equivalent
forms for m3 can be written on the basis of (12) above
and (59), (60). A variant of (13) is also obtained by ma-
nipulating (60) in the previous paper together with (12)
and (13) and is given by
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where the subscript c refers to the effective law, and the
following definitions have been made:
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The method of Milgrom and Shtrikman concerns
coupled field phenomena like magnetoelectricity in which
there are divergenceless cruxes together with driving fields
derivable from scalar potentials. Basically, it establishes
a correspondence between the uncoupled and coupled
problems. Although piezomagnetoelectricity does not fall
in general in the category of coupled Beld phenomena

On the whole, there are nine exact
connections between the ten effective parameters
k, 8, n, e33, e3», ~33, q33, q31, @33, o.33, so that knowl-
edge of one of them allows the determination of the rest.
Furthermore, effective thermal terms can be determined
&om the constituent properties and the knowledge of the
effective constants S, n, e33, and q33.

Of particular interest are Eqs. (13) and (15), which
show that the magnetoelectric coefFicient o.33 of such 6-
brous composites can be expressed in terms of the con-
stituent properties and either the effective piezoelectric
constant e33 or the piezomagnetic one q33, All of these
relations are universal in the sense that the details of
the transverse microgeometry and averaging assumptions
have not been invoked in their derivation. It may be
noted that all of the effective constants which appear in
these connections are those which would enter in the ef-
fective description of the composite under a loading of
the type (4). Another effective constant, the transverse
shear modulus G~, is also induced under this loading.
This property, however, does not appear in any of the
exact connections.

Under a loading of the type (5), the effective behav-
ior of the composite involves the remaining six constants
GL, ) c»5 ) q»5) K» 1 ) &»» ) p» 1 Exact connections between
these constants can be derived by using a procedure de-
scribed by Milgrom and Shtrikman. It is erst noted
that the solution for the mechanical displacements u, and
electric and magnetic potentials induced under (5) can be
represented by

(-} 0 (-) 0
tL» = C»3 X3) Q2 623 Z3 )

(Xli X2) —F13 Xl —e23 X2
(~) ().) 0 0 (16)

y(~) y(~) (X, X ) y(~) y( ) (X,

where we have introduced a new function @(")(xl, x2).
With this notation, the constitutive laws of the con-
stituents and of the composite may conveniently be
casted in the form

L„* = WL„W, r = 1, 2, c, (20)
where L„* is a diagonal matrix and W is the 3 x 3 ma-
trix which diagonalizes not only the constituent matrices
L» and L2 but also the effective matrix L . The impli-
cation of this result is the existence of the following con-
straint relation between the components of the effective
matrix L:

L. L, 'I„—I„L,'L. =0. (21)
It can be readily verified that the resulting matrix on the
left-hand side of (21) is antisymmetric so that this equa-
tion provides three connections between the components
GL, ) e»5) q»5, K»») o.'»» p»» of the effective L .

To summarize, therefore, the analysis of this section
establishes 16 exact connections [Eqs. (59), (60), (62),
(64),(65) in the previous papers plus (12), (13), (14), (21)
herein] for a subset of 20 effective constants entering in
the characterization of the 6brous composite.

III. Composite Cylinder Assemblage Results for the Fi
brous Composite. The composite cylinder assemblage
model has been introduced by Hashin and Rosen to
model the uncoupled mechanical behavior of fibrous com-
posites. It has also counterparts in particulate compos-
ites with spherical particles as well as conductivity prob-
lems; see Hashin and Hashin and Shtrikman. We now
follow the approach used by the author for piezocompos-
ites and provide a very brief derivation of the composite
cylinder assemblage moduli for the present composite ag-
gregate.

It is first observed that the transverse bulk modulus
A: of the piezomagnetoelectric composite is the same as
that of the purely elastic composite. This is proved by
subjecting the composite aggregate to the boundary con-
ditions necessary to determine the effective modulus k,

ul(s) = e xl, u2(s) = e x2, u3(g) = (),

{b.(S) =0, y (S) =0, 0(S) =0, (22)
and looking for the transverse dilatational strain in the
composite cylinder element. Using the constitutive equa-
tions (1) in the equilibrium equations (6) shows that this
is a purely mechanical problem. The effective transverse
bulk modulus k of the composite cylinder assemblage in
the present case is therefore given by its exact expression
in the uncoupled mechanical context:

k k + (23)1 c»+ l, +(G )()

treated in that work, the procedure is applicable to two-
phase fibrous composites with transversely isotropic con-
stituents and the mode of deformation described in (16).
As this procedure has been illustrated and implemented
in the context of piezoelectricity by the present author, '

we limit ourselves here to stating the main result only.
Let us first define the 3 x 3 matrices L„representing the
constitutive law (17):

- (~)
~15 q»5

~»5 ) p = 1)2)c.
q15 O»» @11

The main finding of Milgrom and Shtrikman consists
in establishing the correspondence
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Clearly, this equation shows in an explicit manner the
presence of an efFective magnetoelectric efFect even in sit-
uations when it is not present in the phases.

The six moduli GL, , ei5, qi5, ~ii, o,'ii, pii are
easily derived by using the approach of Milgrom and
Shtrikman. Consider first the uncoupled elastic, elec-
tric, and magnetic behavior of the composite and denote
the longitudinal shear modulus and the transverse dielec-
tric and magnetic permeability coefIicients by G*, rii,
and p&i. In the framework of the composite cylinder as-
semblage model these are given by

We now

(G*.)1 cl + (G*.)2(1+ c2)
(G.).(1+")+ (&.)." '

(Kl 1)1 Cl + (Kli ) 2 (1 + C2)

(»)1(1+c2) + (K»)2 1
'

(@11)1Cl + (@11)2(1+ C2)

(oil) i(1+ c2) + (Vli) 2 ci

define the matrices L„*,

(25)

(G*,)„0 0
L* = 0 (—Kii)„0

(—S 11).
and cast (25) in the following form:

r = 1, 2, c, (26)

L.* = Ll [(1+C2) Li + (1 —C2) L21
'

x [(1 —c2)Ll + (1 + c2)L2] . (27)

Making now use of the correspondences in (20) shows
readily that the efFective moduli of the piezomagneto-
electric composite is given by a formula similar to (27):

L, = Ll [(1+c2)L1+(1 —c2)L2]
x [(1 —c2)L1+ (1+c2)L2],

where Ll, L2, and L, have been defined in (19).

(28)

where ci and c2 denote the volume fractions
of the matrix and inclusions, respectively. Hav-
ing obtained an expression for A:, the moduli
~7 n) e337 e311 K331 '133) 931t 033') C133i Pl 1 P3) P39 93)
and m, 3 follow &om Eqs. (59), (60), (62), (64), (65) of the
previous paper and (12), (13), (14) herein. For example,
the magnetoelectric coefIicient o.33 is given by

(1) (2} (1) (2)
(1) (2) (131 '931 ) ( 31 31 )&33:Ci &33 + C2A33 +

( )
~

[(kl + G~ ) + cl(k2 —kl)]
(24)

This concludes the determination of all the effective
constants of the composite cylinder assemblage model ex-
cept for GT. This last constant needs to be determined
by a difFerent micromechanical model like, for example,
the generalized self-consistent scheme of Christensen and
Lo. Yet, as in the case of the transverse bulk modulus
A:, it is readily recognized that its determination does not
involve any electric or magnetic efFects and it is, there-
fore, equal to the corresponding constant of the uncou-
pled mechanical problem.

IV. Conclusions. The exact connections derived in this
paper have several applications. They have allowed, for
example, a very brief derivation of the composite cylinder
assemblage moduli in Sec. III.

Since the transverse bulk modulus A: given in
Eq. (23) is known to be exact for this partic-
ular microgeometry, ' it has not been necessary
to provide a separate derivation of the constants

e33~ e31 ~ K33 ~ 933 ~ '731 ~ P331 c133) Pl P3) Ps 1 lii3 ~

They have simply followed from the existence of the ex-
act connections. The derivation of the efFective moduli
GL, ) ei5, ]cii, qg5, pii, o.'ii) on the other hand, has
been slightly diferent. First, in Sec. II we have no-
ticed that the work of Milgrom and Shtrikman has al-
lowed the derivation of three exact scalar connections
(21) among these constants. Yet, the explicit expres-
sion (28) for these constants have been directly derived
from the knowledge of the effective moduli (25) of the
uncoupled problems. Since the formula (28) is exact, it
is expected that it satisfies the connections (21). That
this is indeed so can be readily verified by substituting
(28) into (21).

Another application of the exact connections is in
verifying the internal consistency of several averaging
schemes. Namely, a given micromechanics model will
possess such a consistency property if the approximate
moduli it predicts satisfy the exact connections given in
the previous paper by the author and the present one.
Consider, for example, the so-called non-self-consistency
approximation (NSC) of Nan and Jin. s lo 4 Although the
majority of their moduli in the case of fibrous systems
can be shown to satisfy the exact connections, the mod-
uli G, ei5, Kii in their piezoelectric paper fail to do so.
Thus, although explicit expressions have not been given
for the corresponding moduli GL, ex5, q&5& vii~ nxi~ pia
in Nan's piezomagnetoelectric paper, it is questionable
that they would fulfill Eq. (21).
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