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Superconducting ground state in a model with bend-charge interaction
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An electronic Hubbard-type model with bond-charge interaction and on-site repulsion U is stud-
ied in one and two dimensions. Evidence is provided in favor of superconductivity, without phase
separation, for U ( U (n), although no explicit attraction between particles is present in the Hamil-
tonian. The presence of a bound state for two particles in vacuum for D = 1 and 2 (but not for
D = 3) suggests that, at low density and low dimensionality, superconductivity is due to condensa-
tion of preexistent pairs (dimers). The one-dimensional (1D) phase diagram is studied analytically
as well as numerically and shows a transition between a Luttinger liquid and a strong-coupling
phase with diverging superconducting susceptibility. Estimates of critical exponents are given at
low density and at quarter Glling for several values of the parameters. The 2D model at quarter
filling is analyzed by Lanczos diagonalization on a 4 x 4 cluster. The numerical results are consistent
with the phase diagram obtained by BCS mean-Geld theory and is qualitatively similar to the 1D
case: a ground state with spin gap and off-diagonal long-range order at U ( U (n); and a Fermi
liquid above U with no sign of phase separation.

I. INTRODUCTION

The discovery of high-T, superconducting materials
has revived interest in the physics of strongly correlated
electronic systems and much work has been devoted to
the search for superconductivity in Hubbard-type mod-
els. It soon became clear that superconductivity in purely
electronic one-dimensional (1D) and 2D systems can be
induced by direct (diagonal) interactions, as in the ex-
tended Hubbard model (with V ( 0) or in the t Jmodel-
at suKciently large J. This mechanism is rather insen-
sitive to dimensionality and, although off-diagonal long-
range order cannot be achieved in one dimension, clear
signals of a superconducting instability are present also in
1D models. ' A serious drawback of this type of mecha-
nism is the presence of (at least) another instability lead-
ing to phase separation, which occurs just nearby the su-
perconducting region in systems with nonzero-range in-
teractions (like the negative U Hubbard model). A very
unlikely fine-tuning of the parameters in the Hamilto-
nian is needed to obtain superconductivity without phase
separation. The physical reason for the proximity of the
two instabilities can be traced back to the essentially clas-
sical (density-density or spin-spin) character of the inter-
action which generates superconductivity. If this interac-
tion becomes sufIiciently strong, it overcomes the kinetic
energy term and favors the state which minimizes the
potential energy, giving rise to phase separation.

A different type of nonclassical interaction lead-
ing to superconductivity without other instabilities has
been advocated by Hirsch and Marsiglio in a series of
papers in order to explain superconductivity in high-
T oxides. The key additional term is a bond-charge in-

teraction, besides the usual Hubbard U repulsive term
due to the always present (screened) Coulomb potential.
A simple, intuitive, interpretation of this interaction is
a density-dependent hopping term which, say, enhances
hopping when (at least) one of the two orbitals involved
in the hopping process is occupied by another electron.
Such a term emerges rather naturally in the construction
of a tight-binding Hamiltonian ' and can naturally be
thought of as the result of a trace over additional degrees
of freedom of either electronic or of different physical
origin. Exact solutions for special choices of the pa-
rameters have also been recently obtained in similar 1D

In this paper we will take such a bond-charge model as
an effective electronic model without entering into a dis-
cussion about the physical origin of the interaction. The
emphasis of our investigation will be on the properties
of these systems and on the resulting zero-temperature
phase diagram both in one and two dimensions. In partic-
ular, we will show, by use of analytical as well as numeri-
cal techniques, that in a wide parameter region the model
has a superconducting ground state. The character of the
Cooper pair changes with density, at fixed interaction
strength, going from real space dimers at low density to
less strongly bound pairs when the density is increased.
The analysis of the model can be made fully quantita-
tive in 1D because of the extremely powerful techniques
available in one-dimensional systems: bosonization, con-
formal field theory, and weak-coupling renormalization
group which can be successfully supplemented by numer-
ical methods. In 2D, the low-density part of the phase
diagram can be obtained exactly and numerical diagonal-
izations at quarter filling support a mean-field approxi-
mation.

0163-1829/95/51(22)/16327(9)/$06. 00 16 327 1995 The American Physical Society



16 328 MARCO AIROLDI AND ALBERTO PAROLA 51

The paper is organized as follows: In Secs. II and III
we introduce the model, providing the exact solution for
a few particles in a vacuum. In Secs. IV and V we cal-
culate the one-dimensional correlation exponents both in
the zero-density limit, starting from the two- and four-
particle solution, and at quarter filling by a finite-size
scaling analysis. Section VI is dedicated to the BCS so-
lution of the model in any dimension. Finally Sec. VII
is devoted to a discussion of the ground-state phase dia-
gram both in one and in two dimensions.

II. TWO-PARTICLE PROBLEM

turn space where the wave function of the singlet spec-
trum has the form

B
@b =A+ E —

~A:
—~p-I (4)

P is the total momentum of the state, ey is the tight-
binding dispersion of the &ee-electron problem (eb

2t P— cos k ), and the two constants A and B are re-
lated to the value of the wave function at r = 0 and at
nearest neighbors. By imposing the self-consistency con-
dition, we obtain the eigenvalue equation for the energy
E in an arbitrary spatial dimension:

The Hamiltonian we are going to analyze is that of a
Hubbard model with correlated hopping and reads

(& —t)
Ep(p —2t) + Ut2' (5)

II = —) ) (ct c +H.c.) [t —p(n„+n, )
(r~')

+Pn„n, ]+ U ) n„tn„g.

The interaction term includes the on-site Coulomb repul-
sion U and the bond-charge interactions p and P, which
describe an enhanced hopping amplitude for particles in
doubly occupied sites. The number operator for electrons
of spin o on a site r is denoted by n„~ = c~ c„~

Hamiltonian (1) coincides with that derived by Simon
and Aligia as an effective one-band model resulting from
tracing out the degrees of &eedom associated with the
oxygen electronic band in cuprates. The model is rather
general but we will mainly focus on two simple param-
eter choices: (i) P = 0, i.e. , keeping only terms with at
most four fermion operators, and (ii) P = p /t where
the interaction acquires a particular symmetrical form
and can be easily interpreted as a tight-binding model
with a density-dependent hopping amplitude:

t + t 1 ——n„1——n„

We first address the problem of a few particles in a vac-
uum by reviewing the exact solution of two-body problem
in arbitrary dimension which was investigated by Mar-
siglio and Hirsch. I et us consider two electrons: In this
case the P term in the Hamiltonian is ineffective and can
be dropped. A generic state in the Hilbert space with a
total z component of the spin equal to zero can be written
as

i4') = ) vP(r, r') cttct,
~ i0),

It is worth mentioning that the eigenvalue equation is
formally identical to that of the Hubbard model: In this
case, the right-hand side of Eq. (5) would simply read
1/U, g, allowing for a bound state only if U,g & 0. In-
stead Eq. (5) has a bound state for p & 0 both in one and
two dimensions, at every value of the total momentum P
and even for repulsive U ) 0, up to

U =4Dp ——2 (6)

III. FEVER-PARTICLE BOUND STATES IN D = 1

for D & 2, where D is the space dimensionality. So a
finite, positive U ) U, is needed in order to destroy the
bound pair. Remarkably, the rather strong attraction re-
sponsible for this binding is generated by the bond-charge
interaction alone. The binding mechanism involves a gain
in kinetic energy when two particles are at a nearest-
neighbor distance. This interpretation is supported by
the form of the wave function which is peaked not just
on site but also at the nearest neighbors, while decreas-
ing exponentially elsewhere. The critical U, increases
in going from one to two dimensions because of the en-
hanced eKciency of the bond-charge interaction which
grows when the number of nearest neighbors increases.
The absolute ground state is always in the P = 0 sector
and the presence of a bound state for any total momen-
tum P is easily interpreted as describing a coherent mo-
tion of the bound pair. At larger values of U double occu-
pancies are suppressed. , inhibiting the mechanism leading
to binding: The pair breaks and the low-energy spectrum
is continuous.

where the vacuum ~0) is the state without electrons.
The Schrodinger equation is easily solved in momen-

For two particles in D = 1, the bound-state solution
can be worked out analytically, leading, in the thermo-
dynamic limit, to the ground-state energy

Eb(P) = Uq(q —2t) —(q —t)' +U + 8 (1+ cos P) (t —4qt + 2q )
t2 —4~t + 2p2
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and to an exponentially bound pair wave function which
in real space reads 14—

Il

ooo 0 0 0 0

—0.8
U=0

for P = 0. Here, the size of the pair 1/A is a function of
the parameters p and U and diverges along the critical
line (6):

t U+ gU'+16(t' —4qt+ 2q2)
A = —ln

t2 —4qt + 2q2
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As previously discussed, an attraction between pairs in a
vacuum may lead either to superconductivity or to phase
separation according to the form of the residual interac-
tion once the pair is formed. The best way to investigate
the sign of this residual interaction is via a direct cal-
culation of the ground-state energy of a system of four
particles. This problem becomes particularly simple in
the U + —oo limit because our model maps onto a stan-
dard negative U Hubbard model with effective hopping
t' = t —p and the binding energy of the four-particle
system b,E = E(4) —2E(2) can be explicitly evaluated
to order 1/U:

AE = E(4) —2E(2) = + 0
~ ~

. (10)(q —t)' 4~'

Note that the binding energy is positive and vanishes in
the thermodynamic limit. This provides a strong indica-
tion for the absence of bound states involving more than
two particles and suggests that the model, in the low-
density regime, behaves as a dilute gas of bound pairs
which are characterized by a weak repulsive residual in-
teraction. These composite particles (dimers) are char-
acterized by their effective mass which can be evaluated
through the momentum dependence of the two-particle
ground-state energy Eg(P) (7). At large negative U and
(small) total momentum P, Es(P) can be expanded asks

E(P) = Eo + t,a P where the dimer hopping amplitude
is t,fr = —2 (p —t) /U. This result is entirely compatible
with a picture of dimers behaving as a gas of hard core
bosons with effective hopping amplitude t,g. In fact, the
representation in terms of free hard core bosons would
imply a zero-point kinetic energy t,ff 2m /L which agrees
with the four-particle perturbative result (10) via the def-
inition of t H. This fact gives us confidence in the picture
of the low-density regime as a dimer gas and allows us to
extend the definition of the effective hopping amplitude
for dimers by use of Eq. (7) at arbitrary U ( U, :

I I I I I I I I I I I I I I I I I I I

0 0.02 0.04 0.06 0.08 0.1
1/L

FIG. 1. Size scaling of the ground-state energy of the
Hamiltonian in Eq. (1) with U = 0 and four electrons for two
different values of the parameter p. AE = E(4, L) —2E(2, oo)
where E(N, L) is the ground-state energy of N electrons in
an L-site ring in units of t. The solid circle is the theoretical
value for two hard core bosons in the infinite lattice with t,g
given by Eq. (11).

2K'
AE = E(4, L) —2E(2, oo) = (12)

The finite-size scaling of the numerical results is shown in
Fig. 1 for two different values of p, and P = p /t proves
that LE is positive and vanishes in the thermodynamic
limit (i.e. , the four particles do not form a bound state).
Moreover, the asymptotic behavior of LE as L —+ oo
agrees with the theoretical value obtained via Eq. (11),
also shown in the figure.

In conclusion we can state that the model is stable
against phase separation. The system behaves as a di-
lute gas of dimers, which follow boson statistics and can
be treated as hard core particles. Therefore it is quite
plausible that, at least at low density, the ground state
is a superconductor via Bose condensation of preexistent
pairs. This result is rather robust against the presence
of Hubbard repulsion U and a remarkably large value of
U ) 0 is needed to break these pairs. Of course in 1D the
quantum fmuctuations prevent actual Bose condensation
and only a ground state with power law superconductive
correlations and diverging susceptibility is expected.

2 (t —q)'
gU'+ 16 (t' —4p t + 2p')

IV. CORRELATION EXPONENTS IN 1D:
ZERO-DENSITY LIMIT

In order to provide a check on expression (ll) and to
confirm the superBuid dimer picture, we can solve the
four-particle problem at U = 0 by exact diagonalization
of the Hamiltonian (1). The zero-point kinetic energy
of the four particles LE is numerically evaluated in 1D
rings as

In this section we focus on the 1D model where con-
siderable progress in the understanding of the physical
properties of the system can be gained by use of the pow-
erful theoretical techniques of conformal field theory.
In particular, we will show how the exact solution for
two and four particles, previously discussed, can be used
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to evaluate analytically the correlation exponents in the
zero-density limit. Then, we will evaluate the critical ex-
ponents for several choices of the parameters at quarter
filling by a Rnite-size scaling analysis.

The behavior of the model at low density appears to
be markedly diferent for U smaller or larger than its
critical value U [Eq. (6)]. In the former case, the anal-
ysis of the two-particle problem shows that a spin gap is
present in the excitation spectrum of the model, and thus
we expect that the spin-spin correlations decay exponen-
tially. On the other hand, the charge excitation spectrum
is expected to remain gapless, as shown by the absence
of four-particle bound states. In this case, the model
should fall in the universality class of the Luther-Emery
model and its correlation exponents are expressed in
terms of the unique parameter K~. This exponent can
be related to the compressibility of the model using the
Haldane-Schulz equation

0 E %up
QN2 2

(13)

where u~ is the charge velocity of the system, which is
associated with the long-wavelength charge excitations:
EA, u~k. In particular, the long-distance behavior of
the charge correlations at 2k~ is C~(x) cos(2k~x)/x
while the 8-wave superconductive correlations decay as
A(x) x i~~&. The Luther-Emery model is character-
ized by a central charge c = 1 which is related to the
leading finite-size corrections of the ground-state energy:

ber N of particles in the system at a given lattice size L
and then taking the L —+ oo limit. Following this proce-
dure, the ground-state energy of two and four particles
at U ( U, can be written as

N sr 2 N3 sr~ NE = Eg +—. t,—~ — t,—~ +O(L );24' L2 6 'L' (16)

here use has been made of Eqs. (7) and (12). The charge
velocity can be obtained by the 1/L expansion of the
energy of a pair at total momentum P = 27r/L, which,
via Eq. (11), is

uz ——vr —t,g.L (17)

Equations (13), (16), and (17) give the zero-density limit
of the K~ exponent at all U ( U, [Eq. (6)]: K~ = 2 in-
dependent of U coinciding with the negative U Hubbard
model result. Also the central charge c of the system can
be calculated by use of Eqs. (16), (17), and (14). The re-
sulting value for c is c = 1, which provides a consistency
test of the method used. Therefore we can conclude that
the system is in the Luther-Emery regime with a spin gap
and diverging superconductive susceptibility. Remark-
ably, the critical exponents associated with the charge
degrees of freedom are identical with those of a hard core
boson gas, as expected Rom the physical picture of a
dilute dirner gas.

At U ) U, the one- and two-particle solution is sufB-
cient to give the exact scaling of the energy and charge
velocity as L ~ oo:

E ~up
(14) N3 sr 2 NE = 4t+ —t — —t +O(L——),

In the other regime, for U ) U, [Eq. (6)], the bound
state is not present anymore and. both the spin and
charge excitations are gapless, at least away from half
filling, where umklapp processes are absent. This can be
also checked by going to the U ~ oo limit where the
bond-charge model maps into a standard t-J model with
J = 4(t —p) /U The t Jm.odel -at small J is known to
be a Luttinger liquid whose correlation exponents are
again parametrized by Kz [Eq. (13)]. In this case, all
the correlation functions of the model are characterized
by a power law behavior: Both the spin and charge cor-
relations at 2k~ decay as x & while the charge corre-
lations at 4k~ fall as x &. Also the Luttinger liquid is
characterized by a central charge c = 1, but, in this case,
the presence of long-wavelength gapless spin excitations
modifies Eq. (14) into

E ~(up+ u )

where u is the spin velocity.
This field theoretical formalism allows for the analyti-

cal evaluation of the correlation exponents of our model
in the zero-density limit, where use can be made of the
exact results obtained for few particles in a finite system.
The key assumption, explicitly verified in the Hubbard
model where Bethe ansatz solution is also available, is
that the zero-density limit of the physical properties of
the model is correctly reproduced by fixing the total num-

N
u~ = 2' —t.

L

These expressions give Kz —— 1/2 and central charge
c = 1, showing that the system is in the Luttinger liquid
regime with correlation exponents identical to those of
the U —+ oo repulsive Hubbard model.

To summarize, the bond-charge model is character-
ized by two different phases in the low-density limit: a
Luttinger liquid regime for U ) U with both charge-
density-wave and spin-density-wave long-range correla-
tions at 2k~ and a Luther-Emery phase dominated by
superconductive Huctuations present at U ( U .

V. L) = 1 AT FINITE DENSITY

In order to understand whether the transition found
at U for low density persists also at 6nite density n, we
can make use of the weak-coupling renormalization group
method which is known to give the correct scaling and
the exact critical exponents to leading order in the inter-
action parameters U/t and p/t. In this case we set P = 0
so that the resulting Hamiltonian is quartic in fermion
operators. The model is first linearized around the two
Fermi points, giving rise to a general, spin isotropic,
g-ology model with coupling constants gi, . . . , g4 func-
tions of the two physical parameters U/t and p/t. The
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renormalization group equations are then integrated and
the weak-coupling phase diagram is obtained. The cor-
rect result can be also obtained by noticing that, lin-
earizing both interactions around the Fermi points, we

get an effective Hubbard model with coupling constant
U,~ = U + 8pcos(7m/2). In the Hubbard model, the
phase boundary between the Luttinger liquid and the
Luther-Emery phase (with long-range superconductive
correlations) is known to be at U,s = 0, leading to the
weak-coupling result

1.5

C)
II

M

I 0.5~~

II

M

I I I I

y--0.8
U 0

r y=-0.5
U=O

~ y= -0.8
U=4

U, (n) = —8p cos(~n/2) + O(p ) (20)

Kp ——1—U + 8p cos(7m/2)
4~ t sin(m. n/2)

(21)

and the correlation exponents can be read oK the known
Hubbard results

—0.50 0.1

y= -0.8
U=S

g y= —0.5

0.15

In order to go beyond a perturbative determination of
the phase diagram, we have analyzed the properties of
the model at quarter Ailing where an accurate 6nite-size
scaling can be done. We have studied in detail the case
P = p /t. A first qualitative hint on the existence of
the transition comes f'rom the analysis of the symme-
tries of the ground state when boundary conditions cor-
responding to "open shells" in the noninteracting regime
are chosen. In this case, the interaction is responsible for
the splitting of the singlet-triplet degeneracy of the free-
fermion limit, and in fact two diferent symmetries are
found, according to the choices of the parameters. If p is
negative and U is sufBciently small, the ground state is
always a singlet belonging to the totally symmetric sec-
tor, as expected from the picture of a Bose condensate
of 8-wave Cooper pairs. Instead, by increasing U, a level
crossing is observed and the ground state is a triplet, odd
under refIections. This sort of "Hund rule" has been al-
ready observed in the repulsive Hubbard model for fillings
corresponding to "open shell" conditions. We can ten-
tatively associate the occurrence of the transition to the
choice of parameters corresponding to this level cross-
ing. Lanczos diagonalizations have been performed for
1D lattices of 8, 12, and 16 sites with periodic (8 and
16) or antiperiodic (12) boundary conditions in order
to achieve the "open shell" condition. The size scaling
of the spin gap, i.e., the difference between the lowest
spin singlet state and the lowest triplet state, is shown
in Fig. 2 together with a parabolic extrapolation to the
thermodynamic limit. The data strongly suggest that
the gap remains Gnite in all the cases where the ground
state is a singlet (solid symbols) while if the ground state
is a triplet (open symbols) the gap is seen to scale to
zero in the thermodynamic limit. Similar conclusions
can be drawn by the inspection of the density and mag-
netic structure factors. Two typical examples are shown
in Fig. 3 for 8 electrons in 16 sites with antiperiodic
boundary conditions and p = —0.5t. The U = 0 case
is characterized by a smooth magnetic structure factor,
while the density correlations have a cusp at wave vector
2k~. This suggests that the spin degrees of &eedom are
gapped while charges are gapless and their correlations
behave as at the Luther-Emery fixed point. This has to

FIG. 2. Size scaling of the spin gap from Lanczos diago-
nalization in 1D at quarter filling. Boundary conditions cor-
respond to open shells. Parameters are in units of t. Solid
squares scale to a finite spin gap. Open squares scale to zero
gap.
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0.5

'0 2kF
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FIG. 3. Density and spin structure factors for two param-
eter choices in 1D at quarter filling.

be contrasted with the behavior shown at U = 8 where
also the spin structure factor shows a cusp at 2k~ while
the singularity of charge correlations is considerably re-
duced. The shape of these correlation functions is quite
similar to that of the Hubbard model where both spin
and charge degrees of freedom are gapless and the model
scales to the Luttinger fixed point.

In order to be fully quantitative in the determination
of the properties of the model, use can be made of the
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TABLE I. Luttinger fixed-point exponents. I I I I

y

0

—0.1
—0.1
—0.5
—0.5
—0.8

U
4
8
4
8

8
8

Kp
0.71
0.62
0.75
0.64
0.98
0.78
0.93 1.4i—

1.2,———

field theoretical expression (13) relating the correlation.
exponent K~ to easily computable quantities, like com-
pressibility and charge velocity. The numerical evalua-
tion of these quantities in a finite system can be straight-
forwardly obtained by

] 1 ~

0 0.05
I

0. 1

1/L
0.15

FIG. 5. Size scaling of the charge velocity. Symbols as in

Fig. 4.

E E(N+ 2) —2E(N) + E(N —2)
¹ 4

up ———Ei P= —
i

—E(P=O)I. )
(22)

in agreement with the expectations, but superconductiv-
ity gets less and less robust for a density approaching half
filling.

Computations have been performed at quarter filling by
use of "closed shell" boundary conditions (i.e., periodic
for 12 sites and antiperiodic for 8 and 16 sites). In Figs.
4 and 5, we present the size scaling for the compressibil-
ity and the charge velocity for difFerent values of U and

p obtained via Eq. (22) and a parabolic extrapolation
to the thermodynamic limit. The resulting K~ is shown
in Tables I and II where we have distinguished between
parameters corresponding to a K~ ( 1 (Luttinger liquid,
Table I) and K~ ) 1 (Luther-Emery, Table II). For U = 0
the systein is always in the (quasi) superconducting region

6 I t I I
[

I I I I
(

I I I I

VI. MEAN-FIELD SOLUTION

The Hubbard model with correlated hopping was stud-
ied within BCS mean-field approximations in two and
three dimensions by Hirsch and Marsiglio. In order to
compare mean-field theory with numerical diagonaliza-
tion data, we brie8y review the BCS equations for this
model in arbitrary dimension for the choice P = 0 in Eq.
(1). We also derive a closed expression for the critical
value U, which separates the superconducting ground
state and the Luttinger (or Fermi) metal.

The interaction between Cooper pairs that arises &om
Hamiltonian (1) is given by the efFective potential

Vkk = U + 2p ) (e'"-+e'"-). (23)

For p ( 0, Vgg at the Fermi level becomes less and
less negative as particles are added. So we expect that
superconductivity in this model is favored at low density.

The BCS equations are

1
+k ) +kk'

k'

0 0.05 0, 1 0.15

FIG. 4. Size scaling of the compressibility in D = 1 at quar-
ter filling for different parameter choices of (p, U) (in units of
t): (0,4) (open triangles), (0,8) (open squares), (—0.1,0) (solid
triangles), (—0.1,4) (open hexagons), (—0.1,8) (open circles),
(—0.5,0) (solid squares), (—0.5,4) (skeletal triangles), (—0.5,8)
(crosses), (—0.8,0) (solid hexagons), (—0.8,4) (solid circles),
and (—0.8,8) (asterisks). Tl. points at L = oo are obtained
by a parabolic extrapolatio=x of the Lanczos data.

k—
(ek —P,)'+ Ak2,

—2t 1 ——n cos k

1 ~6k —P'-L )- E„ (24)

The form of the BCS equations implies that the gap Lp
depends on the wave vector k only through the &ee-
particle dispersion ep and this dependence is simply lin-
ear. Therefore Lg can be parametrized by the two un-
knowns L and y:
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y

—0.1
—0.5
—0.8
—0.8

U
0
0
0

Kp
1.07
1.58
1.78
1.27

1++) cos(k )

TABLE II. Luther-Emery fixed-point exponents.

(25)

U, (n) = 2P*IM' r' P*(1 —n) )
(t* —p*~) )

4&*2 &
—(~ l~)'/2

(t -~*-) (27)

vided both the hopping and the bond-charge interaction
are rescaled as t ~ t'/(2D)i~2 and p -+ p*/(2D)i~2. 22

Due to the simple form of the density of states in the
D ~ oo limit, Eq. (26) can be analytically evaluated as

UBcs( )
Yp + y4 2 2

t —qn (t —qn)' (26)

which coincides with the exact low-density result (6) in
the limit n ~ 0. In fact, the BCS variational procedure
becomes exact for two particles. Moreover, at weak cou-
pling only the first term in (26) survives and the exact
renormalization group result (20) is correctly reproduced.
Notice that in the BCS approximation the critical U does
not vanish at half filling but tends to a finite limit which,
in 1D, is U, (n) = 8p /vr(t —p). The model (1) and its
mean-field phase boundary (26) are defined in arbitrary
dimension D and have a smooth limit for D —+ oo pro-

and Eqs. (24) reduce to a set of coupled equations
for L, y, and the chemical potential p which must be
solved numerically. However, the critical line between
the superconducting and the normal state can be ob-
tained analytically by looking for a vanishing solution:
L ~ 0. In the analysis of this limit of the BCS equa-
tions it is important to keep also the subleading term
in y 2(t —pn)/p+ 0(I &) in order to get the correct
asymptotic result. In this way it is possible to obtain, for
arbitrary dimension, a closed expression for the critical
value:

where the chemical potential p' is related to the density
by

|'—p* l
(t 2) (28)

VII. PHASE DIAGRAM

In Fig. 7 we show the 1D zero-temperature phase dia-
gram in the (U, n) plane resulting from the combination
of the various techniques reported before, for P = 0 and
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In Fig. 6 we show how the BCS phase boundary is mod-
ified when the dimensionality D grows from 1, 2, 3 to
oo. In particular, we notice that the critical U at zero
density increases as ~D and, at D = oo, the critical line
has a singularity at n = 0. As D increases, the supercon-
ducting region is pushed to lower densities but tends to
a finite limit in the whole density axes up to n = 1.
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FIG. 6. Mean-field phase boundary between a supercon-
ducting (SC) and a normal (NP) phase in BCS approxima-
tion for D = 1 (dotted line), D = 2 (dashed line), D = 3
(dot-dashed line), and D = oo (solid line).

FIG. 7. 1D phase diagram of the model 1 at zero temper-
ature, for P = 0 and two choices of p ( 0. The solid line is
the BCS result separating a Luther-Emery (LE) region from
a Luttinger liquid (LL) regime. The solid square is the exact
zero-density limit. Gircles are Lanczos results. Open sym-
bols correspond to the Luttinger liquid, solid circles to the
Luther-Emery phase.
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two diferent values of parameter p. The solid line shows
the phase boundary in the mean-Geld approximation, as
obtained in the previous section. Its zero-density limit is
an exact result. Symbols represent numerical results at
quarter filling obtained by finite-size scaling of Lanczos
diagonalizations. In particular, solid circles correspond
to the Luther-Emery phase while open circles represent
the Luttinger liquid. The numerical data shown in these
figures are quite consistent with the mean-field estimate
of the critical line, giving us confidence in the BCS vari-
ational procedure for this class of systems.

The 2D model can be studied both within mean-field
theory and by Lanczos diagonalizations. The critical line
in the BCS approximation has been obtained in the pre-
vious section and is shown in Fig. 8 for P = 0 and two
choices of p. Again we remark that the zero-density limit
is an exact result and coincides with what has been found
via the two-particle analysis. Mean-Geld theory predicts
a nonzero critical U also at half filling. The supercon-
ducting region, below the critical line, has a spin gap and.
true (ofF-diagonal) long-range order, while above the crit-
ical line the Inodel is in a Fermi liquid regime. In order
to test this mean-Geld phase diagram, we have carried
out Lanczos diagonalizations also in the 2D model. In
this case, however, a finite-size scaling of the results is
not possible, due to the exceedingly large Hilbert space
dimensions, and our analysis is limited to a 4 x 4 lattice.
The results of the numerical analysis at quarter filing
are shown in the same figure by solid circles if the sys-
tem turns out to be in the superconducting region and by
open circles if it is a Fermi liquid. The method we have
used for extracting this information from the diagonaliza-
tion data is quite similar to the one adopted in one dimen-

sion. The 4 x 4 lattice with 8 electrons, zero magnetiza-
tion, and periodic boundary conditions is 16 times degen-
erate in the noninteracting case (U = p = 0). However,
interactions split this degeneracy, favoring some of the
zero-momentum states: The positive U Hubbard model
has a singlet ground state with d-wave symmetry while
a BCS superconducting state is expected to have 8-wave
symmetry. Therefore, a level crossing between these two
(spatial) symmetries would suggest a change in the phys-
ical nature of the ground state, i.e. , the crossing of the
phase boundary between a Fermi liquid and a supercon-
ductor. Other, more conventional, methods for investi-
gating the properties of the state, like the study of the
spin gap or the analysis of the correlation functions, are
strongly affected by the limitations in the lattice size and
require a careful size scaling in order to give reliable re-
sults. Instead, the level crossing gives a clear-cut indica-
tion of a change in the structure of the ground state. For
comparison, the correlation functions are shown in real
space in Fig. 9 for a few parameter choices. This picture
suggests the formation of structure in the spin distribu-
tion when U increases (i.e. , when the model enters the
Fermi liquid regime). The symmetry-based analysis leads
us to the identification of the phases of the model for dif-
ferent choices of the parameters. The results, shown in
Fig. 8, compare rather favorably with the BCS varia-
tional predictions, supporting the existence of a phase
transition between a superconducting and a Fermi liquid
phase in the 2D model at Gnite density. The charac-
ter of the superconductive phase will probably change
smoothly with increasing density, going from a dimer gas
at low density to a regime of weakly bound Cooper pairs,
similar to the usual BCS picture.
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FIG. 8. 2D phase diagram. Notation as in Fig. 7. Here
the two phases represent a superconductor (SC) and a Fermi
liquid (FL).

FIG. 9. Real space correlation functions in a 4 x 4 cluster
at quarter filling. The uncorrelated part (n ) (n i) = 1/16
has been subtracted.
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In summary, we have studied a simple tight-binding
model characterized by on-site Hubbard repulsion and
nearest-neighbor bond-charge interaction. We have pre-
sented analytical and numerical results both in one and
two dimensions, showing the presence of a phase tran-
sition at zero temperature between a superconducting
region at small U and a Fermi liquid regime at larger
repulsions. Superconductivity is rather insensitive to the
Hubbard U due to the off diag-onal nature of the interac-
tion responsible for binding. In 1D the analysis is much
more rigorous due to the many powerful tools available,
including weak-coupling renormalization group and con-
formal Geld theory. In the 1D case, no long-range order
can be present in the model and the phase transition
occurs between a Luther-Emery regime (quasisupercon-
ducting) and a Luttinger liquid phase (quasi Fermi liq-
uid). The correlation exponents and a quantitative char-
acterization of the different phases are obtained by use
of I anczos diagonalizations combined with Geld theoret-
ical techniques. A BCS variational analysis is in good
agreement with the exact results presented in this work
and reproduces the main features of the zero-temperature
phase diagram. The analytical study of the few-particle

problem leads to a physical picture of the superconduc-
tive phase in terms of a superHuid dimer gas both in one
and two dimensions and, in 1D, allows for the quantita-
tive evaluation of the correlation exponents.

After completion of this work, we received an unpub-
lished report by Arrachea et a/. where the same model
is numerically investigated in 1D and some of the results
discussed in this paper are also obtained. In addition,
here we provide (i) a detailed analysis of the low-density
limit, (ii) an accurate finite-size scaling of the critical ex-
ponents in ID, (iii) an analytic treatment of the phase
diagram of the model at the mean-field level, (iv) the
D -+ oo lixnit, and (v) the numerical analysis in 2D.
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