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We present the results of calculations of the penetration depths A b and A, (the subscripts refer
to the direction of the screening currents). Our model is a layered superconducting/normal metal
(S/N) model, in which the two types of layers are stacked in alternating fashion. The S and N
layers are coupled in a coherent fashion and the N layer is driven superconducting by a proximity
effect. We calculate the penetration depths for both d-wave and s-wave order parameters for a
range of interlayer coupling strengths, and we discuss the effect that the interlayer coupling has on
the temperature dependence of the penetration depths. We finish by comparing our results with
experimental observations of YBa2Cu307.

I. INTRODUCTION

Recent measurements of the penetration depth of a
magnetic field into high-temperature superconductors
have sparked a great deal of interest. Hardy et o,l. mea-
sured the in-plane penetration depth A b of single crys-
tals of YBa2Cu30695 and found that at low tempera-
tures, A b(T) obeys a linear law, rather than the T law
previously2 4 found. in thin-film samples. This evidence
was taken as support for models in which the gap exhibits
a node on the Fermi surface. In particular, this data was
found to be consistent with d-wave theories. '" More re-
cent work on untwinned crystals of YBCO has found
that the penetration depth is di8'erent if measured along
the a axis and 6 axis. This is attributed to the existence
of a large superfluid density on the copper-oxide chains.
There has also been recent work ' on single crystals of
YBCO in which the penetration depth perpendicular to
the copper-oxide planes A was measured. The results
of optical and in&ared measurements presented in Ref. 9
show that, in contrast to the linear behavior of A b, the
low-temperature dependence of A is quite flat. On the
other hand, recent results of microwave cavity resonance
experiments suggest that A drops very quickly from
its zero-temperature value.

In this paper, we are interested in examining a number
of issues. The first is to understand the role that a second
layer (representing the chains) would have on A b for both
d-wave and 8-wave order parameters. The second is to
actually compute A, a property that has not been widely
examined in the literature. In order to keep the model
simple, we have assumed that our two types of layers
are coherently coupled. There is evidence that there
is some form of (incoherent) Josephson coupling between
the Cu02 layers of adjacent cells, but as a first step we
feel that our approach is useful. We have also assumed
that the copper-oxide chains in the YBCO do not contain
a pairing mechanism of their own but are, instead, driven
superconducting by their proximity to the copper-oxide
planes.

Models of this type are known as S/N models (S stand-
ing for the intrinsically superconducting layer and % in-
dicating the intrinsically normal layer). Previous work
on S/N models has involved discussions of the density
of states, the Raman spectra, the Knight shift
and NMR rate, and the response to microwave and
optical frequency fields in both the ab planes and the
c direction ' . A closely related model, which has
been studied extensively, is the S/S model, in which
there are two or more superconducting layers in the unit
cell. ' ' There have also been recent microscopic cal-
culations by Graf, Rainer, and Sauls and Radtke, Lau,
and. Levin of the t"-axis response in Josephson-coupled
systems with a single layer type.

In this article we break the discussion down as follows:
In Sec. II, we introduce the S/N model we use for our
system. In Sec. III we derive an expression for the pen-
etration depth and in Sec. IV we present the results of
numerical calculations and discuss them qualitatively. In
Sec. V we conclude with a comparison of our results with
experiment.

II. THE MODEL

In this section we introduce a model on which we
shall base our calculation of the penetration depth. The
model is similar to one proposed by Abrikosov and we
have discussed many of its properties elsewhere. In this
model we consider two types of metallic layers, stacked
alternately one above the other in the z direction. One
of the layer types (S) contains a BCS-like pairing inter-
action, making the layer intriniscally superconducting.
The other layer type (N) is intrinsically normal since it
contains no pairing interaction, although it is driven su-
perconducting by its proximity with the S layers. These
layers form two sublattices which we assume to be weakly
coupled to each other. The Hamiltonian is
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The Hamiltonian can then be written

with c;k being the annihilation operator of an electron
of spin o and wave vector k in the ith sublattice. The in-
plane dispersions are given by tight-binding dispersions

H —Np = ) ) C,. (k)C;(k)E, (k) + const,
k i=1

(Io)

(; = —20';[cos(k ) + cos(k„)] —p;, (2)

where p, are the layer chemical potentials. When pq g
p2, we have absorbed an offset in the band energies into
the chemical potential. The sublattices are coupled with
strength

where C;(k) is the quasiparticle annihilation operator as-

sociated with the ith energy band. The operator, C, (k),
is defined by

C;(k) = ) U, -(k)C, (k),

t(k) = to cos(k, /2).

The Brillouin zone is —vr & k, k„,k ( 7t. The form
of Eq. (3) comes from assuming that the electrons are
tightly bound to evenly spaced planes. The order pa-
rameter Ak satisfies the usual BCS-like equation:

A~ =—
& ) Vkv~(c~ ~~~c,~ t),

where 0 is the volume of the crystal. We take the pairing
potential to be separable for simplicity, so that Vkk
V~~ with ~ = 1 for an 8-wave superconductor and
~ = cos(k ) —cos(k„) for a d 2 y2 superconductor. In
this case, we can write,

&k = &0~,

and solve Eq. (4) for Ao instead of Eg. In the calculations
presented in Sec. IV, we salve Eq. (4) far Ae for each
di8'erent set of band parameters.

If we choose to work in the Nambu representation, then
we can write our Hamiltonian as

H —Np = ) Ct(k)Q(k)C(k) + const,

A = t' —(Ak+ E, +(,)(E, + (,),

—(&4+ Ei —~~)(Ei &2) ~

& = A'(t' + (E2 —&2)'] + B lt + (E2 + &2) l .

Now that we have diagonalized the Hamiltonian, it is
straightforward to find the single-particle temperature
Green's functions which we shall need in the following
section. We have

G(k, k'; i()),~ =— P
dv e*~' (TC;(k; —zT)C, (k';0))

and U(k) is the 4 x 4 matri~ which diagonalizes Q: U, ~. =
U;(E~) with

(E~ —&2)A

)
& (E, +(2—)B

tA
tB

where . U, (k) Ut, (k)
i() —E (k)

and

C 1—k$
C2k

C2—k$

—:bg g G(k; i(();, ,

where (~ = (2l + l)vr/P are the fermion Matsubara fre-
quencies, P is the inverse temperature, and T is the
fermion time-ordered product.

(g (k)
—(g (
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Diagonalization of this Hamiltonian leads to the four
bands Ej —E+ E2 —E E3 — E E4 — E+
with

III. PENETRATION DEPTH

In this section we follow the approach of Nam, but
with modifications to allow for the multiband nature of
the problem. We begin with the expression for the cur-
rent in a system generated by a weak applied magnetic
vector potential, A„(q, cu):
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(J„(r,(u)) = — A„(r, ~)
n(r)e2

) G~R„(q, —q', (u)A (q', cu)e'~'

(14)

where the Greek subscripts refer to spatial directions, and
n = (@t4') is the electron density (i' are the field oper-
ators). G~&„(q, —q', tu) is the retarded current Green's
function,

G „(q,q', a~i) =— dre* ' (Tj„(q, ir)j (—q', 0)).

to the Hamiltonian in the absence of a perturbing field.
As has been discussed at some length in the literature,
this means that Eq. (15) is not gauge invariant. However,
provided that the applied field is along the a, 6, or c axis,
our expression for the current will be appropriate for the
transverse gauge in which q . A(q, w) = 0.

Rather than evaluate Eq. (15) directly, we evaluate the
related temperature Green's function:

G~R (q, —q', (u) = —i i(~+io+ )t

x ([j„(q,t), & (—q', 0)])0(t) (15)

(with the square brackets indicating the commutator),
and J„ is the observable current operator,

In this expression, cubi
= 2lvr/P are boson Matsubara fre-

quencies, and T is the boson time-ordered product. In
order to evaluate Eq. (1S) it is necessary to find a useful
form for j„(q). Unfortunately, this is not a simple matter
for Bloch states when q g 0. We can, however, use the
properties of Bloch states to show that

with j (q) = Q C'(k) ~„(k,k + q) C(k+ q), (19)

et
~/

—i e /+ [
i et

/ e).2m I Bx~ ) ( Ox~ )
The thermal average in Eq. (15) is taken with respect

I

where p„ is a vector of 4 x 4 matrices.
Using Eq. (19) we can evaluate the temperature

Green's function to be

G„(q, q', i(u() = —8~ ~ —) Tr [G(k;i(„—i~()p„(k, k+ q)G(k+ q;i(„)p (k+ q, k)]
n, k

(20)

where the trace is over the components of the 4 x 4 matrix resulting from the product in the square brackets.
Furthermore, we can substitute in for G using Eq. (13), then perform the sum over Matsubara frequencies and
analytically continue in& to the real axis to get

G~~ (q, q', cu) = —8~ ~ e Q [j„(k,k+q)]. [j„(k+q,k)],. f[&*(k)]—f[&2(k + q)]

i,j,k
(21)

Here,

j„(k,k + q) = Ut(k) p„(k, k + q) U(k + q), (22) K = O' 0 0.0 —G' 0 0 0 24b

(J( o))=—n(r)e2
)mc

) G~„.(0, 0; 0)A. (r, 0). (23)

The first term, —(ne /mc)A„, is most easily evaluated
by noting that (J) must vanish in the normal state. Then

(J„(r,o)) = —) K„A„(r;0), (24a)

where U is the unitary matrix described by Eq. (12). The
q -+ 0 limit of Eq. (21) has been discussed in Refs. 12
and 18.

The penetration depth can be found by evaluating Eq.
(14) in the limit cu —+ 0. Furthermore, since the high-T,
materials are in the London limit, we can let q ~ 0:

and

G'„„„(O,O;O) = e') —[q„(k,k)],, [~.(k, k)],
i,j,k

ojf(E;)
OE,

f(&') —f (&~)+
i 2

(24c)

Equation (24c) is one of the main results of this paper. It
divers from the usual expression for the current Green's
function by an important interband term (the second
term in the square brackets). We will discuss this in
some detail in the following section.

If K~ is diagonal in p and v, then the penetration
depth A~ of a field aligned with one of the crystal axes
into a large crystal face whose normal is along a crystal
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axis, is

PP'
1 4m

P
(25)

write (suppressing spin for the moment)

P„) ) B,„ct(R;)c;(R,),
i=1,2 R.;

In order to generate numerical results for Eq. (25), how-
ever, we need explicit expressions for p„(k, k).

The matrices, p„(k, k), will be determined by an ap-
proach which is suitable for the extreme tight-binding
limit. This is necessary because the usual technique,
which notes that for Bloch statesi, . oI(„(k)

d r P„*„V'$„i,= (26)

cannot account for interband transitions (n g n'). The
method we use for evaluating p@ begins with the recog-
nition that

j„(q= 0) = ie[H", P„] (27)

where H is the normal-state Hamiltonian [Eq. (1) with
Ai, = 0] and P~ is the polarization operator

P„= d'r @'(r)r„4(r).

Equation (27) efFectively amounts to replacing V with
[V' /2, r] in j(r). In the tight-binding limit, this allows
us to make an important simplifying approximation. We

where c;(R;) creates an electron in the Wannier state
located at the sublattice point K, The subscript ~ refers
to the two possible sublattices. The operators c, (R, ) and
c, (k) are related via

c;(R ) = —) e*" 'c;(k),
k

where N is the number of lattice sites.
The normal-state Hamiltonian can also be expressed

in terms of Wannier states:

H" = —) ) ¹r,ct(R; + d)c;(R, )
i=1,2 B, ,d

+ ) cfi (Ri) c2 (Ri + z/2)
H ]

+ cti(Ri)c2(Ri —z/2) + H.c.

The vector d is the displacement to the nearest neigh-
bors of R; within the plane, z is the unit vector in the z
direction, and H.c. indicates the Hermitian conjugate. If
we use Eqs. (29) and (31) in Eq. (27), we find that

2cri sin(k )

p„-(k, k) =
0

0 0
2o.i sin(k ) 0

0 2cr2 sin(k~)
0 0

0
0
0

2o2 sin(k~)

(32a)

2o., sin(ky)

py(k, k) =
0

0 0
2oi sin(k„) 0

0 2o2 sin(k„)
0 0

0
0
0

2o-2 sin(k„)

(32b)

0
0
0

2' sin (—"')

0

(—"')
0
0

(32c)

Since there are no interlayer processes in p„-(k, k) and p~(k, k), it is not surprising that their elements are the same
as we would have found using Eq. (26). On the other hand, p-(k, k) has only off-diagonal elements:

0 s n
0 0~*-(»k) =

0 0

It is clear from the antisymmetric k dependence of p~
that K~ is, in fact, diagonal in p and v and, therefore,
that A~ is given by Eq. (25).

IV. RESULTS AND DISCUSSI(3N

We would like to begin this section with a discussion of
Eqs. (24). In particular, Eq. (24c) difFers from the well-
known result for single-band. materials by an additional
term (the second term in the square brackets) which

describes interband processes. This additional term is
quite difFerent from the intraband term (the first term
in the square brackets) and is therefore worth examining
in some detail. To begin with, we must understand. that
G&, when evaluated in the superconducting state, de-
scribes paramagnetic processes that degrade the screen-
ing currents induced by the magnetic field. This is quite
clear in Eq. (24b), where the efFect of GR„ is to reduce
the magnitude of the kernel K~ and therefore increase
the penetration depth.

The erst term in G&„, which is proportional to
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Of(E;)/OE;, describes the intraband paramagnetic re-
sponse to an applied field. It accounts for the reduc-
tion of the superfluid density by the thermal excitation
of quasiparticles. At T = 0 this term vanishes. As T
increases, the number of excited quasiparticles will de-
pend on the nature of the gap. For an isotropic 8-wave

gap, there will be an exponentially small number of ex-
citations, and for a d-wave gap (which has nodes on the
Fermi surface) there will be a linear increase in the num-
ber of quasiparticle excitations with temperature. The
low-temperature dependence of the penetration depth in
the ab plane has been taken as an important test of the
symmetry of the gap for this reason.

The second term in GR„, which is proportional
to [f(E;) —f (E~ )]/[E, . —E~], describes two processes
which contribute to the interband paramagnetic re-
sponse. These processes are the transitions of elec-
trons between the two electron bands, and the break-
ing of Cooper pairs in such a way that one electron fin-
ishes in each band. These two processes are best de-
scribed in the quasiparticle picture where they can be
understood as transitions between the four quasiparticle
bands. The temperature dependence of these transitions
depends on the relative signs of E; and E~. For example,
f(E+) —f(E ) vanishes at T = 0 and increases with T,
while f (E+) —f ( E) is —1 at T = 0 and decreases with
increasing T. Competition between these two terms leads
to a flat low-T behavior whose specific features depend
on the nature of the matrix elements [p„],~. It is worth
pointing out here that terms like f(E+) —f ( E+) and-
f (E ) —f ( E) will —not contribute to the paramagnetic
response since [pp]i4 —[Q~]4i —[Qy]23 —

[ fy]32 —0. It
should also be pointed out that the temperature depen-
dence of the interband paramagnetic response is quite
insensitive to the details of the gap structure, since the
flat T dependence comes from the cancellation of an in-
creasing function and a decreasing function which depend
on the gap in similar fashions.

When we calculate the penetration depth using Eq.
(25), then, we will find that the shape of the curves will be
made up of contributions from both the intraband and in-
terband paramagnetic processes. The relative strengths
of the contributions will depend on the matrix elements
of j„. The significance of this point will become clear
after we have presented the results of our calculations.

In Figs. 1 and 2, we plot the penetration depths as
functions of temperature for two physically different lim-
its of our model. These two limits were discussed at
some length in a previous article, where we found that
despite the large number of free parameters in the Hamil-
tonian, the important factor determining the qualitative
behavior of the model is the relative positioning of the
Fermi surfaces in the Brillouin zone. In one limit, the
Fermi surfaces of the two sublattices are far apart in the
Brillouin zone. Since the interlayer coupling term in the
Hamiltonian conserves k, states near the Fermi surface
in one sublattice will be coupled to states which are far
from the Fermi surface of the other sublattice. Because
of the large difference in energy of the states, the effect on
the Fermi surfaces is perturbative. In the second limit,
the Fermi surfaces of the two sublattices coincide in the

Brillouin zone, and are directly coupled by the interlayer
hopping. In this article we adjust the locations of the
Fermi surfaces by varying pi and p2, while holding the
other band parameters fixed. In Fig. 1 we have graphed
the penetration depths for an increasing sequence of in-
terlayer coupling strengths to in the limit of well sepa-
rated Fermi surfaces. In Fig. 2, we consider the same
range of to values, but choose p1 and p2 such that the
Fermi surfaces coincide.

First of all, in the case of well-separated Fermi surfaces
(which is characterized by

~
pio z —p2o i

~
)) to) the most

important effect near the Fermi surface is the opening of
an induced gap in the N sublattice. In Fig. 3 we plot the
density of states in the S and N sublattices and the small
induced gap in the N sublattice is clear. The magnitude
of the gap is (for small to)

~k +k o2t(k)
@201 P12

where k must be chosen to lie on the Fermi surface of
the % sublattice. The maximum value of the gap on the
Fermi surface is

0.8

0.4

0.8

0.4

0.8

0.4 0.8 0

T/T,
0.4 0.8

FIG. 1. Penetration depth for a series of interlayer coupling
strengths. In these figures, the Fermi surfaces of the S and N
sublattices are far apart in the Brillouin zone. The solid lines
are for A g and the dashed lines are for A . The left-hand col-
umn is for a d-wave order parameter, and the right-hand col-
umn is for an s-wave order parameter. The coupling strengths
are (a) to ——10 meV, (b) 20 meV, and (c) 40 meV. The ap-
proximate energies of the induced gaps are, for d wave, (a)
eo/T 0.07, (b) eo/T, 0.30, (c) es/T, 1.3, and for s
wave, (a) eo/T, 0.06, (b) so/T, 0.27, (c) es/T 1.2.
The order parameter Ao is determined from the BCS equa-
tion for each case. The band parameters are crq ——100 meV,
o2 ——60 meV, pq ——p2 ———80 meV and T = 8.6 meV = 100
K.
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FIG. 2. Penetration depth for a series of coupling
strengths. In these figures, the Fermi surfaces of the S and
N sublattices are coincident. The solid lines are for A g,

while the dashed curves are for A . Again, the left column
is for a d-wave order parameter, while the right column is
for an s-wave order parameter. The progression of coupling
strengths is (a) to = 10 meV, (b) 20 meV, and (c) 40 meV.
The order parameter Ao is determined from the BCS equa-
tion for each case. The band parameters are cri ——100 meV,
u2 ——60 meV, pi ———80 meV, pq ———48 meV, and T = 8.6
meV = 100 K.

in the perturbative case. For example, in Fig. 4, where
we have plotted the density of states for a d-wave order
parameter, we see that there is a nested gap structure in
which the outer gap can be identified with the order pa-
rameter and the inner gap is the result of the interference
of the interlayer coupling and the order parameter. We
have discussed this gap quantitatively elsewhere, but
because of the complexity of the discussion we will only
repeat the most important points here. The erst point to
note is that the energy scale of the inner gap in Fig. 4 is
much larger than that of the induced gap of Fig. 3 even
though tp is larger in Fig. 3. In Fig. 2, we see that it is
only for the smallest value of tp that there is a kink in the
penetration depth that can be associated with the inner
gap. For the larger values of tp the energy of the inner
gap is larger than T . The second point about choosing
coincident Fermi surfaces is that the Fermi surfaces be-
come hybridized so that the inner gap cannot be thought
of as an induced gap in the % sublattice, and must be
treated as a gap in the hybridized band. This point is
clear in Fig. 4 since the inner gap structure appears in
both sublattice densities of states.

Besides the occurrence of kinks in the penetration
depth curves, the most interesting feature of our graphs
is the large difference in A g(T) and A, (T). In Fig. 1(a),
for the case of the d wave order p-arameter, A b(T)
becomes very linear for T & eo. This is the kind
of behavior found in the usual two-dimensional d-wave
superconductors. Similarly, for the 8-wave order param-

0.25—

~ 24p
02&o

@201 @102

for a d-wave gap and

4o.2

0.2

0.15

I
I 1

I \
I

/
I

/

Eo ~Do
O.2to

Pzj. —Px2
(34b)

0.1

for an 8-wave gap. The energy ep provides a temperature
scale on which we see structure in A(T). The temper-
ature T = co is (roughly) the temperature at which a
large fraction of the superfIuid in the N sublattice is ther-
mally depleted. In the relatively weakly coupled cases
of Figs. 1(a) and 1(b), there is a sharp kink in both
A s(T) and A (T) at T eo. On the other hand,
in Fig. 1(c) where the interlayer coupling is stronger, eo
is of the order of T and we no longer see any definite
structure associated with it.

This kind of multiple-gap structure also exists in the
case where the Fermi surfaces of the sublattices coincide
(for which pqu2 ——p2oq). There are some important dif-
ferences here, however. The main point is that the direct
coupling of the Fermi surfaces through t(k) leads to a
strong hybridization of the Fermi surfaces of the two sub-
lattices. Not surprisingly, the gap structure in the neigh-
borhood of the Fermi surface is somewhat difFerent than

0.05

0—100 —50
c&(mev)

50 100 150

FIG. 3. Density of states for a d-wave order parameter.
This plot is for the same band parameters as Fig. 1(b). Here
we present the density of states of the S and N sublattices
separately. We see that there is a small induced gap at the
Fermi surface (cu = 0 meV) in the Nsublattice. The'induced
gap provides a second temperature scale (the first being T, )
over which we see structure in the penetration depth curves.
The shape of the intrinsic gap in the S sublattice is perturbed
only slightly by the interlayer coupling, so that once we are at
temperatures above the energy scale of the induced gap, the
penetration depth behaves qualitatively like the usual d-wave
or s-wave case.
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eter, A b(T) appears to have an exponential behavior
for T ) eo. On the other hand, A, (T) has a very
Hat behavior for intermediate values of T ) eo in both
cases. From our discussion of the paramagnetic terms
in Eq. (24c), it is clear that the intraband terms must
be dominating the behavior of the ab-plane penetration
depths and that the interband terms determine the low-
temperature behavior of the c-axis penetration depth.
We could see this directly by calculating the relative sizes
of the matrix elements of [j„];~,but it is sufficient to note
that for small to, the unitary matrices U mix the two sub-
lattices weakly, and that p„will di8'er from p~ by terms
of order t /~(i —(z~ (our assumption that the sublat-
tice Fermi surfaces are well separated ensures that this
is small). What this is saying is that, in the weakly cou-
pled limit, currents which are confined to within a plane,
are also approximately confined to within a band. Simi-
larly, currents along the c axis, for which electrons must
hop between the two sublattices, are mostly described by
interband transitions.

As to is increased, however, the bands will begin to
lose their sublattice character. In this case the pene-
tration depths will depend on both interband and intra-
band processes. We can see this in Fig. 1. As to in-
creases, A b(T) 2 and A, (T) become increasingly sim-
ilar in shape. In the case of the d-wave order parameter,
for example, we can see that A starts to show a linear

FIG. 4. Density of states for a d-wave order parameter.
This plot is for the same band parameters as Fig. 2(a). Here
there is a nested gap structure at the Fermi surface. The
inner gap is shared between the two sublattices evenly, unlike

in Fig. 3, and is the result of a complicated interference of
t(k) and AI, . The outer gap structure can. be identified with

though it becomes less prominent for larger values of
to. What is important about this curve is that the size of
the inner gap is comparable to T, even for weak interlayer
coupling. The shape of the penetration depth curves, then,
will be determined, not by the symmetry of A&, but by the
structure of the inner gap.

FIG. 5. Anisotropy ratios A (0) /A b(0) for the four sets
of data presented in Figs. 1 and 2. The solid triangles and
crosses are for the d-wave and 8-wave results of Fig. 1, respec-
tively, and the open triangles and open squares are for the
d-wave and s-wave results of Fig. 2. The observed anisotropy
in YBa2Cu306. 95 is 50.

behavior which is a reHection of the symmetry of the gap.
This is also what we find in the 8-wave case, although it
must be remembered that for large couplings, the gap
which determines the overall shape of the penetration
depth is ei, [Eq. (33)], and that ek has a node A,, = +sr
due to its dependence on t(k). In Fig. 1(c), this node
makes A b(T) virtually indistinguishable from the usual
two-dimensional d-wave case.

If the Fermi surfaces of the sublattices are coincident,
then the hybridization of the sublattices makes it impos-
sible to associate bands with layers. In this case, both
A g and A will depend on both intraband and interband
processes. In Fig. 2, A b(T) 2 and A, (T) have similar
shapes, even for the weakest interlayer couplings. The
node in t(k) has introduced a node in the inner gapi"
which changes the exponential low-temperature behav-
ior of the 8-wave case to a linear behavior.

We knish this section with a brief discussion of the
anisotropy ratio A, (0) /A b(0) In Fig.. 5 we plot the
anisotropies for the four di8'erent cases we have run. We
can see that the anisotropy is relatively insensitive to the
order parameter, but depends quite strongly on the cou-
pling strength and the choice of band parameters. In
the paper of Basov et al. , they find A, (0) 1 pm in

YBa2Cu40s, and we take A~b(0) 0.14ILIm so that the
anisotropy ratio is A, (0)2/A b(0) 50. This would sug-

gest that, from Fig. 5, we need to have interlayer cou-
plings of the order of 50 meV. If we compare this with
the size of the in-plane nearest-neighbor coupling ener-

gies, o; 100 meV, we see that two sublattices can no
longer be considered weakly coupled.

V. CONCLUSIONS

The main results of this article are the following.
(i) An expression [Eq. (24c)] for the penetration depth

which divers &om the usual expression by a term which
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accounts for interband transitions. The temperature de-
pendence of this term is quite different from that of the
usual penetration-depth expression, and we use this fact
to explain the very Hat low-temperature behavior of A

seen in Figs. 1(a) and 1(b). A further feature of this
interband term is that it is only weakly sensitive to the
symmetry of the order parameter.

(ii) Calculations of the penetration depths, A b and A,
for a layered S/N model in which we identify two impor-
tant physical limits. In the first limit, the Fermi surfaces
of the S and N layers are far apart in the Brillouin zone
and are only modified perturbatively by the interlayer
coupling. In the second limit, the Fermi surfaces coin-
cide and form a strongly hybrid. ized state. The difference
between the two cases shows up in the gap structure. For
the perturbative case there is a weak, induced gap in the
S sublattice which appears as a sharp kink at low tem-
perature in the penetration depths. For the hybridized
limit, the gap structure has a larger energy scale (of the
order of T,) so that there is no obvious structure apparent
in the penetration depths.

(iii) An increased understanding of the role of the in-
terlayer coupling between the S and K layers. As is well
known, the interlayer coupling drives the N sublattice
into the superconducting state by a proximity effect, but
also serves to reduce the anisotropy of the system. It is
for this reason that, as to increases in Figs. 1 and 2, A g

and A, become increasingly similar. Our choice of t(k)
also introduces an additional k dependence into the gap
structure. As we pointed out in our discussion, for ex-
ample, this results in A b(T) for the s-wave case shown
in Fig. 1(c) being indistinguishable from the usual two-
dimensional d-wave case. The change in anisotropy that
comes with changing to is shown in Fig. 5. We concluded
in Sec. IV that, in order for the anisotropy to agree with
the experimental observations of YBa2Cu30695, fairly
strong interlayer couplings are required.

There are several problems with the weakly coupled
proximity effect model. We mentioned above that a weak
interlayer coupling leads to a value of A (0) /A b(0)2
which is much larger than observed by experiment. An-
other problem is the kinklike features, seen most clearly
in Fig. 1, which are associated with the induced gap in
the N sublattice. These have never been experimentally
observed, to our knowledge. It is also not likely that
these features just have not been observed because they
occur at temperatures below the lowest values achieved
in experiments (1.3 K~), since these kinks are associated
with the depletion of the superfluid in the % sublattice.
We know from the work of Basov et gl. and Zhang et
o;l. that there is a substantial super8uid density in the

copper-oxide chains at all T ( T . This is unfortunate
because the one promising feature of the weakly coupled
proximity model is the Bat low-T behavior of A

If we look at larger interlayer coupling strengths, then
we will have reasonable values for the anisotropy and
a significant superBuid fraction in the % layers at all
temperatures. On the other hand the behavior of A, (T)
becomes much like that of A b(T) and quite unlike that
which is observed.

One possible modification to the model which might al-
low us to retain the fl.at, low-T behavior for A, would be
to couple the chains to the planes incoherently. Radtke,
Lan, and Levin find that an intrinsically Josephson-
coupled model, with one layer per unit cell, leads to a
Bat low-T behavior in A, . We have also shown in this
paper that the penetration depth depends strongly on
the band structure. With this in mind, we feel that a
second modification of the model which must be made is
to include the one-dimensional nature of the chains. The
obvious reason for this is to account for the observed
ab-plane anisotropy. A less obvious reason is that the
Fermi surfaces of the chains and planes will now cross,
and will not simply belong to one of the two categories
(weakly coupled or hybridized) described above. In order
to make an accurate prediction of the penetration depth,
it is necessary to use a band structure which describes
the important features of the Fermi surface.

Following the initial submission of this article, we were
made aware of a paper by Klemm and Liu, in which the
penetration depth of a layered S/N system is calculated.
Their work is similar to what has been done here, and
they arrive at an equation which is equivalent to Eq.
(24c) for the penetration depth. There are some notable
differences between their work and that which we have
presented here: they restri"t their order parameter to be
8 wave, and only consider the case when the two Fermi
surfaces coincide. They present numerical results for a set
of band parameters which have been fitted to experiment,
and arrive at figures which are quantitatively similar to
Fig. 2(c).
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