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Electronic Raman scattering in superconductors as a probe of
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A gauge-invariant theory for electronic Raman scattering for superconductors with anisotropic
pairing symmetry is analyzed in detail. It is shown that Raman scattering in anisotropic supercon-
ductors provides a wealth of polarization-dependent information that probes the detailed angular
dependence of the superconducting ground-state order parameter. The Raman spectra shows a
unique polarization dependence for various anisotropic pair-state symmetries which afFects the peak
position of the spectra and generates symmetry-dependent low-frequency and temperature power
laws that can be used to identify the magnitude and predominant symmetry of the energy gap.
In particular, we calculate the collective modes and the subsequent symmetry-dependent Raman
spectra for a d 2 y2 superconductor and compare our results to the relevant data on the cuprate
systems as well as theoretical predictions for 8-wave, anisotropic S-wave, and mixed-state energy
gaps. Favorable agreement is shown with the predictions for d ~ „~ pairing and the experimental
data on YBa2Cu307, Bi2Sr2CaCuq08, and T12BaqCu06.

I. INTR, ODUCTI(3N

Knowledge of the symmetry of the energy gap in su-
perconductors provides a major step towards unraveling
the puzzle of superconductivity in unconventional super-
conductors. While the evidence continues to accrue, the
identification of the pair state in the heavy-fermion and
cuprate systems has proven to be somewhat elusive.
While recent photoemission experiments do allow for an
angular-dependent determination of the gap and Joseph-
son tunneling measurements have probed the phase of
the gap, by far the most abundant information that has
led to speculation of a non-BCS ground state in high-T
materials has been focused on the presence of power laws
in the low-irequency and jor low-temperature behavior of
transport and thermodynamic quantities. However, due
to the averaging over the entire Fermi surface, it is well
known that the power laws themselves do not uniquely
identify the ground-state symmetry of the order param-
eter but only can give the topology of the nodes of the
energy gap along the Fermi surface, e.g. , whether the
gap vanishes on points and/or lines on the Fermi surface.
Thus one cannot distinguish between difFerent represen-
tations of the energy gap which have the same topology.
For instance, for the case of d-wave tetragonal supercon-
ductors, there are fIve pure representations which have
line nodes on the Fermi surface. Further, the energy gap
can become smeared due to inelastic quasiparticle colli-
sions, making a fully gapped superconductor seem like a
one with gap nodes. While in principle the latter efFect
can be minimized by limiting the experiment to very low
temperatures, the two-particle correlation functions de-
termining the density, spin, or current response do not
have the freedom to probe various portions of the gap

around the Fermi surface, presenting a fundamental ob-
stacle to uniquely identifying the pair-state representa-
tion for the superconductor.

However, it is well known that Raman scattering has
the ability to measure various degrees of keedom by sim-
ply rotating the incident and scattered photon polariza-
tion orientations. Formally, Raman fIuctuations may be
viewed as anisotropic mass Quctuations around the Fermi
surface which do not obey a conservation law, such as,
e.g. , density Quctuations. While the long-wavelength
density fIuctuations between unit cells will be screened
due to their coupling to long-range Coulomb forces, the
intraceH mass fIuctuations can be anisotropic around the
Fermi surface with no net charge and thus can be un-
screened, providing a scattering mechanism for incoming
photons.

Since the seminal work of Abrikosov and Fal'kovskii,
it is well known that superconductivity is manifest in Ra-
man scattering via the opening of a gap for frequencies
~ & 2L, with a ubiquitous BCS divergence at the gap
edge. Indeed, quite a detailed theory exists for Raman
scattering in 8-wave superconductors, where the efI'ects
of Coulomb interactions, small energy gap anisotropy,
final-state interactions, and impurity scattering have
all been taken into account. However, the Raman spec-
tra of unconventional superconductors with strongly k-
dependent energy gaps and nodes have only recently been
addressed. ' The presence of gap nodes leads to an in-
complete reorganization of spectral intensity at low fre-
quencies, and light scattering channels exist for all &e-
quencies. Moreover, the question of gauge invariance,
collective modes, and screening takes on a more impor-
tant meaning due to excitons which can lie at much lower
frequencies than in s-wave superconductors (as well as
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s
ro S»(q, ~),

O~BO
1S» (q, u) = ——[1 + n(ur) ] Im Z» (q, w) .

Here ro ——e2/mc2 is the Thompson radius, ~r and ~s
are the &equency of the incoming and scattered pho-
ton, respectively„and we have set h = k~ ——1. S&~
is the generalized structure function, which is related to
the imaginary part to the Raman response function y»
through the fluctuation-dissipation theorem, the second
part of Eq. (1). The Raman response measures "efFective
density" fluctuations

~(q ~) = ([~(q) ~(-q)1)~-&

with

p(q) = ) p(k) ct (k + q) c (k) .

The strength of the scattering is determined by the Ra-
man vertex p(k). Finally n(w) is the Bose-Einstein dis-
tribution function.

For small momentum transfers and incident light ener-
gies smaller than the optical band gap (nonresonant scat-
tering), the vertex for Raman scattering can be written
in terms of the curvature of the energy band dispersion
e(k),

- s B"(k)
p(k) = m) e „„ep,a P

(2)

where e ' denote the scattered and incident polarization
light vectors, respectively, which select elements of the
Raman tensor. The symmetry of the underlying crystal
can be taken into account by expanding p in terms of
a complete set of crystal harmonics 4L de6ned on the
Fermi surface, i.e.,

possible additional spontaneously broken symmetries for
certain gaps). This was brought to light in Ref. 11, which
showed the delicate interplay of gauge modes and screen-
ing.

Most importantly, however, was the finding in Ref. 11
that a nontrivial coupling between the Raman vertex (to
be specified later) and a strongly k-dependent energy gap
leads to a rich polarization dependence of the spectra.
Via this coupling, it was shown that crucial informa-
tion can be obtained about the symmetry of the order
parameter by analyzing the polarization dependence of
the spectra. This is not the case for s-wave supercon-
ductors, where apart &om a trivial multiplicative factor,
a &equency-dependent polarization dependence is only
seen in the vicinity of the gap edge (except for large im-
purity scattering). ' In all previous studies, this cou-
pling and its connection to polarization dependence was
not explored. Therefore, we now review how the coupling
of the vertex and energy gap arises.

The intensity of scattered light in a Raman experiment
can be written in terms of a differential photon scattering
cross section B2o./B~BO as

~(k) = ).&1.@1,(k)
L,p,

where the index L represents the Lth-order contribu-
tion to the vertex which transforms according to the
pth irreducible representation of the point group sym-
metry of the crystal. The quantum numbers L, p clas-
sify the anisotropy of the Raman fluctuations around the
Fermi surface. The full k dependence is thus described
by the addition of the basis functions (which become pro-
gressively more anisotropic for higher L ) with diferent
weights pL. While the charge, spin, and current density
responses probe only a single I channel [p(k) = 1, L = 0,
for the charge and spin density, while p(k) = k, L = 1,
for the current density], in principle all even L channels
can contribute to the Raman vertex for bands which are
nonparabolic. Thus by choosing the polarization light
vectors accordingly, one can select different L, p channels
which allow for different projections onto the Fermi sur-
face. By selecting fluctuations on different regions of the
Fermi surface, light scattering can thus provide informa-
tion on the strength of the pairing at different k-points
along the Fermi surface. It is via this mechanism (the
coupling of the vertex and energy gap) that the polariza-
tion dependence of the spectra can be used to determine
the angular dependence of the pair-state symmetry.

In accordance with this fact, the experimental results
on the cuprate systems reveal a wealth of polarization-
dependent information that provides detailed evidence
for determining the actual symmetry of the gap. The
existing body of data on the cuprate systems reveals
five main points: (1) In contrast to conventional super-
conductors such as Nb3Sn, no clear well-de6ned gap is
seen for any polarization orientation even at the lowest
temperatures measured (T/T, = 0.03),is (2) the peak of
the spectrum lies roughly at 30/0 higher-frequency shifts
for the polarization orientation which selects Bq~ symme-
try compared to all other symmetries, i4 22 (3) there are
indications that the temperature dependence of the peak
in the Bqg channel follows more closely a BCS form than
any other symmetry, (4) the low-frequency Raman
shifts vary roughly as u for B~g symmetries and lin-
early in ~ for the others, 2 and (5) the ratio of resid-
ual scattering in the superconducting state to the normal
state is smallest for the B'j~ case compared to all other
configurations. ' Such a rich spectrum of information
should provide a stringent test for various candidates of
the pairing symmetry states. 2

The purpose of the present paper is to investigate the
polarization dependence of the Raman spectra for a su-
perconductor in the weak-coupling limit with anisotropic
pairing symmetry. We calculate the electronic Raman
scattering for a tetragonal superconductor at finite tem-
peratures and for various polarization orientations in a
gauge-invariant manner and find a rich polarization de-
pendence of the spectra that can be used to uniquely
identify the predominant energy gap symmetry. Our
calculations are restricted to charge fluctuations on the
Fermi surface (this has the advantage that in some cases
analytic solutions for response can then be obtained, but
cannot account properly for the role of Van Hove sin-
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gularities off the Fermi surface). In particular, we ex-
amine the Raman response for s-wave, d-wave, mixed-
state, and anisotropic s-wave superconductors and And
that a d 2 „2 state agrees surprisingly well with the
current information on electronic Raman scattering in
YBa2cu3OT ~i2Sr2cacu208) and Tl2~a2+uo6 ~

The plan of the paper is as follows: The ground
work for the gauge-invariant theory of electronic Raman
scattering in anisotropic superconductors is reviewed in
Sec. II using a kinetic equation approach; Sec. III con-
cerns the connection of band structure to the Raman ver-
tex; Sec. IV gives our results for the Raman response eval-
uated for four types of energy gaps, (i) s wave, (ii) d wave,
(iii) mixed state, and (iv) one type of anisotropic s wave;
Sec. V presents a comparison of the theory to the data on
three cuprate systems and contains our conclusions. In
Appendix A we discuss the connection between the Ra-
man vertex and Fermi-surface harmonics expansions, and
Appendix 8 deals with a solution of the weak-coupling
gap equation for the case of anisotropic gaps, while Ap-
pendix C is devoted to our calculations for the massive
collective modes and the subsequent role of vertex correc-
tions using a diagrammatic approach. It is shown here
how channel mixing, which occurs for anisotropic gaps
and/or interactions, affects the Raman spectra.

II. KINETIC THEORY
OF ELECTRONIC RAMAN SCATTERING
IN ANISOTROPIC SUPERCONI3UCTORS

A. Forma1ism

In this section we describe a kinetic equation approach
for calculating generalized gauge-invariant response func-
tions in anisotropic superconductors, with the majority of
our attention being focused on the electronic Raman re-
sponse. All previous calculations for the Raman response
were carried out using a diagrammatic approach. The
kinetic equation approach allows for a straightforward
account of the Goldstone mode(s) for arbitrary pairing
symmetry as well as the inclusion of Fermi-liquid inter-
action e8'ects.

We consider an anisotropic superconductor in which
the electronic states are characterized by a momentum k,
an energy (band) dispersion ei, = p, +(g (with p the Fermi
energy), a (band) group velocity vy = V'i, e@, an inverse
efFective mass tensor M, (k) = O cg/Ok, Ok~, an energy-
gap b, i„and excitation energies Ei, = [(&2 + IDyI2]i~2.
In global thermodynamic equilibrium such a system is
described by a diagonal equilibrium phase space distri-
bution function n&,

n~ = (c~c~) = n~f(Ek) + vÃ[1 —f(E~)] =
2

[1 —&~~~]

with Hi, = (1/2Ey) tanh(Ey/2T), f(Ei,) the Fermi func-
tion taken at the Bogoliubov quasiparticle energy E@,
and the usual coherence factors u&

——
2 [1 + (k/Ei, ] and

v& ——
2 [1 (i,/Ei, ] for particleli—ke and holelike Bogoliubov

quasiparticles. In a superconductor there exists in addi-

tion to the diagonal average nk the oK-diagonal average
~a~

g~ —(c pcs) = —Ai0y.0

The superconducting equilibrium energy gap is then de-
termined from the self-consistency equation

&a = QVi, gp,

with Vj,„=—IVy„I the pairing interaction.
Such a system is assumed to be subject to external per-

turbation potentials Uk" (q, u) oc exp(iq. r —iwt) which
are generated in the usual way by an expansion of the
Hamiltonian oc (p —eA'"'/c) /2m+ e@' " containing q-
and w-dependent scalar and vector electromagnetic po-
tentials 4'" (q, ur) and A'" (q, w), respectively, to second
order in the vector potential (including p A terms):

U-ext C,ext + ~ext + gIM —1 k gS

= eC'"' + vg Hei + y(k)be~,

where

~ext
C

~~, = ro IA'I IA I,

and p(k) denotes the Raman vertex given by Eq. (2).
The last term in Eq. (7) can be interpreted to describe
the scattering of an incident photon of frequency up rep-
resented by the vector potential A, into electronic exci-
tations such as particle-hole, Bogoliubov quasiparticle, or
magnon pairs and an outgoing photon (Stokes process)
of frequency wg = wr —u (vector potential A ) with an
associated total momentum transfer q.

The (linear) response of the distribution function
dna, (q, ur) = ni, (q, w) —n& in the absence of dissipation
is given by the solution of the collisionless (particle-hole-
symmetric) kinetic equation 4'25

(A —&a)~e~ —&i.~~„+&~(~+ ga)
gk

4) —'gk k

(8)

where gk = vk q,

and pi, = Of(Ek)/OEi, . In a—ddition we have defined

bAgA~~ + sAybA~~bZ„= s=+C.

The cases s = —1 and s = +1 distinguish the coupling
of the response of the pair-correlated electron system to
phase and amplitude fluctuations of the order parameter,
respectively, and will be discussed later. The quantity
Ak is the pair response function introduced by Tsuneto
which, in the limit q( (( 1, with ( the coherence length,
is given by
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~, (q, ~) = -4~~, ~'
~2(~2 4E2) ~2(~2 4(2)

{ii)

A more general expression for of AI, valid also for (
q && k~ is given in Ref. 27. The total diagona/ quasi-
particle energy shift beak

——be& + be& may be decom-
posed into the sum of contributions even (+) and odd
(—) with respect to the parity operation k ~ —k. It
differs in general &om the contribution from the exter-
nal potential Uk" through vertex corrections or, more
physically, through electronic polarization potentials.
This fact may be expressed through the diagonal self-
consistency relation

beA,, = U„"'+2) (V, + f»)bn„ (i2)

bgA: + ~ab&A: + 4&A:' k

Here, V~ = 4me2/q2 is the Fourier transform of the long-
range Coulomb interaction and f» denotes the short-
range Fermi-liquid interaction, the consequences of which
are, however, not considered in what follows since we are
interested in the limit of not too large q where the po-
'larization correction from the long-range Coulomb inter-
action dominates the diagonal energy change.

The kinetic equation for the linearized off-diagonal dis-
tribution function bgg (q, u) = gi, (q, w) —g&o reads

bnr(q, (u) =2) 1 bng(q, (u),

bn, (q, (u) = 2 ) e bng(q, ~),

bn~ (q, (u) = 2 ) pI, bnI, (q, ~),
k

j(q, (u) = 2 ) vg [bng (q, ~) + Pi, beI, (q, (u)].
k

(i6)

The factors of 2 arise from spin degeneracy.
We proceed with a solution of Eq. (15). For the time

being we would like to restrict ourselves to the case where
the pairing interaction factorizes as

v =-v~"~.ky—
0

(17)

This ansatz is sufBciently general to allow for an equilib-
rium gap function Lk of arbitrary anisotropy in k space.
The maximum of such a gap is denoted A0. Lk is de-
termined from the following form for the equilibrium gap
equation (see Appendix 8 for further details):

ergy gap determine the dynamics of the condensate and
bA„(q, u)) = ~Ag ~ibP(q, (u).

The important macroscopic observables, namely,
the density Huctuations bni(q, u), charge Huctuations
bn, (q, u), the Raman Huctuations bn~(q, u), and the cur-
rent Huctuations j(q, w), are defined as

[&bed + ggbEI '. (13)
k

A straightforward variation of the equilibrium gap equa-
tion (6) leads to an oK-diagonal self-consistency relation

bAi, (q, u)) = ) V» bg„(q, ~),

Using Eq. (17), Eq. (15) can be solved immediately to
give

b~ —
(q ~) z Q A„(~be+ + rl„be„)

which can now be used to compute the off-diagonal en
ergy shifts, namely, the order parameter fluctuations

bKi, (q, tu) and bA~&( —q, —w). They represent the col-
lective oscillations necessary to maintain gauge invari-
ance, and must be determined self-consistently with the
off-diagonal kinetic equation24'2 [from which particle-
hole asymmetric terms, which are typically of the order
O(T/Ty), with Tp the Fermi temperature, have been
omitted]

(d —vj„. 4)86„+ + g„8c„

P P

The physical significance of the result (19) is that it
describes the Goldstone mode for superconductors, the
Anderson-Bogoliubov or gauge mode, i.e. , the mass-
less collective mode related to the spontaneously broken
gauge symmetry. It is the existence of this mode which
guarantees gauge invariance of the response theory or,
equivalently, charge conservation, which we wouM like to
brieQy demonstrate now. For this purpose let us write the
kinetic equation (8) in a form in which the left-hand side

(lhs) is reminiscent of the usual Landau-Silin equation, 2

DfLk
0

+tdbny —q vy bny — bEy = —Ag [(dbms + 'gybe ]k k

In deriving (15) the equilibrium gap equation (6) has
been used for simpli6cation. In case of particle-hole
symmetry, the density, current, and Raman Quctuations
do not couple to the quantity bL+, which represents
the amplitude Huctuations of the order parameter. The
physical significance of the quantity beak becomes clear
in the (macroscopic) limit w &( 24o, in which only
Huctuations of the phase P of the superconducting en-

+&~[~ —~~]
A:

(20)

Inserting Eq. (19), one observes that the rhs of Eq. (20)
vanishes upon summation over momenta k and the lhs
of (20) generates the continuity equation for the particle
number density,
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u)bnp —q j = 0. (21) A„be+
Snab = —Abbe„+ +

p p
(25)

Hence we have demonstrated that accounting properly
for the Huctuations of the phase of the order parameter
leads to the conservation law for the (charge) density.
Alternatively, one could argue in the following way: The
phase fluctuation term bb,

& on the rhs of (20) can be
thought of having its origin in a replacement of the scalar
(C4

"
) and vector (A'" ) potentials in the first term on

the rhs of Eq. (20), representing the external potential
contributions to be& and be&, by their gauge-invariant
counterparts

@,ext @ext
cOt'

Aext ~ Aext + ~ (22)

2c~0= ——x
C

immediately leads to the result (19). This demonstrates
clearly the equivalence of the existence of the Anderson-
Bogoliubov mode with gauge invariance as well as the
connection of gauge invariance with the conservation law
for the (charge) density.

Next we would like to demonstrate two simple con-
sequences of a gauge-invariant formulation of supercon-
ducting response theory, namely, those for the current
response in the static (w ~ 0) and for the Raman re-
sponse in the homogeneous (q ~ 0) limit. The static
limit of the kinetic equation (20) reads

A„q„be„
Snab — "

beA, = A1,8e„—Appal
k Apg2

(23)

Integrating this according to the prescription (16) one
gets the static (super)current response expressed in a
generalized London formula

The phase variable y characterizing this gauge transfor-
mation can then be fixed by the requirement of charge
conservation, which, together with the trivial connection
between y and the order parameter phase fluctuation bP,

in which the second term on the rhs originates from the
order parameter phase Huctuations. The Coulomb inter-
action becomes irrelevant in this limit, as will become
clear later, and we may write be& ——gabe~. The homo-
geneous Raman response of anisotropic superconductors
can then be written in a form analogous to the London
limit of the current response as

bn~(0, u)) = A~~(0, (u)8&~(0, ~),
A iAib&.4(~, ~) = —(&-S — (~ ~)

A~b(q, tu) = 2) A„a„bp, a„,b„= l, p„.

(26)

bnq+ = [SA, +0 Agjbeo+ pgSg+0 Ag he~,

gqPI, —u) Ai,
SA, —— —

77k
(27)

As in the case of the current response there is a "back-
flow" term (the second term in the curly brackets), which
guarantees charge conservation. This is easily seen in the
limit of parabolic bands, where the Raman vertex pA. is
a constant and as a consequence the two terms in curly
brackets cancel precisely. This is just another way of
stating that there are no density Quctuations possible in
the homogeneous limit q ~ 0 of a superconductor.

It is worth noting that there exists a homogeneous limit
of the electronic Raman response also in normal met-
als when quasiparticle scattering processes are important
characterized by a momentum-dependent lifetime wk. It
is shown in Ref. 30 that an equation similar to (26) holds
in the normal state with the Tsuneto function AI, replaced
by Ag = (—On„/O(A, )(l —i~7I, )

Let us now turn to a description of the Raman response
at finite wave vector q. Our starting point will be Eq.
(8) in which we select the even-parity contributions bn&

and 6e& = pep + pk6e& with beo ——Vqbni.
'

Q2
Gd —QJ

q A.q
Cd

Aii

Z (g, ~) = (7 —
) (~ ~) (24)

q- A .q

Integration over momenta k in Eq. (27) yields equa-
tions that describe the coupling of density and Raman
response:

A (q, (u) =2) A„v„:v„.
P

~~i = pic ~eo+ X~~ ~e~,(o) (o)

(28)

Clearly, the second term in (24), sometimes referred to
as the backflow term, is necessary to maintain charge
conservation in the general case of an anisotropic super-
conductor. Equivalently, it guarantees that the current
is purely transverse in the static limit.

Let us now turn to the Raman response in the homo-
geneous limit. Here we may ignore terms linear in 4'"
and A'"~. For q m 0 the kinetic equation (20) assumes
then the strikingly simple form

where we have defined the generalized (&ee) response
functions

2
(o) ~q &~i&ib

Xb —&b+

g2(gp —Ap)
I
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The quantities y & (q, u) are straightforward general-
izations of the free superconducting Lindhard function
which include vertices aI„61,. The Anderson-Bogoliubov
collective mode causes the second term in the transverse
contribution A s (note that A q

——Ayb= Ay] = 0) and
the longitudinal term which is characterized by the gauge
mode frequency u~. Finally we explicitly work out the
Coulomb renormalization bop ——V&bn1 which couples Ra-
man and density fluctuations and arrive at the following
final result:

(o) (o) (p) (o)
(P) ~a1 ~lb ~a1 ~1b

gab ~ab (p) (p)
X11 ~11

~ = 1 —Vqy11.(o)

It should be noted that the Raman response in super-
conductors in the small-q limit in a form equivalent to
Eq. (30) was derived by Klein and Dierkers using the
Green's-function method. Our result from the kinetic
equation method. looks slightly difFerent and, particu-
larly, one can see that the Coulomb interaction acts so as
to split the Raman response into an unscreened "trans-
verse" and a dielectrically screened "longitudinal" part,
the latter being described by the full dielectric function of
e(q, w) of the superconductor in complete analogy to the
behavior of the current response, discussed in Ref. 29.
Furthermore, an inspection of Eq. (30) shows that all
terms in the full response function y b except L~~ are
at least of the order O(q ), the last (longitudinal) term
being even smaller, of the order O(q /e). The role of the
Coulomb interaction is thus limited to show up in terms
of the order of at most O(q ) and is seen to be negligi-
ble in the homogeneous limit. The role of the collective
Anderson-Bogoliubov mode, on the other hand, mainly
consists of providing a particle number conservation law.
This manifests itself first in the correct mass fluctuation
limit of Eq. (30), in which py=const and all transverse
terms vanish identically leaving essentially the screened
random-phase-approximation (RPA) Lindhard response
of the superconductor in which the collective mode gets
shifted to the plasma frequency. Second it manifests itself
in "partial screening" efFects in the homogeneous limit of
the Raman response, described by the second term of
A&~. These efFects will be discussed in detail later.

B. Final results fur g —+ 0

Since q( « 1 in the cuprates (with ( the coherence
length), we are mostly interested in Raman scattering
with vanishing momentum transfers. For such a case it

» =&~.~.(0 ~)+O(q') (31)

into a longitudinal part (!!),affected by (longitudinal)
screening through the dielectric function e of the super-
conductor, and a transverse part (J ), independent of e.
Thus for q ~ 0, only the transverse part of y remains.
We also see that in the case of the isotropic density ver-
tex p(k) = po, the long-range Coulomb forces completely
screen the response and thus the only contribution to Ra-
man scattering at q = 0 comes from energy bands with
nonparabolic dispersion, i.e. , the I = 2 and higher terms,
representing intracell charge fluctuations.

Taking the limit of q ~ 0 and carrying out the ( inte-
gration in the Tsuneto function, we obtain the final result
for the Raman response at finite temperatures,

~ (i(u)
y(q m O, x~) = yp~ g~(uu)—

xi, i(i~) ' (32)

where the spectrum of y b is given by

7rN~ cu a(k)b(k) ! A(k) !2

4~ v'~' —41&(k) I'

(33)

where N~ is the density of states for both spin projec-
tions, Re denotes taking the real part, and (. .) denotes
performing an average over the Fermi surface defined by

f d2kh(E~ —e(k))A(k)
f d2kh(Ey —e(k))

The real part of y is given for T = 0 as

is essential to conclude at this stage that the most impor-
tant contribution to the electronic Raman efFect in super-
conductors in the small-q collisionless limit comes &om
the response function A~~(0, u) = lim&~0 y~&(q, w).
Physically, this function describes the photon-induced
breaking of a Cooper pair into a pair of Bogoliubov quasi-
particles with total momentum q which is approximately
zero.

Writing the Raman vertex p as a sum p(k) = go+by(k)
of an isotropic and an anisotropic part [using Fermi-
surface harmonics hp(k) = P&&o pl, (k)j, one may de-
compose the screened Raman response function at zero
temperature in the limit of small momentum transfers as

y~~ + y~, with

~'.
,s(~) = (a(k) t (k)A'(~)) (34)

l'

--- arctan
A'(cu) = Np ! &(k) ! QI~(~)l' —(~/2)' 2+1~(~)l' —(~/2)')

Cd 1 ln
~/2 —g(~/2) ' —

I
& (&)I'

g(~/2)' —
I
&(I ) I' ~/2++(~/2)' —

I &(~) I'

I
&(k) I'& (~/2)'

! &(k) I'& (~/2)'.
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This is the expression for the gauge-invariant Raman re-
sponse which has Coulomb screening and the Anderson-
Bogoliubov gauge mode taken into account. It is also
the form for the response calculated diagrammatically
in the "pair approximation" for the bare bubble, mod-
ified with the usual RPA screening terms. It does not
take into account any vertex corrections resulting from
the pairing interaction in other channels other than the
pairing channel, as explained in the preceding discussion.
We will refer back to these expressions in the following
sections.

Important information can also be obtained from the
temperature dependence of the response in the limit of
zero-&equency shifts, i.e. , the static response. It can be
shown that the ratio of the response in a superconduc-
tor to that of a normal metal in the limit of vanishing
&equencies is given by the simple expression

wave vertex corrections in the Bqg and Eg channels, and
(3) these modes are significantly damped and have a van-
ishing residue for those modes which lie at low energies.
Therefore, the collective modes are of little importance
to the Raman spectrum. These conclusions can be gener-
alized to other energy gaps which have line nodes on the
Fermi surface. Also, we discuss the role of the final-state
interactions and And that while the overall shape of the
spectra can be affected, the corrections are relatively mi-
nor. The details are contained in Appendix C, including
a more general discussion of the role of vertex corrections.
Therefore, we can conclude that Eqs. (32)—(35) give an
adequate description of the Raman response.

III. BAND STRUCTURE, FERMI SURFACE,
AND THE RAMAN VERTEX

FOR TETRAGONAL SYMMETRY

where f is a Fermi function. This is an exact result
which does not depend on vertex corrections and only
depends appreciably on impurity scattering for nearly
resonant impurity scatterers.

The important feature in all these expressions is that
in general a coupling of the Raman vertex to the energy
gap can occur under the momentum averaging over the
Fermi surface. In all previous studies, this k dependence
was either ignored or not fully exploited to determine
important information concerning the syxnmetry of the
energy gap. This will be explicitly demonstrated in the
following section where we evaluate these expressions for
the screened Raman response for various pair-state can-
didates and discuss its relevance to the cuprate materials.

We close this section by returning to the question of
the presence of massive modes and Anal-state vertex cor-
rections (see above). jn principle, the massive inodes can
lie at low &equencies and acct the low-&equency behav-
ior of correlation functions and, in particular, could even
be used as a signal for a certain type of order param-
eter symmetry. We have carried out an analysis of the
full gauge-invariant calculation in Appendix C for both
cylindrical and spherical Fermi surfaces for a generalized
pairing interaction. We identified the position of the col-
lective modes as a function of coupling strength for a
gap of d 2 y2 (I s representation using the notation of
Sigrist and Rice ) symmetry for both a spherical and
cylindrical Fermi surface. Our conclusions are threefold:
(1) The Goldstone modes do affect the Raman spectrum
in the limit of q ~ 0, in certain polarization symmetries
(Aig) where the backflow term in (32) is finite, (2) optical
(massive) collective modes couple to a light probe only
for the case of a Fermi surface with z dispersion for d-

In this section we aim at providing a link between the
Raman vertex and band structure for tetragonal crystals.
In particular, we show how the choice of light polarization
orientations results in selection rules for the symmetry
components of the Raman tensor. In the first subsection
we only consider scattering within a single band while we
consider the case of multiple bands at the Fermi surface
in the following subsection.

A. Single band

As we have seen in the previous section [see Eq. (2)],
the Raman tensor is directly related to the curvature
of the band dispersion. In the following we limit our
considerations to tetragonal materials which are relevant
to high-T superconductors. Although these materials
possess orthorhombic distortions away from tetragonal-
ity, the selection rules, for example, from phonon scat-
tering in the normal state seem to indicate that these
orthorhombic distortions are small and that a tetrago-
nal symmetry classification can be employed with little
loss of generality. A simplest choice for the band struc-
ture which contains the basic physics of two-dimensional-
(2D-) like tetragonal systems with lattice constant a is
given by

e(k) = 2t [cos(k a) + —cos(k„a)] + 4t' cos(k a) cos(k„a).

(36)

Here t and t' are the nearest and next nearest neigh-
bor hopping parameters, respectively. This is the anti-
bonding band. derived from a reduction of a three-band
model, which gives a large contribution to the den-
sity of states at the Fermi level for the cuprate systems
and adequately reproduces the observed photoemission
data

The Raman tensor is given by
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where M
&

——0 e(k)/c)k Bkp, and f& is defined as

f ( ) = —[cos(k a) + cos(kwa)],

f „'= —2 cos(k a) cos(k„a),

f„=—[cos(k a) —cos (kw a) ],

f(') = 2sin(k a) sin(kwa). (38)

We proceed to expand the Raman tensor in quarternions,

(3S)

with v ~ the Pauli matrices in 2D k space. This expansion
in the space of 2 x 2 matrices decomposes the Raman
tensor into its symmetry components, represented by the
scalar coeKcients pk,

2ma [tf„+t'f„'],
&„" = ~ 2ma't'f„"',

, 2ma'tf„",

Aiw (P = 0),
H2g (p = 1),
Biw (p = 3).

(4O)

The polarization light vectors select elements of the Ra-
man tensor according to

(4I)

A few examples of the connection between polarization
and symmetry are

(o) (3)
~k + ~k

v~ (&)

un (0) (3)
~k ~k ~k

~'w' ~
[~~~ ~ww] ~(s)

k k k

2
h'~*

2
[~A*.

*

+ ~ww + 2~~w] (o) + ~(i)

+ ww 2 ~w] &(0) (i)

where x' = ~ [x+y] and y' = ~ [x —y]. These examples

show in particular that Azz symmetry cannot be individ-
ually accessed for in-plane polarizations, and subtraction
procedures must be used.

B. Multisheeted Fermi surfaces

We close this section with a discussion concerning scat-
tering &om the antibonding band to another band near
or at the Fermi level. Recently it has been suggested
that scattering &om either the antibonding plane band
to the other plane band or a chain band is important
in the cuprates. However, this seems to be in contra-
diction to the results obtained on Y-Ba-Cu-O, ' Bi-
Sr-Ca-Cu-O, single-, double-, and triple-layer thal-
lium cuprate, and La cuprate compounds. These
compounds, all with diferent band structures, chains,
and number of planes, all show qualitatively the same
polarization-dependent Raman spectra. This is unex-
pected if multiband scattering were indeed important.

The above consideration can be easily adopted to the
case of multiple energy bands contributing to the Fermi
surface, for instance, due to the contribution of the chains

(in Y-Ba-Cu-0) as well as the planes. ' For intracell
fluctuations, the total electronic Raman cross section for
intraband scattering is just the sum of the contribution
to the cross section for each band and thus results &om
the addition of the Raman response functions

riot i = ).x (& ),

where y (A ) denotes the contribution to the scatter-
ing from band o. with an energy gap A for each band.
The Raman vertex for each band. is separately calculable
in the same manner as in the previous section, and the
same considerations there can be carried over to the mul-
tisheeted case trivially. This holds only for the Bqg and
B2g channels, which solely represent intracell charge fluc-
tuations. Since the A~g channel contains intercell charge
fluctuations as well, light scattering can mix intercell fluc-
tuations on diferent bands, leading to the appearance of
an additional mixing term to Eq. (44).s ' This term has
been shown to be small for the case of nearly degenerate
bands, while for the case of degenerate bands, the mix-

ing term can be shown to vanish. "' Thus, for nearly
degenerate bands, the response is well approximated by
the addition of the result for each single band. The con-
sequences of many bands will be further considered in a
forthcoming publication.

We draw the important point, however, that the con-
tribution from each band will be weighted by the relative
density of states and curvature of each band at the Fermi
level. Therefore, for the case of the cuprates we believe
that the largest contribution to electronic Rarnan scat-
tering is thus arising from the single antibonding Cu-0
layer band with the largest density of states and greatest
curvature at the Fermi level. Therefore, we feel that, to a
very good approximation, the intraband scattering has a
dominant contribution &om the antibonding band. This
is certainly the case for the single Cu-0 layer compounds
T12Ba2Cu06 and La2 Sr Cu04.

IV. PREDICTIONS FOR VARIOUS PAIR STATES

In this section we evaluate Eqs. (32) and (33) for vari-
ous pair states that are discussed in the literature as can-
didates to describe the pairing symmetry in the cuprates.
We will first discuss the simple case of an isotropic gap
and then discuss d-wave gaps (in particular, we will focus
on the d 2 „2 pairing symmetry). Last, we also discuss
gaps which are anisotropic but do not contain nodes, e.g. ,
a gap with mixed states, and an anisotropic 8-wave gap.

A. Isotropic s-wave gap

For the case of an angular-independent gap A(k)
the Raman response is given by the simple BCS
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expression. It has the stereotypic features of BCS the-
ory, namely, the existence of an energy gap threshold
2L required to break a Cooper pair, and the ubiquitous
square root divergence associated with the gap edge. We
note in particular that the Raman vertex couples triv-
ially to the energy gap and. just determines an overall
prefactor governing the Raman intensity. The vertex
does not affect the line shape and thus the line shape
is polarization independent. A polarization depend. ence
can be generated in BCS theory by taking into account
channel-dependent final-state interactions and/or impu-
rity scattering, and accurate fits to the Raman data on
A15 superconductors can be obtained. However, for the
most part this only produces a channel dependence in the
vicinity of the gap edge and thus the main feature of the
response is the uniform gap existing for all polarizations,
which clearly cannot give an adequate description of the
Raman spectra of the cuprate materials.

B. CE~2 y2 PGXFXXlg

The explicit symmetry dependence of the spectra re-
sults due to a coupling of the energy gap and vertex when
the energy gap is anisotropic. In order to proceed with
the evaluation of Eq. (33) using the vertices derived in
Sec. III, we make the following approximations in or-
der to simplify the calculations. We first approximate
the Fermi surface as being a cylinder. This leads to the
unfortunate result that the subsequently derived Raman
vertices are zero after screening, and thus yield no Ra-
man signal. Therefore we must allow for deviations away
from cylindricity when calculating the vertices. This can

I

be done in general by expanding the vertices in terms
of Fermi-surface harmonics depending on azimuthal an-
gle p. Retaining only the first nonvanishing term of the
vertices in a Fermi-surface harmonic expansion we obtain

cos(2(p), p„" = p~, sin(2(p),:Qo + pAyg cos(4p) .

The coeKcients of the expansion p contain details of the
shape of the Fermi surface and thus will be taken as a
parameter to be fit to the data. This only controls the
overall intensity of the spectra and has no effect on the
line shape (this is not serious since often the experimen-
tal data are presented in arbitrary units). While not
consistent, these approximations do capture the channel
dependence of the Raman spectra, which is mainly deter-
mined by the nodal topology of the vertex and the gap
in the Fermi-surface average in Eq. (33) (e.g. , the mani-
fold that the functions are averaged on does not crucially
affect the results). These approximations are discussed
in Appendix A, where we refer the reader for technical
details. Last, in order to check the accuracy of our ap-
proximations, we will evaluate the Raman spectra using
the Fermi surface and vertices derived IIrom the t-t' band
structure of Sec. III A. We find only minor differences,
which validates our expansion.

Using a d 2 y2 gap A(k, T) = Ao(T) cos(2p) (see Ap-
pendix B), we find that the Raman spectrum can be
written down analytically in terms of complete ellipti-
cal integrals. Taking screening into account and defining
x = ~/2AO, we obtain, for T = 0,

2N
0

~'7&" [(2 + *')K(*) —2(1+ *')E(*)] x&1,
1+ 2 )K(1/ ) —2(l + )E(1/ )], + 1

(45)

2+&~&„[(1—x') K(x) —(1 —2x') E(x)], x&1," *[(2-2*')K(1/*)- (1-2*')E(1/-)], *»; (46)

i.e., the Bj~ and B2g channels are not affected by transverse screening and the gauge mode. This is consistent with
the mass Auctuations being only intracell in nature for these symmetry channels. However, the Az~ channel which
contains both intercell and intracell Buctuations is partially screened and is determined via

~A„,i('~)
gy y (Z(d

with the spectral functions

2~&'7&„[(7—8x2 + 16x4)K(x) —(7 —12x2 + 32x4)E(x)], x & 1,
x[(11—28x + 32x )K(1/x) —(7 —12x + 32x )E(l/x)], x ) 1,

(47)

(48)

[(1+2x') K(x) —(1+4*')E(*)]
x[(—1+4x')K(1/x) —(1+4x )E(1/x)], x ) 1, (49)

and

&F [K(x) —E(x)], x & 1,
x[K(1/x) —E(1/x)], x».

(50)

The real parts are obtainable through Kramers-Kronig
transformation or numerically integrating Eq. (34). The
response functions for finite T are obtained simply by
multiplying Eqs. (45)—(50) by the factor tanh(w/4T).
The partial screening of the Aqg channel arises techni-
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cally &om the observation that the square of the energy
gap enters into the response function in Eq. (33). For the
case of d 2 y2 pairing symmetry, the energy gap squared
contains a term which transforms according to Ai~ sym-
metry which leads to a finite overlap with the Ai~ ver-
tex in Eq. (32). This corresponds to partial "transverse
screening" of the Aig channel, and via this mechanism
the intercell Quctuations are removed. Similar consider-
ations hold if the gap were of another d-wave symmetry
other than d 2 y~.

These functions are plotted in Fig. 1(a) for the three
symmetries indicated. We immediately see that the
spectra are extremely polarization dependent, in con-
trast to the case of isotropic 8-wave superconductors
which are dominated by the square root divergence at
the threshold in each channel. We see that the peak in
the Raman spectra lies at different &equencies Mp

2Ap(T) 1.6Ao(T) and 1.2Ao(T) for the Bqg, B2g, and
A~g channels, respectively. The symmetry dependence
of the spectra is a direct consequence of the angular av-
eraging which couples the gap and Raman vertex, and
leads to constructive (destructive) interference under av-
eraging if the vertex and the gap have the same (different)
symmetry. Thus it has been reasoned that the symme-
try which shows the highest peak position gives a unique
indication of the predominant symmetry of the gap.
The peak positions can be mildly affected by including
interaction vertex corrections as discussed in Appendix
C, with the net result being a slight upward shift of the
peak location in the B2g and Aqg channels. Also, while
the presence of z dispersion has little effect on the Big
(apart from cutting off the logarithmic divergence) and
B2g channels, the A j g peak position can be changed due
to the addition of a term which has its main contribution
at slightly lower &equencies. This effect is small provided
that the Fermi surface is mostly cylindrical. We refer the
reader to Appendix C for details.

The symmetry dependence is also manifest in the low-
&equency behavior, which can be written as

» (~ ~0) =3m~» *'/4+O(*'),
((u w 0) = X~», z/2+ 0(z ),

y~, (u) w 0) = Np p~ z/2 + O(z ); (»)
i.e. , the spectrum rises slower in the Big channel than
the Aqg or B2~ channels, which have the same linear
rise with frequency. The power laws are insensitive to
vertex corrections and arise solely due to topology argu-
ments. The appearance of power laws is a signature of
an energy gap which vanishes on lines (points in 2D) on
the Fermi surface. However, the channel dependence of
the exponents is unique to a d 2 y2 pair state. These
channel-dependent power laws have been observed in the
electronic contribution to Raman scattering in Bi-Sr-
Ca-Cu-0 ' Y-BaCu-0 ' Tl-Ba-Cu-0 ' ' and
La 214, and are strong evidence for a d-wave gap of
this symmetry as opposed to d», d, or d„~ symmetry,
which also have nodes on lines on the Fermi surface.

Of course a nearly cylindrical system is a simplifica-
tion of real systems and ignores additional physics of
Van Hove singularities and nesting peculiar to 2D sys-
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tems. However, we expect only small changes in the re-
sponse due to a change in the shape of the underlying
manifold. To check this, we have redone the averages in
Eq. (33) numerically using a Fermi surface given by the
band structure, Eq. (36). Our results for the channel-
dependent spectra are given in Fig. 1(b), using the pa-
rameters 2t'/t = 1.3 and p/2t = —0.5 appropriate for
dopings which produce the highest T values. We have
also performed the calculations for a Fermi surface which
is more square like (p/2t = —0.2, 2t'/t = 0.01) and ob-
tain qualitatively the same results shown in Fig. 1(b).
We immediately see that the low-&equency power-law
behavior of the spectra is unchanged while the peak po-
sitions shift only slightly downward (less than 10%) with
respect to those obtained for the approximations of re-
taining only leading-order Fermi-surface harmonics. We
again remark that the same order of an effect in the op-
posite direction is seen when final-state interactions are
taken into account (see Appendix C), which would reduce
the effects of deviations &om cylindricity of the Fermi
surface. The intensity scales with the hopping parame-
ter t for the B~& channel, and with t' for the B~g and A~g
channels. These result thus support the argument that

max

FIG. 1. (a) Electronic Raman response functions evalu-
ated for d ~ ~2 pairing on a cylindrical Fermi surface for var-
ious symmetries as indicated. All vertices have been set equal
to 1. (b) Electronic Raman response functions evaluated for
Fermi surface derived from band structure of Eq. (36), with
the parameters p/2t = —0.5, 2t'/t = 1.3.
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the line shape of the spectra is solely governed by the cou-
pling of the vertex. and energy gap, and is thus relatively
insensitive to the topology of the Fermi surface. There-
fore, for the purposes of obtaining the line shape we will
restrict ourselves to the approximations leading to Eq.
(44). We do note that part of the Van Hove singulari-
ties [for instance, at (w, 0)] cannot be picked up directly
using Eq. (33) and a full k sum must be performed us-
ing the band specific Green's function. However, it is
expected that finite z dispersion and impurity and/or in-
elastic scattering will limit the role of Van Hove eKects.
This remains to be explored.

We now investigate the temperature dependence of
the theory and contrast it to that of an isotropic s-
wave superconductor. Using a weak-coupling expres-
sion for the temperature dependence of the energy gap
{2A /0T, = 4.2794) (see Appendix B), we numerically
evaluate Eq. (35) for the temperature dependence of the
normalized static response while taking screening into ac-
count. This function describes how the gap in the Raman
spectrum at low energies opens up with cooling below T, .
The results are plotted in Fig. 2 as a function of T/T, for
a d 2 „~ energy gap compared to a BCS isotropic gap.
The low-temperature behavior is given by a power law in
T for all channels for the d-wave case while the ubiquitous
exponential dependence in T is seen for all channels in
the s-wave case. The power-law behavior for the d-wave
case is channel dependent, with exponents identical to
those of Eq. (51), in the sense that w can be replaced by
T. What is remarkable is that the falloK of the Fermi
function at low temperatures is quite slow in those chan-
nels which are orthogonal to the symmetry of the gap,
where the Aqg and B2g channels show a residual broad-
ening at T/T, = 0.3 of roughly 20%%uo of that of the normal
state. This was argued in the case of electronic Raman
scattering to be further evidence for an energy gap in the
cuprate materials which has predominantly ~Ri

~

charac-
ter, due to the observation that a gap opens up quickly in
the Bqz channel compared to other channels which have
been probed via Raman scattering.

As we have remarked before, since the Raman den-
sity response function (in the absence of impurity
scattering ) only depends on the magnitude of the en-
ergy gap, it cannot be sensitive to the phase of the order
parameter and thus cannot be directly used to deter-
mine if the gap changes sign around the Fermi surface.
While the power-law behavior at low frequencies and/or
temperatures is indicative of the presence of nodes, in
principle a very highly anisotropic order parameter with
a small uniform gap everywhere on the Fermi surface
could mimic the behavior of a gap with nodes when in-
elastic scattering or experimental resolution smears the
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FIG. 2. Ratio of the low-frequency Raman response in the
superconductor with d ~ „2 pairing to the normal metal for
the temperatures indicated. Note the slow decrease of the
A~g and B2~ channels with temperature.

threshold. In principle the detection of a threshold can
then only be performed at very low temperatures where
activated behavior can be observed. Since this remains
a possibility, we now discuss two types of energy gaps
which are anisotropic but have a G.nite gap around the
Fermi surface.

C. Mixed-state pairing

Kotliar and Joynt have suggested the possibility that
an order parameter which is a superposition of an s-wave
and a d-wave gap can also provide an adequate descrip-
tion of the various transport and thermodynamic mea-
surements on the cuprate systems. The s+ id state has
the interesting feature that in pure tetragonal supercon-
ductors there would be two transition temperatures as-
sociated with the formation of each gap separately. This
is a consequence of the admixture of two diferent rep-
resentations of the energy gap. However, orthorhombic
distortions remove the x ~ y symmetry and thus Aqg and
Bqg belong to the same representation. This leads then
to one transition temperature. Since the orthorhombic
distortions are quite small in the cuprates (judging from
the observed phonons and selection rules), the transition
temperature will be broad, which is in some convict with
the resistive transitions seen in the cuprates.

Nevertheless, we investigate what such a gap predicts
for the Raman response by evaluating Eq. (33) in terms
of leading-order Fermi-surface harmonics using a gap of
the form A(k) = b, (T) +iAd(T) cos(2y). The results
can written again in an analytic form in terms of complete
elliptical integrals. Taking screening into account and
defining x = [(w/2) —A, ]/A&, we obtain, for T = 0,

2 4~&+~&a„[{2+x2+ 3A2/Ad2)K(x) —(2+ 2x2+ 3A2/&~2)E(x)], x & 1,
*[(1+2*'+ 3A, /A„')K(1/*) —(2+ 2 '+ 32,'/b, '„)E(1/*)], ) 1,

(52)

x)1,
[(1 —x )K(x) —(1 —2x —3A /A&)E(x)], x & 1,

~",- = ~", (q = 0, ~) = O(x') "
& x([2 —2x' —3a'. /b, ', (1 —1/x')]K(1/x)
, —(1 —2/x' —».'/&~) E(1/*)k

(53)
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»„,i(t~)
x~„(t~) = xx„,a„(t~)—

yg g(i(u)

with the spectral functions

' ([7 —8x' + 16x4 —5A.'/A~2(1 —4x')]K(x)
4N ~ 2 —[7 —12x + 32x —2042/E~(1 —2x2)]E(x)),

)tAgg, Ag~ (q ) ~) (x ) 15
~ x([23 —40x + 32x + &, ', (3 —8x + 8x )]It (1/x)

20&'
, —[11—28x' + 32x' —", , (1 —2x')]E(1/x) j,d

x&1)

x)1,

(54)

(55)

and

'
[(1 + 2x2 + 3A2/A~2)It (x) —(1+4x2 + 6A2/A~2)E(x)], x & 1,

~ 2 2NJ Aqp~„(q=0, ) =8( ) 3
'

&
—{[1—4 +, ;(1—2 )]K(l/ )d

, +(1+4x'+ 6a'. ja', )E(1/x)), x & 1,

[(1+&.'i&~) It (x) —E(x)]
~i', i(q=0 ~) =O(*') *[(1+~ .' )It(1/x) —E(1/*)]

(56)

The results are plotted in Fig. 3 using a value of 4, /Ag =
0.25. The Bnite gap L, is responsible for the thresh-
old appearing at 2L„which is the minimum energy re-
quired to break a Cooper pair. The spectra are polariza-
tion dependent, with the B2g and Aqg spectra display-
ing a discontinuous jump at the threshold while the B~g
channel shows a continuous rise from zero to a peak at
w = 2b „=2gA2 + Ad2. Since both the Aqg and B2g
channels exhibit broad maxima for the case of a pure
d 2 „2 gap, the presence of the 2L, threshold will imply
a shifting of the peak of the spectra away &om the pure
case to values lower in frequency if 2E, & w~, k (or at
least create a shoulder at 2A, ), while also removing any
difference in the peak position between the A~g and Bqg
channels. Taken by itself this cannot be reconciled with
the experimental data unless of course A, is very small.

We also note that similar behavior is expected for an-
other time-reversal breaking state, namely, the d 2 y2 +
idly state as suggested by Rokhsar and Laughlin which
arises from an anyon approach to the t-J model. In
terms of leading Fermi-surface harmonics, the state is
represented as A(P) = Aj cos(2$) + iA2 sin(2$). The
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FIG. 3. Response functions for various symmetries for s+
id pairing with b.,/Aq = 0.25. All vertices are set to 1.

features of the Raman spectra are similar to those shown
in Fig. 3, with b, 2 jEj ——0.25.

D. Anisotropic s-+rave pairing

Combining the notion of interlayer Cooper pair tun-
neling as a mechanism for enhanced superconductivity
in multilayer superconductors with simple band struc-
ture arguments, recently an anisotropic energy gap of
the form

A(k) = Ao + Ag cos (2p)
has been proposed also to explain the cuprate
materials. This energy gap is anisotropic and shares
the property of a d 2 y2 energy gap in that it is largest
for those directions where the d~2 y2 gap has its largest
absolute value. Yet the gap does not change sign around
the Fermi surface. This is one specific example of an
anisotropic 8-wave energy gap, since the gap transforms
in the same way as the band structure and thus has
the same symmetry. While other representations for
anisotropic s-wave gaps of course do exist [in partic-
ular, a possibility recently suggested by photoemission
is A(k) = cos(k a) + cos(k&a) = const + Acos(4p)
(Ref. 44)], we remark that the response calculated here
is not qualitatively diferent &om other cases and thus
address only this one case.

Again we evaluate the Raman response for such a
superconductor numerically and plot our results for
Ao/Aq ——0.25 in Fig. 4(a). Immediately we see sim-
ilar behavior as in the previous case with one notable
exception. While the spectra each show a 2&0 threshold,
the B~g channel displays a BCS-like singularity at the
threshold and the Aig displays a large increase near the
threshold that removes any trace of a peaklike structure
in the spectra at higher frequencies. Again this would
predict the same peak position (or a shoulder) for the
A&g and B2g channels. Therefore, for 40 not too small,
it is not possible using just the symmetry of the gap
alone to arrive at a situation where the peaks in the Ra-
man spectra in the Aqg and B2g channels lie at separate
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FIG. 4. Response functions for various symmetries for
anisotropic s-wave pairing with (a) Ao/Aq ——0.25 and (b)
Ao ——0. All vertices are set to 1.

high energies, again which is not in agreement with ex-
periments.

In principle the 8-wave component of the gap can be
made vanishingly small. We show the Raman spec-
tra calculated for b, o

——0 in Fig. 4(b). The greater
anisotropy of the energy gap compared to the d&2 y2

case leads to a further anisotropy of the position of the
peaks in each channel, with peaks in the spectra at
u = 2L „, 06', and 024 for the Big, B2g,
and Aqg channels, respectively, where 4 „=LG+ Lq.
On top of this, the low-&equency power-law behavior is
linear (with logarithmic corrections) in each channel, in
contrast to the d 2 „2 results. This is a general fea-
ture that the spectra become more and more polarization
dependent the greater the anisotropy of the energy gap
(compare to Fig. 1 for the d 2 v2 case).

V. COMPARISON %PITH DATA ON THE
CUPRATE SYSTEMS AND CONCLUSIONS

In this section we present a comparison of the the-
ory for a d 2 y2 paired superconductor to recent mea-
surements on the electronic Raman continuum in three
cuprate superconductors. In what follows, we plot
S~~(w), Eq. (1), which is given by y of Eqs. (49)—(54)

10
I

e V'
1 B

~ W

4
~ 'M

2

0
0

m[cm ]
FIG. 5. Comparison of the theory to the experimental

data taken on Bi-Sr-Ca-Cu-0 from Ref. 19 using d 2 y2 pair-
ing. The parameters used are defined in the text.

multiplied by the Bose factor. In drawing the fits to the
spectra, the following procedure is employed. First the
fit to the Big spectrum is made which determines the
maximum value of the energy gap 40 via the position of
the peak in the spectrum. Next, the derived response is
convoluted with a Gaussian which mimics the efI'ect of
a distribution of T values, inelastic scattering, finite z
dispersion of the Fermi surface, experimental resolution,
etc. Once this is done, the parameters remain fixed and
only the prefactor of the vertex is left to be adjusted to
match the overall intensity, which has no efFect on the
line shape. Since p is in principle derivable from the
band structure but presently is unknown even for such
simple metals as aluminum, this remains a free parame-
ter. It would be straightforward to include more accurate
calculations for the magnitude of the vertex when they
become available.

We first fit the data taken on single crystals of as-
grown Bi2Sr2CaCu20s (T, = 90 K) obtained in Ref. 19
for all symmetries at T = 20 K, where a subtraction pro-
cedure has been employed to ascertain the Aqg signal (see
Sec. III A). The comparison of the theory with experi-
ment is shown in Fig. 5. The parameters used to obtain
the best fit to the spectrum are Lp = 287 cm and a
smearing width of I'/Ao ——0.15. The theory gives good
agreement with the data at low-&equency shifts while at
higher-&equency shifts the theory fails to produce the
broad continuum which is relatively constant up to the
scale of 1 eV. This is most likely due to the neglect of
impurities and/or electron-electron scattering, s which is
beyond the scope of this paper. We see immediately that
the peak positions in the B2g and Pig channels given by
the theory automatically agree with the data. Also the
asymptotic behavior of the continuum at low &equen-
cies given by Eq. (51) is shown in the data when one
neglects the phonons at roughly 100 and 330 wave num-
bers. Again, these power laws are intrinsic to a d 2 y2

pair state. Last, the ratio of the intensity of the spectra
in different channels is consistent with Eq. (35) and Fig.
2, which predicts that the Big channels shows the small-
est intensity at low-&equencies while the Aig channels
shows the largest. All of the experimental features are
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FIG. 6. Comparison of the theory to the experimental

data taken on Y-Ba-Cu-0 using d 2 y2 pairing from Ref. 18.
The parameters used are de6ned in the text.

thus consistent with the theory at least at low-f'requency
shifts ~ ( 1000 cm

We now turn to the data taken on single crystals of
YBa2Cu&O& (T, = 88 K) obtained in Ref. 18 for all sym-
metries at T = 20 K, where the same subtraction proce-
dure used in Bi-Sr-Ca-Cu-0 was employed to ascertain
the Aig signal. The comparison of the theory to the data
is shown in Fig. 6, with the parameters L0 ——210 cm
and I'/40 ——0.2 Again, the theory gives a good descrip-
tion of the data for w ( 1000 cm . We again see the
peak positions at relatively the same place as in Bi-Sr-
Ca-Cu-0 and power laws linear in frequency at low shifts
for the Bzg and A~g channels. We note that while the cu-
bic rise of the spectra predicted by the theory fits rather
well with the Big data in Bi-Sr-Ca-Cu-O, we remark that
the Fano efFect of the B'ig phonon which appears to be
stronger in Y-Ba-Cu-0 than in Bi-Sr-Ca-Cu-0 can ob-
scure the rise of the spectra at low frequencies that give
the appearance of a linear dependence on &equency.
Last, the ratios of the response in the static limit again
are consistent with the theory.

Last, we investigate the single-layer thallium com-
pound T12Ba2CuOs (T, = 80 K) obtained in Ref. 20.
The sample is most likely the most afFected by disorder
and therefore our theory will not be expected to give the
best fit to the data. Our fits are shown in Fig. 7 for
the Big and the mixed A&g + Bzg channels at T = 20
K. The value of the parameters used are L0 ——232 cm
and smearing width I'/Ao = 0.25. All phonons have
been subtracted. Once again the theory gives a good
description of the relative peak positions. Considering
also that this compound has only one Cu-0 layer, the
agreement of the theory with experiment also validates
the assumption that the Raman scattering results pre-
dominantly &om intraband fluctuations of the single Cu-
0 layer band and that interband scattering can be ne-
glected. The theory also accounts for the linear rise of
the spectrum for the Rig channel for low frequencies.
However, the theory cannot account for the linear rise
of the spectrum in the Bqg channel. This most likely is
due to the neglect of impurity scattering. The residual
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FIG. 7. Comparison of the theory to the experimental
data taken on a single-layer thallium cuprate using d g

pairing from Ref. 20. The parameters used are defined in the
text.

scattering near zero-frequency shifts is also borne out by
the theory, although the amount is underestimated for
the Big channel. Again, this most likely has to do with
the neglect of impurity scattering.

We remark that the theory is incomplete in that the
theory fails to describe the flat continuum at large fre-
quency shifts. Moreover, the theory cannot be extended
to the normal state since the response functions vanish
at T, in the limit q —+ 0 due to phase space restrictions.
Here the additional physics of electron-electron scatter-
ing and/or impurity scattering must be incorporated to
have a consistent theory to simultaneously describe the
normal- and superconducting-state data. This is treated
in detail in Ref. 31. Nevertheless, the low-frequency be-
havior of the spectra and, in particular, the relative peak
positions of each polarization channel are quantitatively
described by the theory.

In summary, we have seen that the Raman measure-
ments on the cuprate systems provide a large body of
symmetry-dependent information, all of which agrees
with the predictions of d&2 y2 pairing. Of course at
present the information from Raman scattering alone
cannot completely rule out the possibility of the presence
of a very small gap which exists over the entire Fermi
surface; nor can it determine whether the gap changes
sign around the Fermi surface. For example, a gap of
the form 4

~
cos(2y)

~

cannot be distinguished &om a
2 y2 state [however, as shown in Sec. IV D, one can

rule out a gap of the form b, cos (2p), with n ) 11.
Here it can be shown that the response of the spectra to
impurity scattering can be of use. However, the theo-
retical comparison shows that the gap must be predom-
inantly of ~Bqg~ character, and the low-temperature and
low-&equency data seem to indicate that the minimum
value of the gap must be very small if it exists at all. More
precise measurements could of course clarify this point
further. Also, more work is needed from band structures
to pin down magnitude of the Raman tensor elements to
predict the overall intensities.
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APPENDIX A: RAMAN VERTICES
AND FERMI SURFACE

In this appendix, we provide a connection between the
Raman vertices and Fermi surface, and discuss the ap-
proximations made in Sec. IV in more detail. In order
to proceed with the evaluation of Eq. (33), the Raman
vertices must be evaluated on the Fermi surface. The 2D
Fermi surface is defined through the relation e(k) = p, ,
where p, is the chemical potential, which in turn deter-
mines the Fermi momentum

(A1)

The scalar prefactor k~(&p) can be expanded with re-
spect to the fully symmetric basis functions [Aqg or I'~
(Ref. 32)] for the tetragonal D " point group,

kp(y) = k~ + k~ cos(4(p) + k~() cos(8(p) +

(A2)
L=1

The higher-order Fourier coefFicients k+ for I ) 0 take(21.)

into account deviations from cylindricity of the Fermi
surface, k& . The basis functions for the irreducible rep-
resentations of the point group symmetry can be gener-
alized as

~,(")IFs = ~(")(v)=).~.(") +'")(~)
L=l

It is important to note that the coefFicients pg y
cor-

responding to the lowest-order Fermi-surface harmonics

z(p) (except p& z) vanish in the limit of parabolic
band dispersion or cylindrical Fermi surface. They are fi-

nite only due to a deviation &om cylindricity of the Fermi
surface. Moreover, one may show that

YL,—y YL,—] (kPO& kF1& kE2) kF3& ~ ~ ~ )(~) (I )

is a functional of the full set of A~g Fourier coeKcients of
the expansion of the Fermi wave number. It is therefore
convenient to truncate the expansion into Fermi-surface
harmonics after the lowest-order terms and treat the ex-
pansion coefBcients as adaptable parameters. This com-
pletes the purpose of Appendix A.

APPENDIX B:WEAK-COUPLING RESULTS

In this appendix we show that gap anisotropy causes
both the gap at zero temperature Ao(0) and the spe-
cific heat discontinuity at the transition AC/C~ (re-
lated to the slope of the gap function near T,) to devi-
ate from their respective BCS values of [A o0() /T, ] Hcs=
7r exp( —p) = 1.7638... and (AC/Cm)acs = 12/7((3) =
1.4261..., with p = 0.57721... and ((3) = 1.20205... de-
noting Euler's constant and Riemann's ( function, re-
spectively. A straightforward solution of Eq. (18) leads
to

a, (o) (a, (0) 5
SC

c ( c )Bcs
(I& I'l (I& I/& ))

&l&gl')»
Ac (Ac) (IA„I )«&...(I&,l')-

These results may be used to generate an interpolation
formula for the temperature dependence of the gap max-
imum b, o(T):

' cos[4Ly],
@(„)( )

sin (4L —2)p],
sin 4Lrp],

, cos[(4L —2)p],

Agg (p = 0),
+2g (P = 1)i
A2g (p = 2),
&" (~=3).

(A3)

3 AC Ao2 (T,
&o(T) = $„T, anh

& C (I& I')

(B2)

Note that in case of a parabolic band dispersion the func-
tions p& and p& vanish, whereas p& ——2ma2(t —2t').
This means that for a cylindrical Fermi surface only a
constant Aqg component contributes to the Raman ten-
sor. In other words, in order to have finite B~g and B2~
Raman signals, the band structure must be expanded at
least to fourth order and the Fermi surface can no longer
be cylindrical in such a situation. We proceed now by
expanding the functions p&, taken at the Fermi surface,
in terms of Fermi-surface harmonics,

For the special case of a gap with d~2 y2 symmetry, one
obtains, for h„and AC/C~,

h„= 2' exp I

—p ——
I

= 2.1397,1)
2)

(B3)

b C/C~ = ———0.9507.
12 2

7 3 3

We should emphasize that these numbers should not
be taken too seriously since they emerge &om a weak-
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coupling treatment. One should rather adopt the conven-
tion to treat them as parameters which can be adjusted
to experiment and so account for strong-coupling efFects
in the trivial sense in which they appear as renormaliza-
tions of the quantities Ao and AC/C~.

APPENDIX C: DIAGRAMMATIC
GAUGE-INVARIANT RAMAN RESPONSE:

ROLE OF VERTEX CORRECTIONS
AND COLLECTIVE MODES

In this appendix we examine the role of final-state in-
teractions and excitonic modes in unconventional super-

conductors. We use a diagrammatic approach which cap-
tures the eKects of Gnal-state interactions neglected in
Sec. II. After solving the coupled integral equations for
the renormalized vertex, we evaluate the position, broad-
ening, and residue of the massive and massless collective
modes as a function of coupling strength for a d&2 y2
energy gap on a spherical Fermi surface. We then inves-
tigate the collective modes on a cylindrical (2D) Fermi
surface by turning ofF any z dispersion in the band struc-
ture.

We begin by writing down the expression for the Ra-
man two-particle response function in Nambu space as

y(q, i~) = T) —) Tr I'(k, q, i~) G k+ —,ice„j(k,—q)G k ——,i~„—i~
k

(C1)

I'(k, q, i~) —p(k, q) = T) )—~sG
I p+ —,i~„[I'(p, p', i~)G

I p ——,iur —i~„
~~~ P)P

P q —p'&
xV~ p —k+, k —p+

2 2 ) (C2)

where Tr denotes taking the trace, 7; are Pauli matrices
in Nambu space, and the Raman vertex j = esp(k). The
dressed vertex 1" contains the interactions V responsible
for maintaining gauge invariance.

If one replaces the dressed vertex I' by the undressed
one, Eq. (2), then of course Eq. (Cl) is manifestly not
gauge invariant, and in general the neglect of collective
modes arising from a gauge-invariant treatment could in
principle acct the overall spectrum. Usually the ques-
tion of gauge invariance is rather an academic one since
the modes that appear in BCS systems have little im-
pact on the response functions of a superconductor. It is
well known that due to the spontaneously broken U(l)
gauge symmetry in s-wave superconductors, two collec-
tive modes appear: an optical one with a frequency of 2L
which is damped and a soundlike mode, the Anderson-
Bogoliubov mode, which is soft and lies in the gap for
neutral superconductors but is raised to the plasmon en-
ergy by the long-range Coulomb forces via the Higgs
mechanism. However, in unconventional superconduc-
tors, there can exist in principle additional Goldstone
modes corresponding to the additional broken continu-
ous symmetries such as SO3 spin rotational symmetry in
spin-triplet systems plus SO3 orbital rotational symme-
try in spin-singlet systems if the gap does not possess the
full symmetry of the Fermi surface. In addition, massive
collective modes and/or excitons can arise if the energy

I'(k, i(u) = ) I'~~(i~)P~(k),
L,p,

(C3)

and do the same for the pairing interaction,

v(k, -) = ) v,",",y", (k)p", , (p). (c4)

The integral equation for the renormalized vertex at q =
0 can then be written as

gap is degenerate or has an admixture of diferent repre-
sentations from the point group. The massive modes can
in principle lie below the gap edge and thus be relevant for
the low-frequency dynamics of correlation functions. For
example, the spectrum of collective modes in He is well

known in both phases and leads to observable eQ'ects.

However, the collective modes of possible d-wave states
that might be candidates for strongly correlated systems
are not as well understood. There are indications that
a d-wave state of d 2 y2 is particularly favorable in sys-
tems with strong correlations, thus underscoring the
necessity of an understanding of the response functions
and collective modes for such a superconductor.

We continue our calculation for the gauge-invariant
Raman response by Grst expanding the renormalized ma-
trix vertex I' along the Fermi surface in terms of crystal
harmonics,

LI J II .~l nfl

&~ 'L", (P~„(k)@,(k)ws G (k, i ur —is) )I ~„(ice)G (k, i(u )7s) . (C5)
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Equation (C5) is completely general for any type of ver-
tex, interaction, and gap symmetry. In particular, for
the case of an isotropic energy gap, Eq. (C5) recovers
the previously obtained results. ' We confine ourselves
to the case of singlet, energy gaps and use the BCS ap-
proximation

i~„+(rs + A(k)~i
(i~„)' —E'(k)

More complicated Green's functions could be treated
with the same scheme. However, the analysis gets con-
siderably more complicated and cannot be carried as far
analytically.

In general the pairing interaction V can have off-
diagonal as well as diagonal terms in the I basis, and
in general all channels will be coupled. If the interaction
has the symmetry of the Fermi surface, then the inte-
gral equations only couple different channels I and I'
which transform according to the same irreducible rep-
resentation. However, the subsequent matrix can be di-
agonalized with respect to the indices of the same repre-
sentation, resulting in a new set of basis functions which
are linear combinations of the old basis functions of the
same representation in different L channels. Thus we
can then write the interaction as a diagonal matrix in the
new basis functions which still has a general structure for
each representation within each new channel. Thus we

I

can write V&'&, ——V& bL, I, b„„. This allows us to re-
duce the infinite series of coupled integral equations to a
limited. subset that can be handled analytically. The ele-
ments of the expansion will be dominated by a single VL"

h~~(i~) = ) h~~'~" (i~)v;.

The index p stands for the representations of the D "
point group, and are defined through the basis functions

~(2k, —k —k„),

k k„
~ krak,

&i.(1') (~ =1)
Aia(I i ) (p = 2),
&2.(I') (~ = 3)
E (I ) (&=4)
E.(1'5) (~ = 5)

(C8)

where the I'+ corresponds to the notation of Sigrist and

Rice. It can be shown that the coefficients b&
' "of the(o, i)~

Pauli matrices vo i satisfy homogeneous equations and
thus vanish while the remaining coefFicients satisfy the
coupled integral equations

component corresponding to the I pairing channel sym-
metry p, and the other components represent admixtures
of channels (the smaller eigenvalues in the gap equation)
with difFerent pairing symmetry. If the gap representa-
tion is one dimensional (all representations of the D4"
group except Eg, which is two dimensional), then all the
other V& 's are set to zero and there will only be collective
modes connected with the broken U(l) gauge invariance.
Otherwise other collective modes can be present as well.

We now define new vertices I'&(iw) = jl + Vl"hl (iu)
and expand h&(ice) in spin quarternions,

I I I

(zeal)) —) 1+gr hl, r (zK) CL gr (z~) + z[QL +rVl r hl r (zest))]AL I r (z~) ) r

I

hL, (ztd) —) 1zVI r her (zld) AL, L, r (z(d) —[pl, r + VL, r hl, r (zloty)]CL, L, r (z(d) j r

I I .pl

where the functions A, C+ are given by

A~'~, (i~) = (P~(k)P~, (k)A(k, zen)),

C~ ~'," (i(u) = (P~(k) P~, (k) C+ (k, i~)).

(C10)

(C11)

The spectral functions are defined as

1 1 —2f (E)
A(k, ice) = i 4(k)(uN~ d( — — ——(iu) —+ —ice),4E lcd —2E

C+(k, z~) = N~ d( .— + (zen -+ —z(u),
A(k)' 1 —2f(E)

'2E2 ~~ —2E

C (k, i|d) =—
2

1 —2f(E)d( . + (iu) m —i(u).
'E& —2E (C12)

Here f is a Fermi function and (ice ~ —i~) denotes additional terms which difFer only in the sign of itd. Analytically
continuing to the real axis by letting iu ~ u + i0, the ( integration can be performed analytically and. we obtain
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C+(k, (u) =

C (k, (u) =

with

A(k, (u) = 6 (k) F(k, ~),
2A (k) (- )

1 (d+ —F(k, ur),
V(k)

(C13)

(k )
QA(k)z —(Lv/2)z

arctan
2i/A(k) z —(~/2)z

( (u/2 —Q(~/2) z —A(k) z

(
ized+ ln

, 2Q(~/2) —22, (k) I, ~/2+/((u/2) —b (k) )

for A(k) ) (2),
for A(k)2 ( ( —)2,

1 d(
2E(k) (c15)

given by the BCS gap equation. The function F is closely related to the Tsuneto function, Eq. (11).
The integral equations are still general for a charge-density-like vertex and the symmetries of the interaction and

gap remain undefined. We now restrict our attention to the case of d-wave interactions such that only V& 2 g 0 and
other terms corresponding to interactions in higher-angular-momentum channels are discarded. Dropping the L = 2

subscript by denoting VL" 2 by V„and bI, '2" by b„', the integral equations simplify to

I I I I

(222) = ) Vj (b, ( )C222ILL 2(222) + 26 (222)A~L I I 2(IM)] + I ) 'YL, I 2 L ( ) ),
pl LI

(c16)

I 2 I

(222) ) Vj I
h ' ( )+ 2222L=L2(2&) + 28, (ZW)A 2I 2(2L~ )I

—)LL ~L 2L (, ))='
~1 LI

(c17)

These equations are still general to any d-wave pair state.
We now specifically work with a d 2 y2 gap A(k) =

A()(k —k„) (the I's representations2), noting that a sim-
ilar conclusion can be drawn for other choices of energy
gaps within the I = 2 subgroup of the D " point group.
We allow for generalized interactions in the L = 2 chan-
nel, which allows for the presence of excitons. The cou-
pled integral equations represent ten equations for the
ten unknowns b„,i 6 (2, 3), and the solution can be
obtained by diagonalizing a 10 x 10 matrix.

We erst simplify our notation by de6ning

h( )(i~) =
+i i . V, V2)&22(i~)~2 '

1+ViC22 (nu) +

f2 (zu) + ViA2 2(zan)bi (zu)

(2) fi (i(A ) + V2A2'2('~)82 (iW)

I I

f„(i(u) = ) /I", AL=2, L, (z~)
L,pI

b'( )(i(u) =
g& g q V fl (i~)A2'2 (i(jzI)

+2)2 ~ +1+2 ~+2 2 (&4 ) ~1+ V2C2 2' (ice) +
z

(clg)

L,pI

(cls) For the p = 3(B2g) and p, = 4, 5 (two Fg) channels, we
And no coupling and obtain

We find that the p, = 1(Bi~) and p, = 2(Aig) channels are
coupled due to the fact that a d2 y2 energy gap squared
has a component which has a finite overlap with the Rig
channel which is isotropic within the x-y plane. Solving
the integral equations we obtain, for the p = 1 (Big) and
p, = 2 (Aig) channels,

(2) . fs (z~)

(s) . fs (z~) (C20)
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(2i ~ ~45( )+ 45 22
' (' ) 45(' )

A 4,4;5,5 . (3)

~—4,4;5,5
(

~

)

f4 5(i'm)A2'2' ' (X~}
f4 5(t~) —V4, 5 4,4, 5, 5 .

7 2)2

+44-55 . ~V, A ' ' ' (i(u)~1+V45 22 ( ) + —4455
2 )2

where V45, b45, C+ ' ' ', and A ' ' ' stand for the in-
teractions, renormalized vertices, and spectral functions
in the p = 4, 5 channels, respectively. These equations
represent the full channel-dependent renormalization of
the Raman vertex due to general d-wave pairing interac-
tions.

We now are in a position to identify the collective
modes in the ten channels (five real and five imagi-
nary). The modes are of two types, namely, massive and
massless. The massless (Goldstone) modes are a conse-
quence of the spontaneously broken continuous symme-
tries, while the massive (optical or excitonic) modes are
generated by the presence of interactions in several chan-
nels. Using Eqs. (C19)—(C21), in each channel we locate
the zeros of the real part of the denominator in each
channel to find the position of the collective mode and
evaluate the imaginary part of the denominator at the

position of the collective mode to determine its broaden-
ing.

Our results are summarized in Table I for various
strengths of the interactions in each channel. We see
that the Goldstone mode (cu, = 0), which arises due
to U(1) symmetry breaking, appears in the Rig channel
while the other modes are massive (excitonic). The Bis
modes lie beneath the maximum energy gap while the
others appear above 240. It was shown by Monien and
Zawadowski that depending on the sign of the residual
interaction, excitonic or electron pair bound states can
be formed. These excitonic or electron pair modes are
damped considerably due to the existence of quasiparti-
cles from the presence of gap nodes which provide decay
channels to damp the massive modes. This is in con-
trast to excitonic modes in s-wave superconductors. '

However, we do observe in Table I that the mode posi-
tion rapidly decreases to lower frequencies with depre-
ciating residue as the coupling strength V„/Vjy, is re-
duced, which is similar to the BCS case. Below a critical
coupling strength V~/VII„0. 8 the collective modes
disappear altogether and thus have little impact on the
low-&equency behavior of the Raman correlation func-
tion for small couplings.

We now reconstruct the Raman response and deter-
mine which of the collective modes couple to the Raman
vertex. Putting in Eqs. (C19)—(C21) into (Cl), we can
express the full gauge-invariant Raman response function
as

y~(q = o, i(u) = 2p~ ) ) p~, C~ ~'," (i(u) + V„bl, l(i(u)C~ 2*" (i~) —iV„Sl,l(i~)A~'~2 (i~) ~
.

@I I I

Taking only the L = 0, 2 terms of the Raman vertex into
account (see Sec. III), we carry out the summation overI' and p' to obtain the Raman spectrum in each chan-
nel, and then take into account the long-range Coulomb
screening via Eq. (32).

We find that for the L = 0 or density channel, y(q =
0, cu) = 0, which is a restatement of particle number con-

servation and bears out the gauge-invariant nature of the
theory. This simply restates that intercell charge Buc-
tuations couple to the long-range Coulomb forces to be
completely screened for q ~ 0. After lengthy but trivial
algebra we obtain compact results for the intracell Huc-
tuation contributions. For the B~~ channel we obtain

TABLE I. Position u, /2AO and broadening I', /2AO of the pole in b ' for each channel for the interaction strength given.
A Goldstone mode is present in the Aqg channel. Here, VI N~ = 0.25 has been used.

Big
~V

Vy

1.0
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82

g(2)
1
t4I c

2&p
0.89
0.73
0.60
0.49
0.39
0.30
0.22
0 ~ 13
0.05
no pole

rc
2&p
0.17
0.16
0.15
0.14
0.13
0.11
0.09
0.07
0.04

g(3)
t4I c

2&o
0.83
0.70
0.59
0.48
0.39
0.30
0.22
0.13
0.05
no pole

2&p
0.20
0.19
0.18
0.16
0.15
0.13
0.11
0.08
0.04

B2g
~V

vj
1.0
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82

g(2)
3

HALI c

2&o
1 ~ 16
1.04
0.90
0.78
0.59
0.37
no pole
no pole
no pole
no pole

2&p
0.23
0.21
0.19
0.17
0.13
0.08

V4, 5
Vj

1.0
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82

p(2)
4,5
44I c

2&p

1.16
1.05
0.93
0.78
0.62
0.36
no pole
no pole
no pole
no pole

2&p

0.23
0.21
0.19
0.16
0.13
0.08

p(3)
4,5
tLI c

2&p

1.09
0.98
0.87
0.74
0.55
0.32
no pole
no pole
no pole
no pole

r.
2&o

0.22
0.21
0.19
0.16
0.13
0.08
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C~, (iur)»., ('~) =2(&2) 1+VC (,. )

for the B'2~ channel,

C~, (i~)
2g

and for the two Ez channels,

4 s 2 C~ (i~)» (uu) = 2(p, '
)

7 g

with the functions

Cgy„(x~) = C2 2' (uu) + V2
+1,1 I &2 (i~) I'

1 —V2C2 2' (ice)

C ., ( ) =C+ (~™)

(c24)

(c27)

modes decreases the lower the position of the collective
mode, and (3) the broadening of the collective modes is
substantial.

However, of course, the final-state interactions them-
selves can afFect the spectrum. ' Therefore we display
our results in Figs. 8(a)—8(c) for the entire spectrum in

2.5—
~ W

2-

1.5—

CO

0.5—
4(5),4(5) .

~ +4(5),4(5) (~~)
I

C@ (i(d) = C2 2
' (ild)+V4(s) '

( ) ( )1 —V4(s) C2 2
' (iw)

0
0 0.5 1.5 2 25

I/5
3.5

XA, (xw) = 2p2[C2 2' (xw) —C2 p' (uu) /Cp p (ZM)]

1 —~' V2C~~ (i~)
X

1 + V2C~„(i(u)
(c29)

Here the functions C~, , C& are defined as

C~„(iu)) = C22' (iw) + Vj ', , (C30)
I &2;2(~~) I

1 —V&C2 2' (i~)

and

A2'2 (i~)A2'p (i~)
C~ (i~) = C,+p" (i~) + Vj ', ', . (C31)

1 —Vj C2 2"(i~)

These channels are unafFected by screening since the in-
tracell fiuctuations lead to no net charge transfer for these
symmetries. The expression for the fully symmetric A1~
channel which contains both intercell and intracell Huc-
tuations expression is much more complicated due to
Coulomb screening,

0.9

0.8

0.7

0.6

0.5

p 4
~ W

0.3

C

0.1

0
0

0.6

0.5
4 W

p4

0.5 1.5 2 25

co/4

3.5

Examining the structure of the denominator of Eqs.
(C23)—(C31), we see that the massless gauge mode (Gold-
stone mode) in the Aqs channel drops out of the Raman
response, and only provides transverse screening via Eq.
(32). The massive modes do appear in the Bqs and
E~ channels while the massive mode found in the B2~
channel does not couple to a Raman probe. Lineariz-
ing the denominator around the position of the collec-
tive mode we calculate the residue Z of the mode to be
Z~„= w, /in(Ap/ur ) and Z~, = w, where ur, is the
position of the collective mode in each channel.

Therefore, putting all our results together for the col-
lective modes, we can argue that the collective modes
are of little relevance to electronic Raman scattering due
to the fact that (1) the modes only exist at beyond a
large strong-couplings threshold, (2) the residue of the

0.3

0.1

0
0 0.5 1.5

(9/5
0

3.5

FIG. 8. Effect of vertex corrections on the Raman re-
sponse evaluated for d 2 „2 pairing on a spherical Fermi
surface for (a) Hqo, (b) B2o, and (c) Aqo channels (using
po/p2 = 2, other vertices set equal to 1). The Eo re-
sults look identical to the B2~ spectra. Here we have used
V~, N~ = 0.2, and the values of V /V~„are indicated in
the upper right-hand corner of the Ggure.
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the Bqg, B2g, and Aqg channels for diferent ratios of the
parameter V~/V~, , where V~, is the pairing interaction
of d 2 y2 symmetry. The response for the Eg channels
is similar to the B2g case. We note that the interac-
tions have only a minor afFect on the spectra in the Bq~
channel, only changing the cusp behavior near 2AO while
leaving the peak position and low-frequency behavior un-
changed. The interactions have more an efFect in the B2~
and Aqg channels due to the fact that the peaks of the
spectra are very broad. Therefore the interactions shift
the peak position upwards in frequency along the top of
the broad hump of the spectrum, from 1.34p to 1.5LO
for the B2~ channel, and from 0.64O to 0.84O in the Aqg
channel. Again we note that the low-frequency behavior
remains unchanged. A similar e8'ect is seen in the E~
channels. In particular, the massive mode in this chan-
nel is entirely damped, leading to no drastic changes in
the spectrum.

We close this appendix by addressing the collective
modes for a superconductor with a cylindrical (2D) Fermi
surface. In a 2D system the only interactions that appear
at the L = 2 level are the Bqg and B2g channels, while
the Aqg and A2g channels appear at L = 4. Similarly,

there are no E~ channels for a system without dispersion
in the z direction. Therefore, if we are only concerned
with d-wave interactions and not those of higher-angular-
Inomentum channels, then we can set the matrix elements
V~, = V~ (z 2) = 0 in Eqs. (C19)—(C21) and the equa-
tions simplify greatly. Since then there will be no channel
mixing of the Aqg channels into the response, therefore
there can be no collective mode since no term appears in
the denominators which has the form 1 —V„/Vgy, which
arises through the function C [see Eqs. (C19)—(C21)].
Therefore we can conclude that collective modes can only
appear when the interactions are included in higher-order
L channels for a 2D system. Furthermore, the vertex cor-
rections produce minor changes in the spectra only for
the Bqg and B'2g channels. The changes are similar to
the changes shown for the response functions evaluated
on a spherical Fermi surface (apart from cutting off the
logarithmic divergence of the Bq~ response at the gap
edge), and thus are not of major importance. We can
therefore neglect the collective modes entirely and the
efFect of vertex corrections and simply use the pair ap-
proximation for the Raman response. This completes the
purpose of this appendix.
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