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Phase transition in the spatially anisotropic classical XY model
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The self-consistent harmonic approximation is applied to the classical three-dimensional spatially an-
isotropic O(2) model on the cubical lattice. The spin stiffness and the magnetization are calculated.

By now it is well known that in two-dimensional sys-
tems having a XY-like continuous symmetry, a topologi-
cal long-range order is developed at low temperatures
and the order is destroyed by the unbinding of vortices at
a critical temperature Ty, the Kosterlitz-Thouless tem-
perature. Experimentally, a great variety of critical phe-
nomena has been associated with the universality class of
the XY model."? However, despite their layered struc-
ture, there is no ideal two-dimensional material which
shows the planar behavior, as there is always some cou-
pling between adjacent planes.®~!2 An arbitrarily small
coupling between adjacent planes will have a dramatic
effect on the ordering in the three-dimensional (3D) case.
This system, of course, will show the conventional long-
range order and exhibit an usual second-order phase tran-
sition.

In this paper we consider the renormalization effects of
the interlayer and intralayer coupling using the self-
consistent harmonic approximation (SCHA). This tech-
nique, for the isotropic model, has been used extensively
in the literature,’>~2° mainly in the context of high-T,, su-
perconductors, since the XY model can be viewed as a
model of superconductors for which the magnitude varia-
tions of the order parameter have been suppressed. Here
we will generalize the SCHA to treat the spatially aniso-
tropic XY model.

The spatially anisotropic classical XY model in three
dimensions is defined by the Hamiltonian

H=—3

sz COS(¢, _¢r+x )+Jy2 COS(¢, ——¢r+y )
x y

, (1)

+Jzz COS(¢, _¢r+z)

where Jx,Jy,Jz are the coupling constants in the x,y, and
z directions, respectively, and the sums are extended over
all nearest-neighbor pairs on a cubic lattice.

The SCHA procedure consists in replacing the cosine
potential in the Hamiltonian (1) by a variational harmon-
ic potential of the form

H0=72 [sz (¢r~¢r+x )2+Ky2 (¢r—¢r+y )2
r x y

) (2)

+Kzz (¢r _¢r+z )2

where K; (i =x,y,z) are effective coupling constants that
take into account the nonlinearities of the interactions
and that have to be adjusted in order to minimize the
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variational free energy given by
F=Fy,+{(H—H,),, (3)

where both, F, and the average ( . ), are evaluated with
respect to H,. Our calculations will be a generalization
of those of Ariosa et al.,'* wherein the SCHA was used
to investigate the phase transition in the fully frustrated
2D XY model. Using Egs. (1) and (2) the variational free
energy becomes

F=-— é—anO =3 e X2 +T,e Y2+ T,e 772

r

—%2 [K.X+K,Y+K,Z], (4)
>

where Z,=Tr{exp(—BH,)}, and
X={(¢o— )0 Y=((¢o_¢y o X={(¢o—¢,))
(5)

is the nonsingular part of the lattice Green function.

In order to obtain the quantities X, Y, and Z, we shall
first diagonalize the quadratic form H,. An eight site
basis is introduced on the array, in the following way

r=p+(a/2)sx+5+12), (6)
with
p=2a(n,X+ny+n,2), stl==1, (7

where a is the lattice constant and %,9,2 the unit vectors
on the x,y,z axes.

Expanding all functions of p in Fourier series, H, can
be written as

Hy=3% X > ¢:t,l(q)Mstls’t’I’(q)¢s’,t',l’(q) (®)
q s,tl=x1st'I'=%1

with the matrix M given by

m; m, mjz; m, 0 0 0 0

m, mgi 0 O my my O O

my; 0 mg 0 m, 0 m; O
0 ml 0 mz m3 0

M= ’
m3 m2 O ml 0 0 M4

mgy 0 m, 0 m; 0 my

0
0
0 0 my my 0 O m; m,
0

0 0 0 m, mz; m, m;
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where m; =K, +K,+K,, m,=—K, cosq,,
m;=—K, cosq,, my=—K, cosq,, and ¥, ,,(q) are the
normal coordinates. The eigenvalues of M are given by

0;=K,(1—cosq,)+K,(1—cosqg,)+K,(1—cosg,) ,
w,=K,(1+4cosq, )+K,(1—cosg,)+K,(1—cosg,) ,
w3=K,(1—cosq,)+K,(1+cosq,)+K,(1—cosgq,) ,
ws=K,(1—cosq,)+K,(1—cosg,)+K,(1+cosq,) , (10)
ws=K,(1+cosq,)+K,(1+cosq,)+K,(1—cosg,) ,
we=K,(1+cosq,)+K,(1—cosq,)+K,(1+cosg,) ,
0;=K,(1—cosg,)+K,(14cosg,)+K,(1+cosq,) ,
wg=K,(1+cosq, )+ K,(1+cosg,)+K,(1+cosq,)
and the eigenvectors by

A=A(1;1;1;1;1;1;1;1),

A=ALLL-LL -1, —-1;—-1),

A =ALL-L L —-1L1;,—1;—1),

A=A -LLLE-L-151-1),

As=A(1;1;—-1;—1;—1;—1;1;1) ,

Ag=A(1;—1;1;,—1—-1;1;—1;51),

A=A —-1;,—-1;1;1;—1;—1;1),

Ag=A(L;—1;,—1;,—-1;1;1;1;—1),

(1n

with 4 =(2v2)~1. Thus, for each site (p,s,t,1) we have

_ 1 c .S .t 1
%z(p)———\/]—v— Eq:eXP iqptizg,tisg, +izg,
XY a,(q,st1,(q), (12)

where a,,(q,s,t,1) is the (s,t,]) component of the eigen-
vectors A, in (12). Then we can write

8
Hy=3 3 0,@l,(q)] (13)

qg m=1

which leads to the following expression (equipartition
principle):

where we have taken the Boltzmann constant equal to the
unity. We can now compute the averages X, Y, Z, ob-
taining

X=i22[ai(—1,1,1)+a,3,(1,1,1)
N 7 m
—2a,,(—1,1,1)a,,(1,1,1)cosq, 1T /2w,,(q) , (15)
Y:"]l\?ZZ[ai(l,l,l)+a,%,(1,~1,1)
q m

—2a,,(1,1,1)a,,(1,—1,1)cosq, 1T /2,,(q) ,  (16)
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qg m

—2a,,(1,1,1)a,,(1,1, —1)cosq, 1T /20,,(q) . (17

In the following we will take J, =J,=J, since this is
the case of more physical interest. Replacing the sum in
q in (15), (16), and (17) by an intergral, the effective cou-
pling constant can be calculated analytically. However
since we have to solve a self-consistent equation to obtain
K and K, this would lead to a lengthy calculation. Thus
to obtain a simple expression we will make the usual De-
bye approximation by using the small g limit of the mode
frequencies. Strictly speaking this is not necessary and
the full momentum dependence can be maintained. We
will use the Debye approximation just as a matter of sim-
plicity. We should note that more precise results
(perhaps closer to Monte Carlo) could be obtained by
keeping the full g dependence in Egs. (15)-(17). Com-
paring the calculations, for a few values of K and K, us-
ing the two procedures, we have found a difference which
ranged from 3% to 5%.

In the two limits J, <<J and J, =J we have obtained

(a) J, <<J
T [5 1 1
~ - -+
K Je"p[ 16K |2 ' 1+K,/K ' 24K, /K
2m2+24 | | K, K,
yrym e ]lan , (18)
Td /16K
K =J KZ €X - —2““”
= g P17 16K |1+K,/K
b1 4. (19)
2+K, /K ’
where

d=(r*+12)/12mc=(m/12)In(4/7)+(1/m)Inm .  (20)
(b) J,=J

—7 | 3K+K, 3K +K,
K =J exp 3
16 |2K*+KK, 2K*+2KK,
—1(1_)1/2
2K | 1—g (1—g)3”?
T | 2K +2K, 2K +2K,
K,=~J,exp{—— 3 5
16 | K2+2K,K (K +K,)
1 —1(1—g)172
1 {tanh™'(1 3/gz) _ 1 (22)
K (1—g) (1—g)
with g=K, /K.

The above expressions are self-consistent equations giv-
ing the effective coupling constants K and K, for each
temperature. The critical temperature 7, is reached
when the self-consistent equations for the coupling con-
stants admit no solutions but the trivial one K =0,
K,=0. Figure 1 shows a plot of the critical temperature
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FIG. 1. Critical temperature as a function of anisotropy ratio J, /J.
Open squares, solid circles, and triangles are Monte Carlo data from
Refs. 11, 26, and 29. Solid and dashed lines as in text.

(in the two limits discussed above) versus J, /J (solid line)
compared with Monte Carlo data from Refs. 11, 21, and
26. The dashed line represents the critical temperature
calculated using the following expression
T,/J=(J,/J)1/32.2, obtained by the mapping of the an-
isotropic continuum model onto the isotropic one [see
discussion after Eq. (27)]. For J=J, we have
T,/J=6/e=2.20 which is consistent with Monte Carlo
results>??23 and the high temperature series of Ferer
et al.** for the 3D isotropic planar model. For J,=0 we
recover the previous result for the 2D planar rotator
(Ref. 2), T,/J=4/e=1.47. This value is above the
Monte Carlo result T,/J=0.90. This happens because
the SCHA does not incorporate the effect of polarization
by bound vortex pairs. As was shown by Pires and
Gouvea,? if we include vortex effects we obtain a good
agreement with the Monte Carlo estimate. However if
we apply the procedure of Ref. 25 for a small value of J,,
for instance J,/J=0.02, we obtain the renormalized
value for the critical temperature T*/J=1.07, quite
below the Monte Carlo estimate T,/J=1.14, whereas
the bare SCHA gives T,/J=1.50. This discrepancy for
the renormalized value T* (considering that the inclusion
of vortex effects worked well for J, =0 in Ref. 25) may be
associated with the fact that for J,70 the transition does
not have a Kosterlitz-Thouless character; the phase tran-
sition of the anisotropic XY model is of second order.
For larger values of J, /J we cannot, of course, apply the
formalism developed in Ref. 25.

For J,/J <<1 we have obtained the following expres-
sion for the transition temperature

T.=Ty[1—A(5/16—pInA)] "1, (23)

T/
FIG. 2. Effective coupling constants K /J (solid line) and K,/J
(dashed line) as a function of temperature for J, /J=0.1.
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FIG. 3. Magnetization as a function of temperature for J,/J=1
(solid line) and J, /J =0.1 (dashed line).

where A=J, /J,p=(2m*+24)/487 and T,=4J /e is the
transition temperature for the planar rotator.

In Fig. 2 we show our calculation for X and K, as a
function of temperature for J, /J=0.1. As we can see at
low temperatures the behavior is linear in 7. For the 2D
XY model there is no spontaneous magnetization and
both the correlation length & and the magnetic suscepti-
bility x are infinite for temperatures below the
Kosterlitz-Thouless temperature. For our model the
magnetization is given by

m = {cosy , ,(p))
=exp{ — (T /87)(4/V/ 7KK, )tan~ (L1V/ 7K, /K )

+(1/K)In[(7K,+4K)/7K,]} . (24)
In the limit J, <<J Eq. (24) leads to
m=~(K,/K)T% X (25)

which would be compared with the result predicted by
spin-wave calculations:

m=(J, /J)T/%7 (26)

In Fig. 3 we show the magnetization m as a function of
temperature for J,/J =1 and J,/J =0.1. We see that
the magnetization decreases drastically near T,., where
the three-dimensional critical fluctuations grow up and
the spectrum w,, . . . , wg becomes relevant. As in the iso-
tropic case the SCHA gives a first-order phase transition
(with infinite slope of the order parameter) at T,. This
feature is an artifact of the approximation. Nonetheless
the reasonable agreement for the critical temperature
with Monte Carlo data suggests that the approximation is
semiquantitatively reliable except insofar as the order of
the transition is concerned. Of course for T close to the
transition point, the behavior of the layered system is
three dimensional, and the magnetization m should scale
as (T, —T)# with B=1.

The utility of the SCHA is not restricted to the calcula-
tion of the transition temperature (this could be per-
formed using other techniques?®) but also to give renor-
malized temperature-dependent coupling constants K and
K, that appear in the expressions of several thermo-
dynamical variables, for instance, spin wave and topolog-
ical excitations energy.

We should however remark that the stiffness, given by
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p=K /J, is not an order parameter. For instance, in 2D
the system can be described by a function p(g?) that
plays the role of a dielectric susceptibility in the vortex
gas.”’ In the low temperature phase we have p=p(0)70.
Above the transition point, p(q?)~gq*g*+£2)"!, where
& is the correlation length. Thus is this region only for
large distances r (short wavelength q) we have p=0.
The spin wave energy is given by

o(q)=4K 2

. 24 . . 29
sm2—2i +sin +4K, sm2—22— , 27)
while up to now no expression has been obtained for the
energy of topological excitations occurring in the contin-
uum limit of Hamiltonian (1), i.e.,

_J 3 3
H—zf

2
3o y dx dydz .

I

J

99

2
+
dz

(28)

The transformation (x,y,z)=(Vax',Vay',z'/a) with
a=(J /J,)1”? yields an isotropic 3D model. Using the
value of the critical temperature of the isotropic 3D pla-
nar rotator T,/J=2.2 we obtain T,/J=(J,/J)2.2.
This relation should hold as far as the continuum limit is
valid. Of course the continuum approximation in the z
direction breaks down for J, /J << 1.

Comparing the critical temperature calculated using
the above expression with our theoretical calculation (and
Monte Carlo data) in Fig. 1, we see that this breaking
down should happen for J, /J below 0.3. In this region,
instead of (3¢/3z)? it would be better to approximate
S;S; by Si'(Sj ) =m cos$, where m is the magnetization
and i and j are in different layers. We have then
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H= [ (71(3¢ /3% "+ (3¢ /3y 1]

+J,m cospl}dx dy, J,<<J . (29)

Using now the lowest energy solution for Hamiltonian
(29), calculated by Hudak,?® we have for the energy of a
bound pair a distance r apart

E(r)=16mJ In(r/ay)+2" 27/ JI,m (r /ay) , (30)

where a, is a cutoff constant of the order of the lattice
parameter. For large pair separation (r/ay>>1) the
second term on the right-hand side of (29) dominates.
For temperatures greater than zero we have then

E(r)=C(T)r,r>>ay , (31)

where C(T)=2"27vV/K(T)K (T)m(T).

Thus C(T) decreases with increasing temperature and
in fact vanishes at 7,. This means that the interplane
coupling effectively ceases to be felt by the vortices for
T>T, the model effectively reducing to a two-
dimensional planar model. The decoupling of the planes
retrieves the 2D functional form of the vortex-antivortex
interaction.?>30

Since our theory can be generalized to include dynami-
cal terms in Hamiltonian (1) (an S? component for the
magnetic system, and a time derivative, d¢ /9dt, for the su-
perconductor) we hope it will play, for the layered sys-
tem, the same role that the former SCHA have played for
the isotropic model.

This work was partially supported by Conselho Na-
cional de Desenvolvimento Cientifico e Tecnologico (Bra-
zil) and Financiadora de Estudos e Projetos (Brazil).

1p. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

2D. G. Wiesler et al., Z. Phys. B 93, 277 (1994).

3V. L. Berezinskii, and A. Ya Blank, Sov. Phys. JETP 37, 369
(1973).

4V. L. Pokrovsky and G. V. Uimin, Sov. Phys. JETP 38, 847
(1978).

5C. Tsallis, Nuovo Cimento 34B, 411 (1976).

6S. Hikami and T. Tsuneto, Prog. Theor. Phys. 63, 387 (1980).

7N. Parza and J. E. van Himbergen, Ann. Phys. (NY) 134, 286
(1981).

8S. T. Chui, Phys. Rev. B 12, 2863 (1983).

9S. T. Chui and M. R. Giri, Phys. Lett. A 128, 49 (1988).

10H. Weber and H. J. Jensen, Phys. Rev. B 44, 454 (1991).

1D, Baeriswyl et al., Braz. J. Phys. 22, 140 (1992).

127, S. T. Pires et al., Phys. Rev. B 49, 9663 (1994).

13D, Ariosa and H. Beck, Phys. Rev. B 43, 344 (1991).

14D, Ariosa et al., J. Phys. I (France) 51, 1373 (1990).

15D, Spisak, Physica B 190, 407 (1993).

16p. M. Wood and D. Stroud, Phys. Rev. B 25, 1600 (1982).

17Y. E. Lozovik and S. G. Akopov, J. Phys. C 14, L31 (1981).

I8R. S. Fishman and D. Stroud, Phys. Rev. B 38, 290 (1988).

I19R. S. Fishman, Phys. Rev. B 38, 11996 (1988).

20D. Ariosa and H. Beck, Helv. Phys. Acta 65, 499 (1992).

21p, Minnhagen and P. Olsson, Phys. Rev. Lett. 67, 1039 (1991).

22C. Kawabata and K. Binder, Ann. Israel Phys. Soc. 2, 988
(1978).

23G. Kohring et al., Phys. Rev. Lett. 57, 1358 (1986).

24M. Ferer et al., Phys. Rev. B 8, 5205 (1973).

25A. S. T. Pires and M. E. Gouvea, Phys. Rev. B 48, 12689
(1993).

26B, Chattopadhyay and S. R. Shenoy, Phys. Rev. Lett. 72, 400
(1994).

2TM. V. Feigelman, Sov. Phys. JETP 49, 395 (1979).

280. Hudak, Phys. Lett. 89A, 245 (1982).

29P. Minnhagen and P. Olsson, Phys. Rev. B 44, 4503 (1991).

303. W. Pierson, Phys. Rev. Lett. 73, 2496 (1994).



