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We investigate a gauged matrix model in the large-N limit that is closely related to the supercon-
ductor Quctuation and the Aux-lattice melting in two dimensions. With the use of the saddle-point
method, the free energy is expanded up to eighth order for the coupling constant g. In the case that
the coeKcient of the quadratic term of the Ginzburg-I andau matrix model is negative, a critical
point g = g is obtained in the large-N limit and the relation between this phase transition and the
two-dimensional Bux-lattice melting transition is discussed.

I. INTRODUGTION

In the study of the fluctuation of superconductors and
the melting transition of the Abrikosov flux-lattice in a
strong magnetic Beld, the Ginzburg-Landau (GL) model
is especially useful with the lowest Landau level approx-
imation. This approximation is valid in the region very
near to H 2 and neglects all the contributions from upper
Landau levels except the lowest one, and reduces the ef-
fective dimension of the system by two due to the Landau
quantization perpendicular to the magnetic field axis.

The perturbational studies for GL free energy up to
high orders are unable to find a flux-lattice melting tran-
sition in two dimensions. However, the comparison of
the low temperature expansion to the high temperature
expansion for the free energy gives the estimation of the
melting transition point. On the other hand, the numer-
ical studies such as Monte Carlo simulations show that
there exists the first-order transition in a finite temper-
ature well below the mean field superconducting tran-
sition point H 2. Although both analytical and nu-
merical calculations agree quite well in derivation of the
statistical amounts, the nature of the melting transition
of flux lattice is not yet fully understood. ' The first-
order transition has been suggested by the renormaliza-
tion group analysis, but two dimensions are far from
the valid region around six dimensions.

In this study we generalize the GL Hamiltonian to
a gauged matrix model in which the order parameter
is expressed by a complex N x N matrix. The ma-
trix model in the large-% limit recently attracted much
theoretical interest since it has a close relation to the
string field theory and has been studied in many fields
such as two-dimensional (2D) quantum gravity coupled
to matter field, mesoscopic fluctuations, and electron
correlations. In several matrix models the exact solu-
tions have been obtained and these solutions give the
clues to the perturbative analysis of other unsolved ma-
trix models. It is known that the matrix model has a
phase transition in the large-N limit when the coefFicient
of the quadratic term is negative or in the lattice gauge

theory. This may be true for our gauged matrix
model and we are interested in how this phase transi-
tion is related to the superconducting flux-lattice melt-
ing. The usual Ginzburg-Landau model corresponds to
the N = 1 case, but we generalize the order parame-
ter to an N x N complex matrix and take the large-%
limit. This large-N limit should be distinguished from
the large-N case of the N-vector model, ' which be-
comes equivalent to the Hartree-Fock approximation and
has no phase transition in two dimensions.

In the usual GL model, the perturbation series be-
comes asymptotic expansions and one needs a Borel sum-
mation for such divergent series. In the large-N limit of
the GL matrix model, the perturbation series about g is
convergent, and the precise analysis of the free energy be-
comes possible. Thus it is natural to consider the solution
of the GL matrix model in the large-N limit as a first ap-
proximation of the 2D superconductor phase transition.
We And indeed a phase transition point g, /n&~ ——0.07 for
the large-N limit of the GL matrix model and this point
corresponds to y = —2.7 in terms of the reduced rela-
tive temperature. In a previous paper, we evaluated the
flux-lattice melting temperature for 2D superconductors
(K = i) as y = —10 by the analysis of the perturbation
series of the usual GL free energy. Although the phase
transition for N = oo occurs at a considerably higher
temperature than the usual GL model of N = 1, we
consider that this difFerence may result from the first ap-
proximation for 2D superconductors. The improvement
of the evaluation of this phase transition point in the
gauged matrix model is suggested by taking the higher-
order terms in the 1jK expansion.

This paper is organized as follows: In Sec. II, a gauged
matrix model with the interaction of a Ginzburg-Landau
type ~~Tr(M*M) is introduced in the lowest Landau
level approximation and the free energy is obtained as
the power series of coupling constant g using the saddle-
point method. In Sec. III, the critical point of the free
energy is obtained for the case where the coe%cient of
the TrM*M term is negative. This phase transition is
investigated in nature and in Sec. IV the relation to the
melting transition of flux lattice is discussed.
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II. GAUCED MATRIX MODEL IN TWO
DIMENSIONS

In the Ginzburg-Landau model, the order parameter
P is a complex field and can be expanded with the Lan-
dau levels. If the field is near the critical point H ~,
the lowest Landau level approximation, which neglects
all contributions to the order parameter from the upper
Landau levels and takes into account only the lowest one,
is justified for the strong magnetic Beld due to the ab-
sence of mixing between Landau levels. We consider this
strong magnetic field case and generalize this complex
order parameter P to a complex matrix P;z.

The Hamiltonian is given by

+ T ~~~ + 2~T ~

iqy

X exp
eR

( (2.2)

where P is a rank K complex matrix and p = x, y. We de-
note the charge of superconductor by e, and this charge e
is of course twice the charge of a single electron. Here the
Abelian gauge Geld A„ is a vector potential of a magnetic
field. n and P are the usual GL parameters. We choose
the Landau gauge A = (0, Bx). The complex matrix P
is written by the projection to the lowest Landau level as

eter to a matrix variable, the perturbation series has an
N dependence. In the diagrammatic language, the pla-
nar diagrams are obtained in the large-N limit. We have
a nonlocal interaction in Eq. (2.3) and have to perform
a Gaussian integration, which is equivalent to count the
number of Euler paths T of each diagram. Thus there
appears an additional factor 1/T to the combinatorial
factor. In the large-N limit, we have to select only planar
diagrams among various terms which have been worked
before by considering an N dependence.

Here we follow the new calculational method instead
of selecting the planar diagrams as proposed in Ref. 13.
Except the factor T of the number of the Euler path, the
combinatorial factor of each diagram in the planar limit
becomes the same as the one-matrix model. There is no
difference between a complex matrix model and a Her-
mitian matrix model in the leading order except a trivial
factor 2. It has been recognized that the renormalized ex-
pansion simplifies remarkably the diagrammatic expan-
sion for matrix models: one needs to consider only the
irreducible diagrams to obtain the perturbation series of
the free energy. This renormalized expansion can be ap-
plied successfully to our case, since the extra factor 1/T
due to the Euler path is factorized. This factorization
is easily understood for any diagram by the definition of
the Euler path. Therefore, we follow the procedure of the
renormalized expansion method, which gives a remark-
ably simplified method for the perturbation expansion.

We introduce the equivalent 2N real vector model
which is expressed by the 2N2 dimensional real vector
field r and the e8'ective Hamiltonian for the large-N limit
is written as

where M;~ is an N x N complex matrix and we put m = 1
and h = 1. Then the Hamiltonian is rewritten as

Heff =++ ~4I 2 ) fkg
k=1

(2.7)

H(M) = n~) Tr~M(q)~ + ) P (eB) '~'

g

X exp — q; —— qi

x~q +q q +q Tr [M (qi)M(q3)M*(q2)M(q4)]
(2.3)

1E = — lnZ, (2.4)

where o.~ ——o.+—' is related to the reduced temperature
[T —T, (B)]/T, (B). The free energy I' is obtained

where

x = r = (TrM*M) . (2.8)

Note that VrM*M is the sum of the square of the abso-
lute value for the matrix element. We integrate out the
angular variables of this 2N -dimensional coordinate by
keeping the radial part ~r~. We choose the appropriate
coefficients fk so as to make the free energy in the large-
N limit become the same as that of the original gauged
matrix model defined by Eq. (2.3). This coefficient, fi„
turns out to be determined by the irreducible diagrams
in the original matrix model.

By the saddle-point method, the free energy for the
Hamiltonian, Eq. (2.3), becomes, in the large-X limit,

dMe (2.5)

PeB
4mo. &

(2.6)

This is the same as the expansion parameter in the N = 1
case. Since we have generalized the GL order param-

The perturbation series for the free energy is expanded
by a new variable de6ned by

, = x+) f„g"x'"—inx,
k=1

(2.9)

= x + ) fi, (2K)g"x'" —1 = 0.
k=1

(2.10)

This relation is also expressed simply by

where we have replaced x —+ N x. The saddle-point
equation is derived as
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No. of planar diagrams

TABLE I. Number of planar irreducible diagrams relevant in the derivation of Eq. (2.13).

O(9) O(9 ) O(9 ) O(9 ) O(9 ) O(9 ) O(g ) O(9 )
1 1 1 2 3 9 22 61

x=1 —2gg)

where we define

(2.I2)

The relevant irreducible diagrams in each order of g is
reduced a great deal in number and in Table I we give
these nuxnbers of diagrams. The self-energy part is com-
pletely renormalized into the quantity x = (TrM'M) and
only irreducible diagrams should be taken into account.
In other words, our irreducible diagrams do not contain

the self-energy diagrams. We brieQy explain how we ob-
tain the irreducible planar diagrams: we generate nth
order planar irreducible diagrams from (n —1)th order
ones by cutting the two lines and add one vertex. The
choice of the two lines to be cut is restricted by the con-
dition that generated next-order diagrams should also
be planar, and the directions of the lines are uniquely
determined also by this condition. First we make the
generated graphs undirected and drop all the isomorphic
graphs obtained by this process. Then for the remaining
graphs, we choose properly directed graphs and calculate
the combinatorial factor by counting the number of iso-
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FIG. 1. Planar irreducible diagrams up to O(g ).
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morphisms of the graphs. The number of the Euler path
of a given graph is determined by evaluating the determi-
nant of the adjacency matrix. In Fig. 1 we show planar
irreducible diagrams to eighth order, where the direction

I

of the line (arrow) is not shown and the line is denoted
simply by a single line instead of double lines.

Up to the eighth order we obtain the perturbation se-
ries as

1 2 4 8 3 6 3 4 8 149 5 10 488 6 12 48357908 7 ]4
N2

= —lnx+x+2gx ——g x + —g x —2 —g x +9 g x —43 g x +212
2 9 5 175 715 101846 745 g x

21 940 452 333 362 8 16—1144 g x )33 393321 606 645
(2.i3)

1 2 g 4

2 N
(2.i4)

from which we obtain the perturbation series for the free
energy in the large-N limit with the same irreducible
diagrams. (Here we omit the factor 1/T for the Euler
path. ) Since M is Hermitian in Eq. (2.14), there appears
a di8'erence of a factor 2 compared to the complex matrix
case except the number T of the Euler path,

E 1 2 2 4 3 6

¹ 2 2
= ——lnx+ —x+ 2gx —2g x + —g x

3
—96g x + ~

4 8 (2.i5)

The saddle-point equation is given by

x (BI ) 1 1 2 2 4 3 6= ——+ —z+ 4gz —8g z + 64g z
(azP

=0.
From Eq. (2.15) we obtain, for y = B(F/N )/Bg,

(2.i6)

y = 2x —4gx + 32g z —384g x + O(g ). (2.17)

In the iteration for small g with Eq. (2.17), z is reex-
pressed as

where the coeKcients are evaluated solely from the irre-
ducible diagrams.

It may be instructive to see how this renormalized ex-
pansion method gives an eKcient result for the case of
one matrix model where the exact solution is known: We
now consider the case without a magnetic field in d = 0
dimensions. In the one-matrix model, the Hamiltonian
becomes, with Hermitian matrix M,

1120
x = 1 —4g+34g — g +

3
(2.21)

Using the relation of Eq. (2.11) [note y is defined by y =
0(I"/N2)/Bgj, the free energy is obtained in the large-N
limit,

I' (g) —E(0) 17 2 14= 2g ——g +62—g —585 g
¹ 2 9 15

272 5 3702
+6396 g —77 001 g525 5005

+993805
7 137857

33 948 915
—1.351344723 x 10 g . (2.22)

We correct here the result of the previous calculation of
order g and g in Ref. 13, where a small deviation was
represented. It is remarkable that we easily obtain the
series expansion by considering rather small diagrams.

III. THE CRITICAL POINT

I

matrix model. From Eq. (2.13) the saddle-point equation
becomes

x (M') 4 16 3 6= —1+x+4gz —2g x + —g x
N2 ( Bz) 3

04 4 8
5

g'x' + O(g')

(2.20)

We rewrite this equation by the iteration for small g as

2 2 2 3 3 4x = —y+ —gy —gy + —gy
2 2 2

(2.18)

By the investigation of the ratio of the coeKcients in the
series, Eq. (2.18), we find that the ratio Bi, = ci, /ci, i is
given by Bi, = —12+ 30/k (k & 3). Then we have the
following closed equation:

gx = (1+12gy) ~ —1
108 3'

From this result, we can determine the coeKcients of the
&ee energy in Eq. (2.15) up to any order of g for the
one-matrix model.

We now come back to the case with a strong magnetic
field. Including the factor 1/T of the Euler path, we
are able to check the result of Eq. (2.13) comparing with
Eq. (2.15). We repeat the same procedure as the one-

Our main object is to apply the matrix model to the
investigation of the flux-lattice melting transition of a
superconductor in a strong magnetic field for two dimen-
sions. Hereafter we consider the gauged matrix model
with negative mass o,~ ( 0 and positive coupling case
g &0.

From the study of the largeN limit of the two-
dimensional U(N) lattice gauge theoryi ' and one-
matrix model, it is known that there is a critical point
of g and the free energy shows diferent behaviors in the
small coupling (g ( g, ) and the strong coupling (g & g, )
regions. Also the third derivative of the free energy with
respect to the temperature becomes discontinuous at this
point and third-order phase transitions are observed in
these models. This phase transition is equivalent to the
&eezing of the saddle-point value of x. In the equivalent
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2%2-vector model representation, x is frozen below this
critical point as

1r = —lnx+o. ~x+2gx —-g x +2 2 4

2
(3.4)

(3 1) In this case, we change the definition of g &om the pre-
vious one, Eq. (2.6), to

where 8 is a certain negative value to be determined.
We again go back to the relation between x

(TrM'M) and y = (Tr(M*M) ). From Eq. (2.13) y
is expanded by The saddle-point equation becomes

(3.5)

1E24826238
y = 2x —gx + —g x ——g x +

¹ Og 3 5

(3 2)

0,'gyx = 1 —2gy . (3.6)

Thus we have for the temperature below the freezing
point, with Eq. (3.1),

This relation remains true even when we introduce the
negative o.~. We reexpress this perturbation series as

1 1 2 2 5 3 3 299 4 4 82
g = —gy+ —gy ——gy + gy

4624511 6 6 83706754319
6 589 440 49 662 412 800
26766869658031714037 8 8 9+ 5471 161812O327168OO

(3.3)

For the discussion of the region below the mean-field
transition temperature, o.~ ( 0, we write the free energy
with an explicit o.~ dependence in the term of order x,

g —BC' gy
2

gy =
2g

As shown in Ref. 13, the critical point is obtained ex-
actly for the one-matrix. model from the exact equation
of Eq. (2.19) by insertion of Eq. (3.1) and x = 1 —4gy.
For our present model, the exact equation is unknown.
Thus we approximate Eq. (3.3), which corresponds to
Eq. (2.19) for the one-matrix model by the Pade form,
and repeat the same analysis which determines the crit-
ical point. The approximated Pade form of Eq. (3.3)
becomes

1+bigv+b2(gg)'+ . . +b&-i(gv)' '.
gx = —gy ~ p, q Pade.

2 1+czgy+ c2(gy) + . . + c~(gy)~
(3 8)

We put Eq. (3.7) into this equation then we have

—Sz = (1+z)(Bo+ Bgz+ . + Bp iz" i)
3.9

Cp + Ciz + . . + C~z&

where z = —sn&2/g and the coefficients
Bp, B],. . . , Cp, Ci, . . . are obtained by the Pade coefFi-
cients in Eq. (3.8). The degenerate solution of z is ob-
tained when the line —Sz becomes tangent to the curve
given by the rhs of Eq. (3.9) (Fig. 2). This degenerate so-
lution gives the critical point z, . We apply various Pade
methods for the rhs of Eq. (3.9). In Table II we list the
critical point z as a Pade table form. From this table
we see that the convergency of the Pade methods which
involve an even number of terms of the original series is

good. In the case that p & q, there appears a pole in the
positive z and we consider that the critical point is ef-
fected by this pole. We find the transition point z, = 5.6,
s, = —0.4, and rr&~/g = 14 by [5, 3j Pade.

In the one-matrix model, we have an explicit expres-
sion which corresponds to Eq. (3.9) as

—Sz =
108 12 12

(3.1o)

and the exact transition point z = 4, s = —1/4, and
n&~/g = 16. The exponent 3/2 is of course related to the
critical exponent of the free energy, 1 —p,t, where p, t is
the exponent of the string susceptibility p, &

———1/2. In
our case, this string susceptibility exponent is considered
to be zero, since our system has a central charge c = 1 as
shown in Ref. 13. Thus, we expect that the singularity
of the rhs of Eq. (3.9) at the negative z, becomes (1—
z/z, ) ln(1 —z/z, ). Then we must consider the logarithmic
singularity and our simple Pade form loses the validity.

2 4 6 8 10

TABLE II. Phase transition point z obtained by various

[p, q) Pade methods in the res ( 0 case.

FIG. 2. The approximated [5,3) Pade form of the rhs of
Eq. (3.9) is plotted against z by the solid line. The dotted
tangent line determines the phase transition point z, = 5.64
and —s = 0.4 which is the slope of this line.

g&p

4

3
19.6
5.18
4.43

5.64
4.12
5.19

5
4.62
5.64
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However, we are interested in the region of positive z„
and the assumption of Eq. (3.9) may be valid.

In a previous paper, we discussed the Aux-lattice melt-
ing point from the direct calculation of the perturbation
series for the GL &ee energy. In this study we used the
convenient reduced temperature yt which is defined as

peBP/27r
(3.11)

This reduced temperature yt is expressed by the defini-
tion of z and s,

yt = —2s
(3.12)

sco,2

y =
2g 2g

(3.13)

Table III shows the obtained critical point in terms of
reduced temperature yt by the various Pade method.

For g & g, the saddle point x is &ozen, and s becomes
a constant s, . The derivative of the free energy y =
BP/Bg is given by Eq. (3.7) as

is divergent at a& = 0. The new f (g) is readily obtained
from Eq. (2.22) as

1 2 8 3 3 4 272
f(g) = —2g —-g +-g —4-g +28 g

2 9 5 525
133391

6435 2 263 261

—9471
128 589 189285 247 8
166966 608 033 225

(3.18)

This expression should be compared to the result for the
N = 1 case; here we represent the previous result,

f(g)~N. —i ———2g —g + 4 —g —39—g
2 3 294
9 30

+471.396 594 517g
—6471.562 57496g + (3.19)

It is easily seen that in the N = oo case, the series is
convergent, while the series for N = 1 in Eq. (3.19) is an
asymptotic expansion.

For the low temperature region, we have from
Eq. (3.14)

P(g) —F(0) 1 s,o.~
¹ 2 2g

= —lng+ (3.14)

Then the free energy becomes, for the low temperature
phase, as G 1 g s (1 —4g)= —ln +

(g) 2 (1 —4g)2 2g

1——lng + 8gsc
2

(3.20)

The phase transition occurs at z = z, = s,n~&—/g,
In order to compare our model in the large-N limit

with the usual N = 1 case, we write the &ee energy F and
the specific heat C in modified parameters in Refs. 1 and
3. Instead of g = PeB/47m~& in Eq. (2.6), we introduce
a new variable g = PeB/47rcx2, where a is a mass of
Hartree-Fock approximation and related to n~ as

G 1 4g
('+ ) 2 1.16

(3.21)

for g + oo. Since we have found s —0.4, this behavior
coincides with the low temperature &ee energys'4 of N =
1 case,

ca~ = n(l —4g),

PeB
4m@2

(3.15)

(3.16)

where a factor 1.16 is the Abrilcosov ratio P~
(~@) )/([@[2) for the triangular lattice.

The specific heat C, normalized by AC = v/P (v is
volume), is obtained by the derivative of entropy S,

Then the Gibbs &ee energy G in two dimensions is given
by

1 dS
LCdo.~ '

and the entropy S is given by

(3.22)

eB
2Ã

»
I

—
I
+ f(g)

qvr)
(3.17)

The function f (g) is equal to [F(g) —E(0)j/N in
Eq. (2.22). We have changed the variable g to g, since g

S = —(I@I') = —
~ (3.23)

It may be interesting to compare the N = oo result of
the specific heat with the previous result of the N = 1
case. The reduced temperature yq defined by Eq. (2.17)
becomes

TABLE III. Reduced relative phase transition temperature
which corresponds to the critical points z and s obtained by
the Q, qj Pade method.

1 —4g
eBp ~2g2'

(3.24)

q&J

3
4

—5.16
—2.54
—2.32

4
—2.66
—2.23
—2.54

—2.38
—2.66

The specific heat in the high temperature region is ana-
lyzed by the Pade method, which has been studied before
for N = 1 case. Remarkably the large-N result agrees
with the previous result of the N = 1 case. For the low
temperature region, the specific heat is simply given by
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C 1
2scLC y2

(3.25)

A )X2
(3.26)

since y = Tr(M'M) and x = Tr(M*M). From
Eqs. (3.1) and (3.7) we obtain for the phase below the
transition point,

1 g
28 28 CX

(3.27)

where s, is a &ozen constant and estimated as s —0.4.
In the low temperature limit n~ ~ —oo, P~ becomes

P~ = —1/2s„and we have P~ 1.2 which is close to
the Abrikosov value 1.16. Our estimation gives a slightly
larger value and suggests that the low temperature phase
is difFerent &om the Abrikosov phase.

IV. DISCUSSION

In this paper, we have developed a new series expan-
sion for the matrix Ginzburg-Landau model and in the
large-N limit, we have obtained a phase transition which

0.9—

0.8

0.7-
0.6

0.5

0.4

0.3—

0.2—

0.1

0
-10 -8 -6

I I

-4 -2 0
reduced temperature

FIG. 3. The specific heat scaled by AC against the reduced
temperature yq. For the derivation of this line f(g) is approx-
imated by the [5,3] Pade form. The low temperature side is
obtained from reexpressing Eq. (3.14) as the function of y&

and evaluating its second derivative with respect to y&. The
dotted line is the specific heat for the N = I case obtained in
Ref. 3.

In Fig. 3, we represent the curves of the specific heat in
the low temperature and in the high temperature regions.
The values in the high temperature region are obtained
by the [5,3] Pade result of Eq. (3.9). In Fig. 3, we also
represent the curve of the speciGc heat of the N = 1 case.
There is a phase transition of third order at yq

—2.7 in
the large-N limit.

It may also be interesting to consider the Abrikosov
factor P~. In our matrix model, it is given precisely as

corresponds to the superconductor transition in two di-
mensions. We have found remarkable agreement about
the specific heat between the large-N limit and the usual
GL model (K = 1) in the high temperature region and in
the low temperature region. The phase transition point
for the N = oo case is higher than the value of N = 1.
We have obtained the transition point yq ———2.7, while
we have yq ———10 for the usual Ginzburg-Landau model
of%=1.

It is easy to evaluate the next order 1/K, which cor-
responds with the diagrams of the genus one. Also it is
interesting to perform the numerical simulation by the
Langevin method or Monte Carlo method for the matrix
Ginzburg-Landau model and to Gnd the melting transi-
tion point which depends upon N. We will represent this
simulation result elsewhere.

As a theoretical interest, our matrix model may be in-
teresting for several reasons. (i) In the one-matrix model,
the phase transition corresponds to the singularity of the
density of state, where the density of the eigenvalue of
the Hermitian matrix has a gap at the band center.
Our gauged model is considered to be similar, although
the eigenvalue representation is difIicult due to the com-
plex matrix. (ii) The matrix model in the large-N limit
represents the string behavior as a random surface in the
double scaling limit at negative g. We have discussed
the phase transition at a positive g, and also the double
scaling limit is expected at the phase transition point. In
the superconductor, the vortex is a string, and it is inter-
esting to think the phase transition, which we found in
the large-N limit, is related to the string theory. We note
that in a difFerent context, the analogy of the phase tran-
sition in a strong magnetic Geld to string theory has been
discussed. As the same as the other matrix models,
the transition may correspond to the condensation, like
the ideal Bose-Einstein gas. It is interesting to consider
further the tachyon condensation for our phase transi-
tion. Our result of the new renormalized expansion be-
comes useful for the phase transition on a random sur-
face in the case of the central charge c ) l. (iii) In the
presence of the impurity, the melting phase transition is
considered to be second order, ' and a vortex glass
or a gauge glass phase appears instead of the Abrikosov
vortex lattice phase. This gauge glass phase has no long
range order. It is interesting to note that for the matrix
model in the large-N limit, below the phase transition
point, there is no symmetry breaking, as seen in the den-
sity of state of the eigenvalue. The density of state has a
gap, but is still symmetric for the positive and negative
eigenvalue. This is a common behavior. seen in freezing
phase transitions. Thus a matrix model in the large-N
limit may become a model of a gauge glass state in the
two-dimensional superconductor in a magnetic Geld, in
which the freezing transition is essential.
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