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Spin-wave interaction efFects in the Neel phase of the Ji-J2-J3 madel
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Treating the residual spin-wave interaction as a perturbation to the mean-field Hamiltonian,
we compute the stability region of the Neel phase in the J&-J2-Jz model. The phase boundary
found within the second-order approximation lies between the mean-field boundary and the classical
boundary.

The question of how the strong quantum fluctuations
alter the classical picture of two-dimensional antiferro-
magnets has attracted much attention in the last years. '

As a rule, quantum fluctuations work against ordering
but in some cases they can stabilize ordered phases in
a classically forbidden area. Recently, an enhancement
of the stability region of the Neel state over the classi-
cal case, perhaps as a combined eEect of fluctuations and
frustration, has been predicted in quantum frustrated an-
tiferromagnets on a square lattice by mean-field-type Che-

rries (MFT). On the other hand, several approaches,
including linear spin-wave theory (SWT) and series
expansions, lead to destruction of the Neel order at
critical frustration appreciably smaller than that in the
classical theory.

Further investigations ' have been devoted to
checking the reliability of approximations made in SWT
and MFT. Along this direction, it has been found
out 'i that 1/S expansions of SWT are well-behaved
series in the square-lattice antiferromagnets only at small
frustration. No way to improve systematically the linear
SWT results at moderate frustration of these systems has
been found yet. This fact makes questionable the predic-
tions of SWT for the stability region of the Neel state in
frustrated square-lat tice antiferromagnets.

The other widely discussed results for the Neel state of
these systems, namely the MFT results, can be a6'ected
by the fluctuations omitted in MFT. In the perturbation
approach developed in our previous work for investiga-
tion of the spin-2 Jq- J2 model, MFT has been recognized
as a zero-order approximation (an ideal gas of renormal-
ized spin waves). Calculating the first nonvanishing cor-
rections to the energy and magnetization caused by the
residual spin-wave interaction in ordered phases, we have
shown, in particular, that the corrections to magneti-
zation, though being small, reduce essentially the Neel
state stability region predicted by MFT (Ref. 16) in
the spin-2 Jq- J2 model. We have found for the crit-
ical frustration the value n, = 0.52 (n = J2/Ji) which
is very close to the classical value 0.50 (MFT gives
n, 0.62). The agreement of this result with the nu-
merical estimates of o.~ supports the suggestion that
essential spin-wave interaction e6'ects in frustrated anti-
ferromagnets can be evaluated by a Gnite-order pertur-
bation theory.

Here we study spin-wave interaction eB'ects in the Neel
phase of the more general J~-J2-J3 model of a frustrated
antiferromagnet where MFT also predicts a significant
enhancement of the stability region as compared to the
classical case. The model is defined by the Hamiltonian

II=J) SS+J ) SS+J ) SS,.
(n) (nn) (nnn)

Positive Jq, J2, and J3 measure, respectively, the
strength of interaction between nearest (n), next-nearest
(nn), and next-next-nearest (nnn) neighbors on a square
lattice. Consideration of the nn and nnn couplings
in Eq. (1) is motivated, in particular, by the recent
suggestion that these interactions model to some ex-
tent the eKects of holes in lightly doped Cu02 planes of
the cooper-oxide materials.

Following the scheme of Ref. 15, within the Dyson-
Maleev (DM) formalism, we eliminate, by a Bogoliubov
transformation, the quadratic part of the interaction
term. This leads us to the DM Hamiltonian in the form

HDM —~0 + HO + VDM)

where TVO is a constant, Ho represents an ideal gas of spin
waves, and VDM is a quartic normal-ordered operator de-
scribing the spin-wave interaction. It should be noticed
that the elementary excitations of system (1) considered
here are not the conventional magnons investigated in
SWT. An essential part namely, the quadratic part of
the interaction between SWT magnons is incorporated
in the zero-order Hamiltonian Ho. The perturbation
scheme above Ho provides expansions of the ground-state
characteristics in powers of the residual spin-wave inter-
action instead of the 1/S expansions.

The DM vertices of the Jq- J2-J~ model can be written
as

+ C3 ) V = 1)2). . . )9() () ()
where C~& is the Jq-J2 DM vertex and 43" is the part
caused by the Js term in Eq. (1). The parameters of the
Bogoliubov transformation are defined by the equations

S + B3 —B2 S + R4 —B2a= 6=s+ B, —B2' S+ B~ —B2'

where
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pk =
2 (cos k + cos k„), pk =

2 (cos 2k + cos 2k&), rlk = cos k cos k„,

&k = sgn (fk) 2„, ek = 1 —(7k/fk),

fk = 1 —na (1 —gk) —nib (1 —pk), n = J2/Ji, ni ——Js/Ji.

It can be proved that the description of the Neel state
of model (1) based on the zero-order Hamiltonian Hp
[Eq. (2)) coincides with the description given by the
Schwinger-boson mean-field theory (SBMFT). In the
limiting case Js ——0 (the Ji- J2 model) the Hp theory co-
incides with the modified spin-wave theory (MSWT)
as well. Hence, the interaction term VDM describes the
eQ'ects omitted in MFT. We treat this term by the second-
order perturbation theory and obtain the results dis-
cussed below.

In Fig. 1 we present the magnetization m of the Neel
state for the S =

2 Ji- Jq- Js model in two cases: (i)
J2 ——0 (the Ji-Js model) and (ii) J2 ——2Js [model
(1) with this relation between exchange integrals is be-
lieved to be the most relevant effective spin model for
doped CuOq planes]. ' ' The second-order results are
displayed by solid lines and the zero-order approxima-
tion (MFT) corresponds to the dashed lines. As is seen,
the residual spin-wave interaction increases m at a small
frustration but this interaction melts the ordering near
the MFT boundary. In the second-order approximation
we obtain the phase boundary points o.q 0.35 and
n, 0.32 for the (i) and (ii) cases, respectively. These
results should be compared with the MFT predictions
ni, 0.39 (Ref. 14) and n, 0.35 (Ref. 20). The classi-

cal theory yields ' smaller values: o; = o.y = 0.25. It is
also worth noticing that the second-order value o., 0.35
of the critical frustration in the J~-J3 model coincides
with what has been obtained by numerical calculations
on small clusters.

The reduction of the MFT stability region of the Neel
state in the Jq- J2-J3 model is smaller than in the Jq- J2
model. This is seen in Fig. 2 where we present the stabil-
ity region in the whole (n, ni) plane. In general, within
the second-order approximation, a noticeable enhance-
ment of the Neel state stability region over the classi-
cal case is revealed everywhere except the vicinity of the
point J3 ——0.

The residual spin-wave interaction melts the Neel or-
dering even if S ~ 2. The second-order corrections vanish
only in the limit S -+ oo (see Fig. 3). In this limit both
MFT and perturbation theory stick with the classical one
in a way displayed for the (ii) case in Fig. 3.

This figure represents a part of the phase diagram of
model (1) with J2 = 2Js. Within the SBMFT, the full
phase diagram of this model has been recently calculated
by Ceccatto et al'. They predicted a small window be-
tween the Neel and spiral phases in the S =

2 system and
overlap between the two phases for the other physical S
to exist. Neglecting corrections to the spiral phase, we
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FIG. 1. Staggered magnetization of the Neel state of the
spin-2 Ji-Jg-Js model: m, (ni) in the case Jq = 0 and vn(n)
in the case J2 = 2Js (n = Jq/ Ji, ni ——Js/ Ji). The zero-order
results (SBMFT) (Ref. 20) are shown by dashed lines and the
second-order results correspond to solid lines.

FIG. 2. Stability region of the Neel state of the
S = — Ji-Jq-Js model in the (n, ni) plane according to the
classical theory (dash-dotted line), SBMFT (dashed line), and
present theory (solid line).
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FIG. 3. Neel phase boundary in the (1jS,n) plane for
model (1) with Js ——2Js. SBMFT (Ref. 20), dashed line;
present theory, solid line.

FIG. 4. Phase diagram of the J~-J2 model: zero-order the-
ory [MSWT (Refs. 4 and 6), SBMFT (Ref. 5)], dashed lines;
second-order theory, solid lines. Below the dash-dotted line
the collinear state has a lower energy than the Neel state.

find that the correction to the Neel state stability region
makes the window between the Neel and spiral phases for
S =

2 wider and almost washes out the overlap between
ordered phases for larger S.

A more complete second-order description of the (I/S,
frustration) phase diagram we obtain in the Ji-J2 model.
By calculating the corrections to both Neel and collinear
phases we find a window (see Fig. 4) between the two
phases for any S ( So 0.63 (MFT predicts4 s

So 0.42) and a noticeable overlap for larger S. Hence,
within the second-order approximation, a disordered
phase is possible to appear in the Jq- J2 model only in the
strong quantum limit S = 2. From the results presented
in Fig. 4 we may also conclude that spin-wave interaction
egects are more pronounced in the Neel phase than those
in the collinear phase.

The overlap area between the ordered phases should
be regarded as a region of metastability of the Neel or

collinear phase. We computed the line (the dash-dotted
line in Fig. 4) along which E(Neel)= E(collinear), E =
Eo + LE. The corrections AE turned out to be very
small and this line is practically the same as that in the
zero-order approximation.

In conclusion, we have found a noticeable reduction
of the MFT stability region of the Neel state in the
J~-J2-J~ model occurring due to interaction effects. The
reduced region remains, however, wider than the classi-
cal one. By comparing our results with available numer-
ical estimates we have presented some evidence that the
proposed second-order theory satisfactorily describes the
Neel state of the complicated spin model, Eq. (1).
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