
PHYSICAL REVIEW B VOLUME 51, NUMBER 22 1 JUNE 1995-II

Nonlinear Meissner efFect in unconventional superconductors

D. Xu, S. K. Yip, and J. A. Sauls
Department of Physics and Astronomy, Northivestern University, Evanston, Illinois 80208

(Received 16 August 1994)

We examine the long-wavelength current response in anisotropic superconductors and show how
the field dependence of the Meissner penetration length can be used to detect the structure of
the order parameter. Nodes in the excitation gap lead to a nonlinear current-velocity constitutive
equation at low temperatures that is distinct for each symmetry class of the order parameter.
The efFective Meissner penetration length is linear in H and exhibits a characteristic anisotropy
for fields in the ab plane that is determined by the positions of the nodes in momentum space.
The nonlinear current-velocity relation also leads to an intrinsic magnetic torque for in-plane fields
that are not parallel to a nodal or antinodal direction. The torque scales as H for T ~ 0 and
has a characteristic angular dependence. We analyze the efFects of thermal excitations, impurity
scattering, and geometry on the current response of a d 2 y2 superconductor, and discuss our
results in light of recent measurements of the low-temperature penetration length and in-plane
magnetization of single crystals of YBa2Cu307 & and LuBa&Cu307 —$.

I. INTRODUCTION

Recent measurements of the Meissner penetra-
tion depth and Josephson interference efI'ects in
YBa2Cus07 s (Ref. 2) have been interpreted in support
of a spin-singlet order parameter belonging to the one-
dimensional d 2 v2 representation A(pf) = Ko (p —p„),
which breaks reHection symmetry in the basal plane.
Such a pairing state has been proposed by several
authors based on arguments that the CuO materials
are Fermi liquids close to a spin-density-wave instability.

If the cuprates have an order parameter that is un-
conventional, i.e., one that breaks additional symme-
tries of the normal state besides gauge symmetry, then
the superconducting state is expected to exhibit a num-
ber of properties, including (i) gapless excitations below
T„(ii) anomalous Josephson efFects, (iii) exotic vortex
structures and associated excitations, (iv) new collective
modes, (v) sensitivity of superconducting coherence ef-
fects to defect scattering, and (vi) multiple supercon-
ducting phases. Many of these signatures of uncon-
ventional pairing have been observed in superfluid He,
and in heavy fermion superconductors, notably Upt3.
The case for an unconventional order parameter in the
cuprates, and particularly a d&2 y2 state, is not set-
tled; there are conHicting interpretations of closely re-
lated experiments, ' ' variation in results that are pre-
sumably related to material quality or preparation,
and experimental results that are not easily accounted
for within the d~2 y2 model.

In this paper we examine the long-wavelength current
response in superconductors with an unconventional or-
der parameter, and show how the field dependence of the
Meissner penetration length can be used to detect the
structure of the order parameter. This paper extends
our earlier work on nonlinear supercurrents, ' and pro-

vides the relevant analysis that could not be included in
our short reports. Specifically, we show (i) how the nodes
in the excitation gap, whose multiplicity and position in
momentum space depend on the symmetry class of the
order parameter, lead to a nonlinear current-velocity con-
stitutive equation at low temperatures (T (( T,) which
is unique and qualitatively distinct for each symmetry
class. The efFective Meissner penetration length is linear
in H and exhibits a characteristic anisotropy for fields in
the ab plane. (ii) This anisotropy is determined by the
positions of the nodes in momentum space. For exam-
ple, in the case of a d 2 y2 state in a tetragonal material
the anisotropy is precisely 1/~2, independent of the de-
tailed shape of the Fermi surface or the gap. (iii) The
nonlinear current-velocity relation leads to an intrinsic
magnetic torque for in-plane Gelds that are not parallel
to a nodal or antinodal direction. The torque scales as
H for T « T and has a characteristic angular vari-
ation with a period of ~/2 (for tetragonal symmetry).
The magnitude and angular dependence of this torque
are calculated for thick superconducting films or slabs.
(iv) We discuss the effects of thermal excitations, impu-
rity scattering, and geometry for observing these features
in a d 2 y2 superconductor. Recent measurements of
the low-temperature, zero-field penetration length are
used to determine the relevant material parameters for
YBa2Cu307 g, which are then used to estimate the mag-
nitudes of the Geld dependence of the penetration depth
and the torque anisotropy at low temperatures.

Our starting point is Fermi-liquid theory applied to
anisotropic superconductors; Sec. II includes the rele-
vant theoretical framework needed to calculate the cur-
rent response in unconventional superconductors. We
derive formulas relating the equilibrium supercurrent to
the magnetic Geld and discuss the linear response limit
in Sec. III. The nonlinear current-velocity constitutive
equation is examined in Sec. IV. A clean superconductor
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while inversion symmetry (if present) implies that the
pairing amplitude decomposes into even-parity (spin-
singlet) and odd-parity (spin-triplet) sectors. Further-
more, the pairing interaction separates into a sum over
invariant bilinear products of basis functions for each
irreducible representation of the point group. The re-
sulting ground-state order parameter, barring the excep-
tional case of near degeneracy in two different channels,
belongs to a single irreducible representation. For tetrag-
onal symmetry there are four one-dimensional (1D) rep-
resentations and one two-dimensional (2D) representa-
tion, and each of them occurs in both even- and odd-
parity representations. (The principal results and con-
clusions presented here are not qualitatively modified by
o;6 anisotropy; the quantitative effects of a-6 anisotropy
will be discussed elsewhere. ) The residual symmetry of
the order parameter is just that of the basis functions
for the 1D representations, but for the 2D representa-
tion there are three possible ground states with different
residual symmetry groups. There is no evidence that
we are aware of to support a spin-triplet order parame-
ter in the CuO superconductors; in fact the temperature
dependence of the Knight shift in the cuprates2 is ar-
gued to strongly favor a spin-singlet order parameter.
Thus, we limit the discussion to even-parity, spin-singlet
states; however, most of the analysis and many of the
main results for the current response are also valid for
odd-parity states.

Table I summarizes the symmetry classes of the order
parameter for spin-singlet pairing. All of the 1D repre-
sentations have residual symmetry groups which include
fourfold rotations combined with appropriate elements of
the gauge groups. The states Eg (1,0) and Es(1, 1) have
a residual symmetry group that allows only twofold rota-
tions. The resulting supercurrent, or superfluid density
tensor, for such states is in general strongly anisotropic
in the basal plane. The 2D order parameter Es(1, i) pre-
serves the fourfold rotational symmetry, but breaks time-
reversal symmetry.

Although the Big (d 2 y2) and B2g (d „) order pa-
rameters break the C4 rotational symmetry of the CuO
planes, a combined C4 rotation and gauge transforma-
tion by e' is a symmetry. Since many properties of the
superconducting state depend only on Fermi. -surface av-
erages of ]A(py) ], the broken rotational symmetry is not

with a line of nodes in the gap has an anomalous con-
tribution to the current which is a nonanalytic function
of the condensate velocity v, at T = 0. The relation
of the anomalous current to the quasiparticle spectrum
is discussed, and the contribution of this current to the
Meissner penetration depth is obtained &om solutions
to the nonlinear London equation. The effects of impu-
rity scattering and thermally excited quasiparticles on
the anisotropy and field dependence of the supercurrent
are examined in detail; the signatures of the anomalous
current survive thermal excitations and impurity scatter-
ing at sufriciently low temperatures and weak (or dilute)
impurity scattering. We discuss our results in light of
recent experiments on the low-temperature penetration
depth in single crystals of YBa2Cu306 95. An important
conclusion is that if the linear temperature dependence of
the penetration depth reported for YBa2Cu306 95 is due
to the nodes of a d 2 y2 order parameter, then the nonlin-
ear Meissner effect, including the intrinsic anisotropy and
field dependence, should be observable for T ( 1 K with
a change in A ~ of approximately 30 A over the field range
0 ( H ( H, ~ 200 G. In Sec. V we discuss the non-
linear current, and associated in-plane magnetic torque,
that develops for surface fields that are not aligned along
a nodal or antinodal direction. The torque anisotropy
(or transverse magnetization) is obtained from solutions
to the nonlinear London equation at low temperatures.
We also comment on a recent experimental report of a
measurement of the in-plane magnetization of a single
crystal of LuBa2Cu30p p. In the rest of the Introduction
we briefly discuss the symmetry classes and unconven-
tional order parameters for superconductors with tetrag-
onal symmetry appropriate to the CuO superconductors
(see Refs. 18, 7, 19 for detailed discussions).

A. Symmetries ef the pairing state

BCS superconductivity is based on a macroscopi-
cally occupied equal-time pairing amplitude f p(p )f
(a~ a p~p), for quasiparticle pairs near the Fermi sur-
face with zero total momentum and spin projections o.
and P. Fermi statistics requires that the order parameter
obey the antisymmetry condition f p(py) = fp ( py), — —

TABLE I. Even-parity basis functions and symmetry classes for D«.

Symmetry class Order parameter A(pf ) Residual symmetry Nodes

E (1,0)

&s(1 1)

E,(1, i)

P pw(p'. —p', )
A2 A2

px py

p~py
A A

pzpm

p*(p- +p. )

p. (p +ipy)

D4h xT
D4[C4] x C, x T

D4[D2] x C, x T

D4[D2] x C; x T

D&[C2] x C, x T

D~[C2'] x C; x T

D4[&]

none

8 lines: ]p ]
= +]p„],p = 0,p„= 0

4 lines: ]p f

= +]p„]
4 lines: p = O, p„= 0

3lines: p =O, p =0
3 lines: p =O, p +p„=0
1 line: p =0
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easy to observe. In particular, the London penetration
depth tensor is cylindrically symmetric for any of the 1D
pairing states listed in Table I. Furthermore, all of the
unconventional gaps in Table I yield a linear tempera-
ture dependence at T (( T for the zero-field penetration
depth (in the clean limit).

A distinguishing feature of each phase, which is a con-
sequence of their particular broken symmetries, is that
the nodes of each gap are located in diAerent positions in
p space. A point that we make below is that the field de-
pendence of the supercurrent may be used to locate the
positions of the nodal lines (or points) of an unconven-
tional gap in momentum space. This gap spectroscopy
is possible at low temperatures, T (& T„and is based on
features which are intrinsic to nearly all unconventional
BCS states in tetragonal or orthorhombic structures.

II. FERMI-LIQIJID THEORY
OF SUPERCONDUCTIVITY

Our starting point for calculations of the current re-
sponse is the Fermi-liquid theory of superconductivity.
This theory is general enough to include real material
efFects of Fermi-surface anisotropy, impurity scattering,
and inelastic scattering from phonons and quasiparti-
cles, in addition to unconventional pairing. A basic fea-
ture of the Fermi-liquid theory of superconductivity (c.f.
Refs. 23—25 for a more detailed discussion of the formu-
lation of Fermi-liquid theory) is that for low excitation
energies (Ru, k~T, hqvy, b, ) (( Ey, the wave nature of the
quasiparticle excitations is unimportant and can be elim-
inated by integrating the full Matsubara Green's function
over the quasiparticle momentum (or kinetic energy) in
the low-energy band around the Fermi surface,

gp(&f Re)= dr"e '~'~" (T @ (R+ r/2, r) @&~(R —r/2, 0)),

where (p = vy(J7y)(~pt —
~g7y~) is the normal-state quasiparticle excitation energy for momentum g7 nearest to the

position J7y on the Fermi surface and vy(py) is the quasiparticle velocity at the point py. The resulting quasiclassical

propagator is a function of the momentum direction py on the Fermi surface, the center of mass coordinate B, and
the Matsubara energy e = (2n+ 1)mT. The pairing correlations are described by the (-integrated anomalous Green's
functions,

f3

d&e dee"" ~"f dee *e'~" (T e/ /B'+e/2, e)gp/B —e/2, 0)).
0

(2)

The low-energy quasiparticle spectrum, combined with charge conservation and gauge invariance, allows one to formu-
late observables in terms of the quasiclassical Green's function and material parameters defined on the Fermi surface.
For example, the equilibrium current is given by

j (R) = —elVg f dpy eI(py) T) —Tr (eel(Sip, Be )),
where 1' is the single-spin density of states at the Fermi level and the integration is over the Fermi surface with a
weight factor of the angle-resolved density of states normalized to unity. We have introduced the 4 x 4 quasiclassical
functions in "spin x particle-hole" space; a convenient representation for the particle-hole and spin structure of the
propagator is

~f g(py, R; e ) + g(py, R; E' ) . o.

( f ( py, R; e„)* zo „——f ( py, R; e„)—* . xo.„cr
f(py R.e„)ioy+ f(py R e„) iocr)/

g( py ) R) E—~) —g( py ) R—
q

—E~) 0—yo'ov )
(4)

This matrix structure represents the remaining quantum
mechanical degrees of &eedom; the coherence of parti-
cle and hole states is contained in the o8'-diagonal ele-
ments in Eq. (4). The diagonal components are separated
into spin-scalar, g, and spin-vector, g, components. The
scalar component determines the current response, while
the vector components determine the spin-paramagnetic
response. The off-diagonal propagator separates into
spin-singlet, f, and spin-triplet, f, pairing amplitudes,
which are coupled to the diagonal propagators through
the quasiclassical transport equation

Q[g, o'] = ze~rs —o (py) RI eee), g(py) R) e~)

+ivy '|7g(pg, R; e„) = 0,

first derived by Eilenberger by eliminating the high-
energy, short-distance structure of the full Green's func-
tion in Gorkov's equations. The transport equation is
supplemented by the normalization condition

g(py, R; e„)' = —~' 1,

which eliminates many unphysical solutions from the gen-
eral set of solutions to the transport equation.

The self-energy o has an expansion (Fig. 1) in terms
of g (solid lines) and renormalized vertices describing
the interactions between quasiparticles, phonons (wig-
gly lines), impurities, and external fields. An essen-
tial feature of Fermi-liquid theory is that this expan-
sion is based on a set of small expansion parameters,
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trna(P ~ terms of the impurity t matrix

small'

b'

X (Timp(P f i ~n) = Iiimp t(P f t Pf i ~n) t

t(pf, pt; c ) = u(pf, pt) + Nt f dp f u(pf, p t)

x a(P 'f i ept ) t (P f t Pf i pt ) . (10)

d2

FIG. 1. I eading-order contributions to the quasiclassical
self-energy.

sIIlall kII T /E f 5/p f(o ~ .. (( 1, which are the rele-
vant low-energy (e.g. , pairing energy) or long-wavelength
(e.g. , coherence length) scales compared to the character-
istic high-energy (e.g. , Fermi energy) or short-wavelength
(e.g. , Fermi wavelength) scales. 2s The leading-order con-
tributions to the self-energy are represented in Fig. 1.
Figure 1(a) is the zeroth order in small and represents
the band-structure potential of the quasiparticles. This
term is included as Fermi-surface data for py, vy, and
Ny, which are taken from experiment or defined by a
model for the band structure. Figure l(b) is first or-
der in small and represents Landau s Fermi-liquid inter-
actions (diagonal in particle-hole space), and the elec-
tronic pairing interactions (off diagonal in particle-hole
space), or mean-field pairing self-energy (also the "order
parameter" or "gap function"). Figure 1(b') represents
the leading-order phonon contribution to the electronic
self-energy (diagonal) and pairing self-energy (off diago-
nal); however, we confine our discussion to electronically
driven superconductivity with a &equency-independent
interaction.

In the spin-singlet channel, the order parameter satis-
fies the gap equation

+(pt, ~) = f ttp7 p(., .t) T) f(p-t ~-' )(7)-
&n

where f(pf, B;e ) is the spin-singlet pairing amplitude
and V(pf, pf') represents the electronic pairing interac-
tion; this function may be expanded in basis functions
for the irreducible representations of the point group,

irrep d

where the parameter V is the pairing interaction in
the channel labeled by the o.th irreducible representa-
tion, and the corresponding basis functions (p;(pf)li =
1, ..., d ) are orthonormal, (P;(pf)Pp (pf))p~
b pb;~, where the Fermi-surface average is defined by
(&(Pf))uy = I dPf &(Pf).

The first term is the matrix element of the impurity
potential between quasiparticles at points py and py'

on the Fermi surface, n; p is the impurity concentra-
tion, and the intermediate states are defined by the self-
consistently determined quasiclassical propagator.

For a spin-singlet superconductor with nonmagnetic
impurities, u(pf, pf') = u(pf, pf') 1, and the terms in
0.; p that contribute in the transport equation lead to
a renormalization of the Matsubara frequency and gap
function: ie„= ie„—o.; ~(pf., e ) and E(pf., e„)
A(pf)+4; ~(pf', e ). Thus, the solution to the transport
equation and normalization condition for the propagator
becomes

g(pf, e„) = —vr
zcpt (Pf, ept)rs —6(Pf, tpt)

~ (pf., e )' + I&(pf., e ) I'

In the second-order Born approximation for the im-
purity t matrix (this is not essential, but simplifies the
following discussion), the impurity renormalization of the
oR'-diagonal self-energy is given by

&(P"f & ) = &(Pf)

+ dpytU pf)py

where u)(pf, pf') = 2am; ~&flu(pf, pf')I is the scatter-
ing rate in the Born approximation. Note that the in-
tegral equation for A(pf,'e ) has the mean-field order
parameter A(pf) as the driving term. The scattering
rate u)(pf, pf') has the full symmetry of the normal metal;
thus, it too can be expanded in basis functions for the
irreducible representations of the point group,

irrep d

~(Pf Pf) ) 2 ) + (Pf)~.', (Pf)
a i=1

dPf g', (Pf) A(Pf)

&.*;(Pf)&(Pf e-)+ Pf ' + l&(pf'-) I'

where 1/2r is the scattering rate for channel n. The
integral equation for the renormalized order parameter
separates into algebraic equations for each representa-
tion,

A. Impurity scattering

The summation of Fig. 1(d) gives the leading-order
self-energy from a random distribution of impurities in

The driving term is nonzero only for the irreducible rep-
resentation corresponding to A(pf). Thus, the resulting
solution for the impurity-renormalized order parameter
necessarily has the same orbital symmetry as the mean-
field order parameter, and the magnitude of the impurity
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renormalization is determined by the scattering probabil-
ity for scattering in the same channel as that of A(pf).
The argument also holds for the full t matrix.

For isotropic (s wave) impurity scattering the renor-
malized Matsubara frequency and order parameter be-
come

1 &n
&n = &n +

2+ Q p . g 2

s)

~(rr; -) =~(~'r)+ 2,
' "

) ('6)
1 A(pj; e„)

~'. + I&(A'-)I'
JP

(,)
QZ(e-)".'+ I&(R)I'

(20)

where I'„= n,; ~/graf and Sp ——tan (erat. up) is the
8-wave scattering phase shift in the normal state. In the
Born limit bo —+ vrNfuo, while in the strong scattering
limit (Nfup -+ oo) we obtain the unitarity limit bp

vr/2.
Given the gap function A(pf), the impurity renormal-

ization is easily calculated. The magnitude and temper-
ature dependence of the order parameter are calculated
self-consistently from the mean-field gap equation

&(A) = f ~pl &(ps, 6)

Thus, for an 8-wave order parameter these equations give
identical renormalization factors for both the Matsubara
frequency and the order parameter, i.e. ,

A(e) 1 1= Z(e„) = 1+ (s wave),
2vrv Qe2 + ~2

(17)

in which case the impurity renormalization drops out of
the equilibrium propagator and gap equation. How-
ever, 8-wave superconductors are exceptional; for any un-
conventional order parameter impurity scattering is pair
breaking.

Consider an unconventional superconductor with im-
purities in which the scattering is dominated by the
identity representation. If there is an element of the
point group R which changes the sign of A(pf), i.e. ,

A(pf); —A(pf), then from Eq. (16) the impurity renor-
malization of the order parameter vanishes identically:
A(pf e ) = A(py). The cancellation between the impu-
rity renormalization factors for the Matsubara frequency
and order parameter no longer occurs, with the conse-
quence that impurity scattering suppresses both T, and
the magnitude of the order parameter.

For isotropic impurity scattering (not restricted to the
Born approximation), the renormalization factor for the
Matsubara frequency, i /e = Z(e ), is independent of
position on the Fermi surface and is given by

Z(c„) 'D(e„)+ "-t'(s,)+[z(.„).„v(.„)] '

with

1
&(~-) =

QZ(& )'&' + I&(pf)l'

The linearized gap equation determines T in terms of
the pairing interaction, frequency cutoff u, and impurity
scattering rate. At T, only the dominant pairing channel
a is relevant and the linearized gap equation becomes

(2i)

where I' = I'„sin bo is the pair-breaking parameter,

I'„sin hp ——
2

——urn; pKf u2p (Born limit),
l „= 'g' (unitarity limit) .~~

I 2

~
~

I~

~m ~

p

~~ ~
21~ ~« II ~p 0

2
I

II
~

I
1

I
~

(22)

For I' = 0, this equation determines the clean-limit
value of the transition temperature T o. Eliminat-
ing the pairing interaction and cutoff gives the well-
known Abrikosov-Gorkov . formula, except that the
pair-breaking rameter is determined by nonmagnetic
scattering,

(23)

where g(z) is the digamrna function.
Finally, the linearized gap equation is used to elim-

inate the pairing interaction and cutoff in favor of T
in the full gap equation (20). For pairing in a 1D rep-
resentation, V(py, pf') = V e(py) e(pf')*, the order pa-
rameter is A(py) = b, e(pf), where A is obtained &om
Eq. (20). Multiplying Eq. (20) by e(pf), integrating over
the Fermi surface, and adding and subtracting the right-
hand side of the linearized gap equation (with T, —+ T)
to eliminate V gives

l T T le(pf) I'
I 2+ 2~T)l I&2+ 2~T-) ~. QZ(e )'"+&'Ie(p )I'

Pf

(24)
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which is solved self-consistently with Eq. (18) to give
Z(e ) and 4 as a function of T/T, and I'.

B. Gauge-invariant coupling to the condensate
flow Beld

In the strong type-II limit the velocity field is efFectively
uniform on the scale of the coherence length, and so we
are generally justiBed in dropping the gradient term in
Eq. (27).

C. Linear response

The self-energy term representing the diamagnetic cou-
pling of quasiparticles to a static magnetic field [Fig.
l(c)] is determined by local gauge invariance. Under
a gauge transformation of the ferrnion fields, g{rg
@(r)e '+l'i~, the quasiclassical propagator transforms
as

g', g' = U(A)t g U(A),

where U(A) = exp[+2A(R)~s], as does the self-energy
and order parameter. Applying this transformation to
the transport equation (5) gives U(A)t Q[g, o'] U(A) =
Q[g', 0' + o'~]. Thus, the form of the transport equation
is invariant, but the local gauge field generates an addi-
tional self-energy, a~ = iU(A)t v—f(pf) . t7 U(A). This
property of the transport equation is used to eliminate
the phase degree of freedom of the order parameter in fa-
vor of a spatially varying Bow Beld. We parametrize the
spatial variations in terms of a physical gauge, the phase
g(R), and the local amplitude Ao(py, R) = IA(R) I e(pf),

+3 + ~gl [+ lgo] = 0~ (32)

are inverted with the aid of Eqs. (11) and (6) to give

I&I' —~~ fs&
[e +

I
A(p f ) e„)I2]s&

The resulting supercurrent calculated from Eq. (3) can
be written in terms of the superBuid density tensor

The linear response limit is simply obtained from a per-
turbation expansion of the propagator, transport equa-
tion, and normalization condition, and is expected to be
valid for low magnetic fields, Io„/7rT,

I
H/H, (( 1. As-

sume an expansion of the form g = go+ gi + . where go
is the zero-field solution to the transport equation given
by Eq. (11), and gi is the first-order correction to the
propagator, formally of order Igil +l(0'~/+)g&l.
linearized transport equation and normalization condi-
tion

&(6 R) = U[~(R)]&o(A R) U [~(R)]. (26)

where

p, = 2' dpf 4'(6) vf (6) vf (pf),

Thus, the transport equation becomes

2t~'rs —Ao —0 ~ —0 ) g + ivy (py) ' t7g = 0 I (27)
T ) I+(pf & e~)

I

—,.= [.'+ I&(A -)I']" {35)

where cr„= ivy(pf) . V'y7s. The diamagnetic coupling

to a magnetic field, 6 = V' x A, is then determined by
gauge invariance, and can be represented in terms of the
gauge-invariant condensate Bow Geld

which reduces to the angle-dependent Yosida function in
the clean limit.

D. Fermi-liquid effects

1(- 2e -l
v, = —

I
V'y+ —A

I2 ( c )
and the self-energy

(28)

Fermi-liquid eÃects arise from the leading-order elec-
tronic self-energy [Fig. 1(b)]. For the diamagnetic re-
sponse the most important Fermi-liquid eKect is the
screening correction to the diamagnetic current; the rel-
evant self-energy is o~(pf, R) = ag(pf, R) ws, with

a„=vf(J7g) v, (R) ~s.
~~(pf R) = dpi' A'"'(pf, pf') T ) g(pf', R; ~„), (36)

g„-'vf A

AT. AT. H. ' (30)

where H $0/((A) is the thermodynamic critical field.
This term should be compared to the gradient term aris-
ing from spatial variations of the screening current,

vf Vg
vrT

vf V'(o.„/A) ( H
AT A H (31)

In the Meissner geometry (H parallel to the interface)
the driving term associated with the applied surface Beld
is of order

&n

where A'"'(pf, pj) is the dimensi. onless quasiparticle in-
teraction.

Fermi-liquid effects can contribute substantial
temperature-dependent corrections to the penetration
depth as the gap opens and the number of thermal quasi-
particles drops rapidly. We include formulas for the
Fermi-liquid correction to the supercurrent for a model
uniaxial Fermi surface. The position on the Fermi sur-
face can be parametrized by the direction of the Fermi
wave vector p and the Fermi velocity is given by

vf: vy (pzx + py'JJ) + vf pzz
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Similarly, the quasiparticle interaction is parametrized
by two Landau parameters corresponding to current flow
in the basal plane and along the z axis,

A'"'(pf, pf') = A (p p' + pyp'y) + A (p,p', ) . (38)

The linear response result for the supercurrent is easily
obtained from Eq. (33) with the replacement o„-+ o.„=
v f (pf ) v, +

ate�(pf

) . The resulting current is given by

j,(R) = 2eNf f—t)pg g(pg) (pg) ..(py),

with the screening field satisfying the self-consistency
equation

e-(S~) = "~Pe) " + f 47~'"(p~ p~) ~'(pl) e-(S~J)

(41)

with

p.'@(pf) .

(42)

Since P~~ ~ Ao (1 —T/T ) near T„ the Fermi-liquid
renormalizations of the penetration depth drop out near

T„but may give substantial corrections to p, ' (T) atI I»
low temperatures.

III. ZERO-FIELD PENETRATION DEPTH
OF A d~s ys SUPERCONDUCTOR

Equations (34), (35), (38), (40), (18), and (24) are
the basic equations used to calculate the temperature-
dependent penetration depth for unconventional super-
conductors.

For a gap j4(p~)~ with fourfold rotational symmetry
about the z axis the resulting supercurrent is given by a
diagonal superHuid density tensor with in-plane (p~~) and
z-axis (p, ) superHuid densities given. by

1 dl&(~) I

Qo d'l9
(44)

where 6 is the angle measured relative to one of the nodes
(see Fig. 2}.

A simple two-parameter model for
~

A (pf ) ~, which is
useful for numerical calculations, is

(45)

The maximum gap, for a fixed p, is obtained from a
self-consistent solution to the gap equation. Figure 3
shows solutions of Eq. (24) for Ao(T) as a function of
temperature and impurity scattering. We obtain a gap
ratio of Ao/T, = 1.9 at T = 0 for p = 2.7 and I' = 0.
Note that the leading temperature-dependent correction
to the gap parameter for T « T, is bAo(T) T, in the
clean limit (Appendix A).

The maximum gap is relatively insensitive to the an-
gular slope of the gap near the nodes, except for small
p, in which case the nodal region occupies a significant
fraction of phase space. This behavior can be qualita-
tively understood by noting that the condensation en-
ergy at zero temperature is e8'ectively determined by the
strength of the pairing interaction, and therefore T . For
an anisotropic gap Lo is enhanced to compensate for the
regions of small gap. If we assume that the Fermi-surface
average of ~b, (8)

~

is constant (fixed by T,), then the max-
imum gap is given by Ao(p) 1.8T,/(1 —8/3np), which
is qualitatively the behavior obtained from the numerical
solution to the gap equation shown in Fig. 4. Note that
the ususal one-parameter d ~ „~ gap, 4 = Ao(p —p„),
corresponds to p = 2.

The suppression of T by impurity scattering is deter-
mined by the pair-breaking parameter I = I'„sin bo.
Equation (23) for T, implies that unconventional pair-
ing can be sensitive to impurity scattering; e.g. , the
superconducting transition is completely suppressed for
(I'/mT, 0)„;~ = 2e ~ 0.28, which corresponds to an im-
purity mean free path of l„;t ——vy/21' 3.6(o, where

(o ——vf/2vrT, O is the coherence length in the clean limit.
The relatively small coherence length in the CuO super-
conductors is then an advantage for an unconventional

Consider the model of the CuO superconductors based
on a d&2 y2 order parameter. The general form of the
order parameter is

&(A) = &(p. —p, ) *1(pf) (43)
P,

where I(py) is invariant under the full point group, and
p „define the direction of the Fermi wave vector in the
basal plane of the Fermi surface. Note that the nodes are
required by the broken reflection symmetries. Two pa-
rameters determine the excitation spectrum in the clean
limit: (i) the maximum value of ~A(py)~ (= Ao) and (ii)
the angular slope of the gap near the node, FIG. 2. Gap function for a d ~ „~ superconductor.
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FIG. 3. MMaximum gap for a d ~ „2 superconductor as a
function of temperature. The inset shows the T deviation of
Ao(T) at low temperature.

FIG. 5. Maximum gap at T = 0.01T f dor a ~ „2 super-
conductor as a function of the im u 'turi y pair- rea ing param-
eter. The inset shows the impurity pair-breaking eKect on

C ~

order parameter. For weak pair breaking, I'/2mT, « 1,
the suppression of T, is given by AT, /T, o = wI'/8T, —O.

Thus, for CuO superconductors with T p = 100 K and a
suppression of less than 0.5 K we have I' & 1.3 K. For
an in-plane coherence length of (o ——14 A. this corre-
sponds to an impurity mean free path l ) 3, 450 A. (For
nonmagnetic, s-wave impurities in 2D th e impurity re-
sistivity is given by p = e N 2 g'4r h r '

p fv f&, were I' is the
same pair-breaking parameter that enters the Abrikosov-

tion of p; p, independent of the scattering phase sh'ft
~ ~

ases i
p. However, inelastic scattering wh' hic is important at

T T„destroys this simple result. s
)

The magnitude of the gap parameter is also suppressed
y impurity scattering. Figure 5 shows the suppression

to is
of b,o(0) as a function of I'. Note that 4 (0)o, is more strongly suppressed in the unitarity limit

In the clean limit the angle-resolved density of states,
obtained from Eq. (11), is given by the familiar BCS form

2.50

2.40

2.30 T/Tco=0. 01

C' 2.20—

2.10

1.90

1.80

gE2 [~( 2 ( I (&f)l ) ' ( )

For low energies, ~E~ && b, o, the total density of states is

dominated by the low-lying states near the nodes, and is
mear in ~E~. For the model gap function in Eq. (45) the

total density of states is

iEi & Ao (47)

These low-low-lying excitations are responsible for the linear
temperature dependence of the penetration depth for a

no es or point no es insuperconductor with a line of nodes
' t

ot surprisingly, the density of low-lying states near
the no es is determined by the angular 1 f th

ere ore, p also determines the coeKcient of the linear
temperature dependence of the penetration depth in the
clean limit).

Although the small pair size in the cuprates leads to
relatively weak suppression of T &om impurity scatter-

t
ing, the ensity of states at low energ E (( 4 dy) ~ p) an
herefore the leading temperature de e d fe epen ence o t e pen-

etration depth are more sensitive to impurity scattering,
par icularly in the strong scattering limit. Figure 6 shows
t e density of states as a function of the tt
sh'ft for fixed I'

e sca ering p' ase
s i or xed I'„= 0.1Lo, corresponding to a rather

density of states at low energy is negligible in the Born

intermediate phase shifts (ho ——m/4). However, as the
strength of the scattering increases a Bnite density of
states at E = 0 develops, becoming of order JV(0) 0.4
in the unitarity limit. In addition, JV(E) deviates from
linearity below E 0.44. Lp. T is is the crossover energy
scale be ow
the low-energy spectrum. The crossover energy c* can be
calculated &om the lowest-energy scale for the renormal-
ized Matsubara &equency i as T ~ 0 Fr E
the crossover scale at T = 0 is given by

1.70
0.00

I

2.00
I

4.00
I

6.00 8.00 10.00 12.00 &( *)
o.F„(1—o.) + o.[s' 'D(s')]' ' (48)

FIG. 4. Maximum agap for a d ~ „g superconductor as a
function of the angular slope parameter, p.

where o = sin he, and 1)(s*) can be calculated to
leading-logarithmic accuracy [in(Ao/e') )) 1] for the
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(49)

In the unitarity limit this scale can be a sizable frac-
tion of Ao even in the dilute limit, s QI'„Ao, but in
the Born limit the crossover scale is exponentially small,

24o exp( @~~Do—/2) For m.ore detailed discus-
sions of the density of states of d-wave superconductors
see Refs. 38, 39.

A. Penetration depth for the d 2 „2 gap

The temperature dependence of the penetration depth
for a d 2 s2 gap function is obtained from Eq. (34) (ne-
glecting Fermi-liquid corrections). We assume a cylindri-
cal Fermi surface and a gap function parametrized by p
and Ao as in Eq. (45). The in-plane penetration depth
becomes

FIG. 6. Density of states vs scattering phase shift. The
impurity concentration is fixed with I'„/Ao = 0.1. Note the
finite density of states and the suppression of the maximum
gap in the unitarity limit.

provided substantial evidence for a superconducting state
with a line of nodes in the excitation gap. Figure 7 shows
the low-temperature data for bi~~(T) reported in Ref. 43.
The solid line is a calculation of the penetration depth
for a d~2 y2 gap with the angular slope adjusted to fit
the data for T & 20 K. For the absolute penetration
depth we assume A~~(0) = 1400 A. The slope of the
penetration depth at low temperature is 4.3 A/K, and
the fit to Eq. {51) gives p = 2.7, Do(0)/T, = 1.9, and
dlA(8)l/d8l g = pAp(0) 5.1T,. For comparison,
the one-parameter d 2 y2 model, b, = Ap cos(2$) with
Ap calculated self-consistently, gives dlA(6) l/d8l„~d, =
pb, o(0) = 4.3T, .

Also show n in Fig. 7 is the eÃect of a tiny gap at
the nodal positions. Tiny gaps can arise in strongly
anisotropic conventional superconductors, or if the un-
conventional order parameter contains a small compo
nent of another representation. For example, an order
parameter of the form d 2 y2+i y Ed „has a gap function

lA(pf) l

= Ao [cos (2P) + s sin (2P)] /, which is strongly
anisotropic for small r with a tiny gap of order e Lo near
the nodes of the d 2 y2 component The data of Ref. 1
imply that s ( 2/0.

Precision measurements of the penetration depth in
thin films show a T behavior at low temperatures rather
than the linear temperature dependence characteristic of
a d~2 y2 order Parameter. ' This difference may be
due to scattering by a higher concentration of defects
present in the films. Hirschfeld and Goldenfeld 2 argue
that the T dependence in films and the T dependence
of bi~~ (T) reported for single crystals can be understood
within the same d&2 y2 model for the pairing state pro-
vided the films are relatively dirty compared to the single
crystals. However, impurity scattering or defect scatter-
ing is pairbreaking in unconventional superconductors,
and so in order to explain the weak or negligible suppres-
sion of T, in balms (compared to T, in the single crystals
of Ref. 1) the authors of Ref. 42 argue that the scatter-

1

A)(
2

4vre2Nf (ef )
7r T

C2 27r

l&(~) I'

[Z(e„) e2 + lA(v9) l2]s/2 '

where the integration is over the Fermi circle in the basal
plane, and Z(e„) is the impurity renormalization fac-
tor for s-wave scattering centers. In the clean limit the
leading correction to the penetration depth at low tem-
peratures is linear in T, typical of a gap with a line of
nodes 35'40 42

80.00

og 60.00

g 4O.OO

20.00

0.00

-20.00

-40.00
0.00 5.00 10.00

I

0.0 l.0 2.0 3,0 4.0 5.0
i

15.00 20.00

T(K)
25.00

&&)((T) ( 2ln2
A~~(0) (did. (6) l/d8l„. &. p

where did, (8)l/d6l„~s, is the angular slope of lA(8)l
at the node. For the model gap in Eq. (45),
dl&(+)I/d~l-~. = s &'

The report by Hardy et aL of a linear temperature de-
pendence for hi~~(T) for single crystals of YBa2CusOs ss

FIG. 7. Penetration depth as a function of temperature.
The asterisks are experimental data obtained from Ref. 1; the
solid line is the best fit with p, 2, 7, Ao/T 1.9. The inset
shows the eKect of a tiny gap at the nodal positions on the
temperature dependence of the penetration depth. The axes
are the same as those of the main graph. The middle (top)
curve in the inset corresponds to a tiny gap of A; /Ko ——l%%uo

(2'%%uo).
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ing responsible for the T dependence of bA~~(T) results
kom a dilute concentration of strong scattering centers
with phase shifts near the unitarity limit. A small con-
centration of unitarity scatterers leads to a strong modi-
Bcation of the density of states in the small phase space
region near the nodes. Since bAII is determined by these
low-energy excitations, the temperature dependence of
bA~~(T) for T && T, may be strongly modified even when
the suppression of T by a dilute concentration of scat-
terers is negligible.

In the Born limit (weak scattering) the density of
states, even near the nodes, is nearly unchanged. Thus,
a much higher concentration of defects is needed to gen-
erate hA~~(T) T for T & 0.2T„which is accompanied
by a sizable suppression of T . The sensitivity of the low-
energy excitation spectrum to the scattering strength is
reQected in the temperature dependence of the penetra-
tion depth shown in Fig. 8. The concentration of 8-wave
scatterers is Bxed and the curves show the evolution from
a linear T dependence in the Born limit (b'o ——m'/20), and
intermediate phase shifts, to the T2 dependence in the
unitarity limit (b'o ——vr/2). Note that the crossover from
bAII T to bAII T is abrupt, occurring very near
the unitarity limit for dilute concentrations. A sharp
crossover in the excitation spectrum as a function of
phase shift has also been noted by Preosti et al. Thus, it
is worth emphasizing that for dilute point impurities it is
not merely "strong scattering" that is required to obtain
bAII T with minimal reduction in T„but scattering
with bo —+ ~/2.

In the unitarity limit even dilute concentrations of im-
purities can strongly modify the low-energy spectrum.
In the unitarity limit the crossover energy scale is e
QI'„b,o. Thus, bA~~(T) deviates from the linear T depen-
dence for T & e'*. The sensitivity of bA~~(T) at T (& T,
for unitarity scattering (see Fig. 9) places a strong con-
straint on the concentration of scatterers that can be
present in clean single crystals that shows 8A~~(T) T
down to low temperatures. For the data of Ref. 1 we Bnd
I' /Ap ( 0.0001 given that hA~~(T) T down to T 1
K.
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FIG. 9. Penetration depth as a function of temperature
and impurity concentration ( I'„) in the unitarity scattering
limit.

IV. NONLINEAR CURRENT' RESPONSE

In the Meissner geometry the screening current is pro-
portional to the applied surface field, j, cH/A. As
H is increased nonlinear field corrections to the consti-
tutive equation for the supercurrent may become signiB-
cant. In conventional type-II superconductors nonlinear
corrections to the current-velocity relation arise &om the
thermal population of quasiparticles, and vortex nucle-
ation generally occurs before these nonlinear effects be-
come important.

In unconventional superconductors with nodes in the
excitation gap the nonlinear Beld correction to the su-
percurrent is substantially larger than in conventional
superconductors with other similar material properties.
The origin of the anomalous nonlinear Meissner effect
is the contribution to the screening current associated
with the quasiparticle states near the nodal lines. As a
result the nonlinear Meissner effect may be used to de-
tect the nodal structure of the gap of an unconventional
superconductor.

In the limit ivy . V'lAll/zT, (/A &( 1 the current
can be expressed as a local function of the condensate
velocity, v, (R). In the presence of a condensate flow

the local solution to the transport equation, g(py, R; e ),
is given by Eq. (11), but evaluated with ie„-+ is„—
a„, where cr„(py, R) = vy . v", (R). The current response
obtained from Eq. (3) is

0
60.0 ta j, = —2eNy deaf vf pf AT

40,0

20.0

x) (52)

0.0
0.0 5.0 10.0

T(K)
15.0 20.0 25.0

FIG. 8. Penetration depth as a function of temperature for
phase shifts ranging from the Born limit to the unitarity limit.
The concentration is fixed vrith I'„=0.01 T .

One point to note in calculating the density of states, or
current, at finite Bow with impurity scattering is that the
impurity renormalization of A(py) need not vanish, even
for s-wave impurity scattering and (E(py)) = 0. The
reason is clear from Eq. (12) for A(py, e ); the kernel
no longer vanishes by symmetry with the replacement

+ ivy v, for a general Bow Beld. However, for
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special directions of v„e.g. , v, parallel to a node, the
impurity correction to A(py) vanishes, A = A(py).

Equation (52) for the current can be transformed by
contour integration and analytic continuation to the real
axis to give

deaf vf(pf)

dE f(E) [JV~(py, E) —JV (»7g, E)], (53)

where A+(pf, E) is the density of states for quasiparti-
cles that are comoving (+my. v, & 0) and countermoving

(—vy . v, & 0) relative to the condensate ffow. The inte-
gral is taken over the half-space o.„=vf .v, ) 0 with the
countermoving excitations included by inversion symme-
t»: ~'c- = —o- and l&(~'A)l = l&(pf)l. Thi»esuit
is general enough to cover nonlinear field corrections to
the current for superconductors with an unconventional
order parameter and pair-breaking efFects from impurity
scattering.

The difference in the nonlinear current-velocity rela-
tion for conventional and unconventional order param-
eters appears in the contributions to the current from
the comoving and countermoving excitation spectrum at
T = 0. The spectrum is shown in Fig. 10 in the clean
limit for a specific direction py in which vy. v, &

I (py) I.
At zero temperature only the comoving and countermov-
ing quasiparticle states with E ( 0 contribute to the
current.

(E & 0 for v, & v, ) of comoving excitations shifts above
E = 0. As a result the current carried by the condensate
drops rapidly above the critical velocity. The current
is nonanalytic at v because a branch of countermoving
(comoving) excitations that are unoccupied (occupied)
for v, & v, becomes occupied (unoccupied) v, & v, . For
example, for a 1D Fermi surface the current becomes j,

2eN—~v&~(v, —O(v, —v, ) gv2 —v2).
At nonzero temperatures thermal occupation of the

upper branches and depopulation of the lower branches
reduce the condensate supercurrent. In the clean limit
Eq. (53) can be transformed to

j, = —2eNf dpf vf (vf . va) + gqp

jqp ———4eNf dpf vf

x f(/P+~~~~'+vg v.) (56)

which separates the condensate contribution to the cur-
rent, the fully occupied negative energy branches shown
in Fig. 10, &om jqp the current carried by the excitations
associated with population of the upper branches and de-
population of the lower branches in Fig. 10. The current
carried by the excitations is a backflow current. For low
velocities the net current is linear in v„g, = —ep, (T) v„
where p, (T) is the superffuid density in the two-Huid
model,

A. Nonlinear current: Conventional gap
sech (g(2+ IDI2)

p, (T) = p —Nyv~ d(
0

(57)

For a conventional superconductor wi th an isotropic
gap at T = 0 the current is easily calculated from the dif-
ference in the number of comoving versus countermoving
quasiparticles that make up the condensate,

j, = —2eNg
o.„)0

dpi'

vf (»7y) [2vg . v, ] = ep v„—

v, & vg/Ao, (54)

ing(+)

I

I

I

I~I ~f &s l~l l~l+ ~f'&s

l Counter —moving( —)
I

l&l-&( ~s l~l i~1+v, vg

FIG. 10. Density of states for comoving (+vy v, ) and coun-
termoving (—vf . v, ) excitations at a point py on the Fermi
su«ace where Ivy

. v
I

&
I
&(» ~) I.

w'i p = fith p = N v for a cylindrical Fermi surface. The main
poinoint is that the current is linear in v, for velocities up
to the bulk critical velocity v, = vy/Ao. At v, = v,
the edge of the spectrum for the upper branch (E & 0
for v, & v, ) of countermoving excitations drops below
E = 0, and the edge of the spectrum for the lower branch

For larger flow velocities the linear relation breaks down.
The leading correction to the current-velocity relation for
v, &v is

fv 5'
j, = —ep, (T) v, 1 —n(T)

I

—'
l

. (58)
v )

The nonlinear correction is third order in v, and deter-
mined by the coefficient o;(T) & 0 and the bulk critical
velocity v, = A(T)/vf. There are two sources of non-
linear current. At finite v, there is a difference in the
thermal occupations of comoving and countermoving ex-
citations. Since the countermoving branch has a larger
occupation than the comoving branch [f(E —vyv, ) com-
pared to f(E + vfv, )], the thermal excitations further
reduce the current compared with the linear response
value. In addition the condensate velocity is also pair
breaking; i.e. , v, reduces the magnitude of the mean-
field gap parameter, further reducing the current density
at finite How. Figure 11 shows the temperature depen-
dence of the nonlinear correction to Eq. (58). Note that
n(T) exp( A/T) for T ~ 0. —There are no excitations
that contribute to the backflow current at T = 0 and the
constitutive equation is strictly linear for velocities below
the bulk critical velocity v = E/vf.

The relevance of the nonlinear current-velocity consti-
tutive equation to the penetration of magnetic fields into
a superconductor is qualitatively clear. The reduction
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in Fig. 12 (left panel).
For any v, g 0 there is a region of the Fermi surface

with lA(pf) l
+ vy . v, & 0, in which the upper branches

of the countermoving excitations (see Fig. 10) have neg-
ative energy and become populated. The nonanalytic
dependence on v, reflects the occupation of this coun-
termoving branch of excitations at T = 0. Figure 12
illustrates the phase space contributing to the backflow
current. For lvyv, l

« Ap the wedge of occupied states
is —8, & 6 & 8„with 8, = v&v, /pb, p, where vf is
the Fermi velocity at the node and @40 is the angular
slope of lA(8) l

at the node. The current is calculated by
transforming Eq. (53) to

FIG. 11. Temperature dependence of p, (T) and the non-
linear coefficient a(T) for an s-wave gap.

j, = —2eNf dpi vf vy - v",

+2 d( f(E(() + vy v, )
0

(60)

of the current by the flow reduces the efI'ective super-
fluid density and, therefore, increases the penetration of
the field into the superconductor. Since the current is
proportional to the Geld in linear order, the leading cor-
rection to the efI'ective penetration length is quadratic in
the surface field. Solution of the nonlinear London equa-
tion in the Meissner geometry gives the following result
for the field dependence of the penetration depth (see
Appendix B):

where E(() = g(2 + lA(py) l2. The first term is the con-
densate current —epv, . The backflow current at T = 0 is
easily calculated &om the phase space of occupied coun-
termoving excitations. With the velocity directed along
the nodal line p~ = p» i.e., v, = v, x as shown in Fig.
12 (left panel), the occupied states give

jq~ = —2eNf dpfvf 0 —v"f v", —4 py

A(T, H) A(T) 4 Ho(T)

where 1/A(T) = 87re p, (T)/Sc2 is the zero-field London
penetration depth, and Hp(T) = eA(T)/cv, (T) is of order
of the thermodynamic critical Geld. Thus, in the London
limit the nonlinear Meissner efFect in a conventional su-
perconductor is exponentially small at low temperatures
and is quadratic in H/Hp.

(vf v )' —l&(A)l'
'- de= —2eNf vf — (v*v, )2 —(@Ape)~ (—x') .

2vr

(61)

To leading order in (v&v, /Ap) we obtain a total current
of

B. Nonanalytic supercurrents at T = 0: d 2 „2 gap j, = —epv, 1— (v, ll node), (62)

The expansion of the current in v, breaks down for an
unconventional superconductor with nodes in the gap.
This is clear &om Eq. (52); a Taylor expansion in cr„ fails
for T « T, when there are directions py where l4(pf)l
and le

l
are always small compared to lo'„(py)l. In the

clean linlit for a d&2 y2 gap the breakdown of the Taylor
expansion leads to a nonanalytic current-velocity rela-
tion at T = 0 of the form j, = —epv, (1 —lv, l/vp),
where vp Ap/vf. [Nonanalytic currents have been in-
vestigated in superfluid He-A, initially by Volovik and
Mineev. This work is closely related to a number of
theoretical investigations of the hydrodynamical equa-
tions of superfluid sHe in the limit T ~ 0 (see Ref. 54).
For an analysis of the nonanalytic current in He-A see
Ref. 55; these authors also calculate the nonanalytic
current-velocity relation for an axially symmetric, polar
state with 4 p, . The polar model is examined in more
detail by Choi and Muzikar. se] The physical origin of this
nonanalytic current is easily understood by considering
the d 2 y2 gaP with v, directed along a node, as shown

where vp ——pAp/vf is of order the bulk critcial velocity
scale. Equation (62) clearly holds for v, directed along
any of the four nodes. Note that the current is parallel
to the velocity, and that the countermoving excitations
reduce the supercurrent, as expected. Also the nonlinear
correction is quadratic rather than cubic, as is obtained
for the conventional gap, and with the characteristic scale

FIG. 12. Phase space contributing to the quasiparticle
backflow jets at T = 0 for v, ll node and v, ll antinode.
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determined by vp ——yAp/v&.
Unlike the linear response current, the nonlinear quasi-

particle current is anisotropic in the basal plane. A ve-
locity Geld directed along the maximum direction of the
gap (antinode), v, = v, x, produces two countermoving
jets, albeit with reduced magnitude because the projec-
tion of v, along the nodal lines is reduced by 1/i/2 (Fig.
12, right panel). The critical angle defining the occupied
states in this case is given by —(v, /vo). The resulting~2
current is easily calculated to be

v. I'v. /~2'l
jqp = —x'

g2 ~
vo )

v. fv. /~~I
(63)

giving a total current of

j, = —epv, 1— (v,
~ ~

antinode), (64)

8'v. 4ze' v. ~v.
~

)Oz2 c2 ' ' A2
II

Vo
(65)

We define the efI'ective penetration length in terms of the
static surface impedance, 1/A~~ = —(1/H)(Bb/Oz) ~,
The solutions for both half-space and thin film geometries
are discussed in Appendix B. We obtain

which is again parallel to the velocity and has a quadratic
nonlinear correction. However, the magnitude of the non-
linear term is reduced by 1/i/2. This anisotropy is due to
the relative positions of the nodal lines and is insensitive
to the details of the anisotropy of the Fermi surface or
Fermi velocity because the quasiparticle states that con-
tribute to the current, for either orientation of the veloc-
ity, are located in a narrow wedge, 6 & 8, (v, /vp) (( 1,
near the nodal lines. Thus, the occupied quasiparticle
states near any of the nodes have essentially the same
Fermi velocity and density of states; only the relative
occupation of the states is modified by changing the di-
rection of the velocity.

The dependence of the supercurrent on the positions
of the nodal lines in momentum space suggests that the
anisotropy can be used to distinguish diferent unconven-
tional gaps with nodes located in difI'erent directions in
momentum space. For example, the d „state (B2g rep-
resentation), b, p p„, would also exhibit a fourfold
anisotropy, but the nodal lines are rotated by ir/4 rela-
tive to those of the d 2 y2 state. The order parameter

~ p p&(p —p„), corresponding to the A2s repre-
sentation, would exhibit a more coinplicated (2 x 4)-fold
anisotropy.

Anisotropy in the in-plane current implies a similar
anisotropy in the field dependence of the in-plane pen-
etration length. Consider the geometry in which the
superconductor occupies the half-space z ) 0, with
z~~c. For a surface field H directed along a nodal line,
Maxwell's equation combined with Eq. (62) for the cur-
rent and the gauge condition V' v, = 0 reduces to

H)= —
/

1 — /, H// ilode,
W~~(H) &(( ( Ho) ' (66)

and similarly for fields directed along an antinode,

1 1 ( 1 Kl= —
(

1 — /, H// antinode,
X„(H) &~~ q 2 Ho) (67)

where A
I I

is the zero-Beld penetration depth at T = 0 and
Hp = 3cvp/2eA~

~

is the characteristic field scale. Using
p pAQ/vf, 1/At~ ——47re Nyv&/c, (~

~

= vj/2irT„and
H2/8~ = ,'NyA —gives Ho zp(6y /v&)

s H, O(H, ),
where H is the thermodynamic critial field, Ny is the
rms average of the Fermi velocity, and v& is the Fermi
velocity at the node. We estimate H, (0) 8.5 kG and
Hp 3.4 T if we neglect the anisotropy of the Fermi
velocity. Fermi-surface anistropy can change the charac-
teristic field significantly. Using a next-nearest-neighbor
tight-binding model for the Fermi surface fit to the local-
density-approximation result for YBa2Cu307 p, we es-
timate the anisotropy to be v*/Sy 1.1, and the model
gives Hp 2.5 T; however, t e anisotropy of vy is sen-
sitive to the hole concentration near half-filling. Assum-
ing Hp = 2.5 T and H, i(0) 250 G appropriate for
twinned single crystals of YBCO, then over the field
range 0 & H & H, i the change in A~~(H) is of order

b&[~ —&~~ H~i/Ho —(1500 A)(250 G)/(2. 5 x 10 G) 15
A. The magnitude of bA~~(H) also depends on the mea-

surement technique. If bi~~(H) is measured from the in-

ductive response of a low-&equency ac field A in the
presence of a parallel dc field v„ then, from Eq. (62),
by~ = ——' p(1 —2

~
~v/v )pA, and the change in the

penetration depth with the static field is a factor of 2
larger than the dc result in Eqs. (66) and (67).

Observation of the anisotropy and linear Beld depen-
dence of hA~~(H) could provide strong support for a
d 2 y2 order parameter. Below we consider thermal and
impurity efFects which might mask or wash out the char-
acteristic anistropy and linear Beld dependence charac-
teristic of pure material at T = 0.

Ther mal ezcitations: Crossover to analytic
behavior

At finite temperatures thermally excited quasiparti-
cles occupy the upper branch of the countermoving band
shown in Fig. 10, and for T « Lo these thermal quasi-
particles are predominantly in the nodal regions. In
the limit vyv, « ~T the thermal excitations dominate
and the nonlinear corrections can be obtained &om a
Taylor expansion in (vyv, /7rT). In the opposite limit
~T « vyv, « AT, the nonthermal jets that give rise
to the nonanalytic backflow current dominate. Thus, at
finite temperature there is a crossover from the nonana-
lytic result with jq~ epv, ~vyv /Ap~ for irT (( vfv ((
AT to jq& epv, (vyv, /vrT) for 0 & v fv « 7rT
(these expansions are discussed in Appendix A). Hence,
with decreasing surface Beld H, the effective penetration
depth also crosses over &om a linear field dependence,
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FIG. 13. Velocity and temperature dependence of the efFec-
tive superfluid density, p, = j,/v„ for v, ~~

node in the clean
limit. The crossover velocities are indicated by the arrows.

bA~~
—

A~~ (H/Hp), for 0 & HT & H && H, to a quadratic
dependence, bA~~ (H/H~), for 0 & H & HT, where
the crossover scale is the field at which the How energy
per excitation becomes comparable to the thermal en-
ergy, vyv, = vy —HTA 7rT or HT (T/Ap)Hp. For
T/Ap = 0.001 (i.e., T 0.2 K and T, = 100 K) the
crossover Geld is Hz 10 G with Ho ——10 kG. However,
at T = 2 K, the crossover moves to HT 100 G, which
is a substantial &action of H q 200 G for the cuprates.
At temperatures above T 2 K the linear field region is
essentially washed out by the thermal backflow current.
Thus, it is essential to work at T « T,(H, i/Hp) in»-
der to minimize the current from the thermally excited
quasiparticles. Note that the restrictions on the tempera-
ture are more severe for observing the linear Geld depen-
dence, compared to the linear temperature dependence
at H = 0, because a clean interpretation of the Meiss-
ner penetration length requires fields below the vortex
nucleation field. If vortex nucleation could otherwise be
suppressed, then the field range could be extended to
H Ho and a linear field dependence would be observ-
able over a much larger field range, and correspondingly
the restriction on the low-field crossover would be much
less severe. In any event we typically assume a field range
up to H i 250 G in our calculations and estimates.

In Fig. 13 we show the e6'ect of thermal excitations on
the velocity dependence of the effective superQuid den-
sity p, (T, v, )—:j,/v, for v, directed along a node. is
The intercept shows the usual thermal reduction in p, at
v, = 0. The crossover from the linear field dependence
at vyv, )& AT is clearly seen, and the arrows indicate the
value of the crossover velocity, vT ——AT/vf Figure 14. for
the field-dependent Meissner penetration depth contains
similar information. The T = 0 result is our analytic so-
lution to the nonlinear London equation; for the curves
at T g 0 we converted the current-velocity relations with
the same field scaling as we derived for the T = 0 scale,
v, /vp ~ H/Hp. Stojkovic and Valls have recently solved
the nonlinear London equations numerically at T g 0.
Our scaling assumption for T g 0 agrees well with their
numerical solutions for HT & H i. More generally, our
results are in good agreement when allowances are made
for difFerent choices of parameters (SV generally exam-

70,0
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50.0

40.0

30.0
bQ

20.0
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0.0
0.00 0,03

0

FIG. 14. Field dependence of the penetration depth for
H~~ node. The crossover field HT = (T/Ap)Hp is indicated by
an arrow. The vertical marker at 0.01 (0.02) corresponds to
H, i/Hp for a dc (ac) measurement of the penetration depth.

Quasiparticle scattering by impurities also removes the
nonanalytic dependence of the current on the condensate
Row velocity at suFiciently low v, . At T = 0 impurity
scattering gives rise to a crossover velocity v,', or field
H* = Hp(v,*/vp), that is determined by the energy scale
s* in the density of states JV (E); above s' « vf v, « AT,
the excitations that are strongly afFected by impurity
scattering at energies E & c* are only a small &action
of the nonthermal backflow current, while at small How
velocities, vyv, c, the excitations contributing to the
nonthermal backQow current are strongly modified by im-
purity scat tering.

The crossover Geld scale at T = 0 due to impurity
scattering can be obtained &om the general expression in
Eq. (52) for the current; the crossover velocity is given by
vyv,* = s*, where s* is the crossover energy from Eq. (48).
In the Born limit (bp « 1) the crossover scale

H =Ho
E'

pLO

(Born) (68)

ined a much larger range of fields) and difFerent details for
the model of the gap. Figure 14 gives the estimates of bAI

I

for H H i for several temperatures. The two estimates
at T = 0 correspond to H i/Hp(dc) =0.01, appl'opl'iate
for the dc measurement of bA~~, and H, i/Hp(ac)=0. 02,
appropriate for the ac measurement of bAII. Thus, at
T ~ 0 we estimate a change in A~~ 30 A in an ac mea-
surement for Gelds directed along the node. At T = 0.4
K the crossover is observable in the calculation, but we
expect to see a clear linear field dependence over the field
range up to H i. At T 1 K the resolution is reduced,
bi~~ 20 A, and a linear field dependence is observed
over roughly 60% of the field range. However, by T 4
K the crossover field is HT H, i, the linear field depen-
dence is washed out and the change in AII is less than 15
A. . These results are all reduced by a factor of 1/v 2
for a field along an antinode.

2. Impurity aeattering
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plane fields. Consider a velocity field v", = vz~ x + vy~ y'
that is not directed along a node or antinode. At T = 0
the projections of the velocity along the nodal lines x' and
y' give rise to two backflow jets of different magnitudes,
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FIG. 15. Field dependence of the penetration depth with
unitarity scattering. The crossover field H' is indicated by
an arrow.
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The important feature is that the current is not paral-
lel to the velocity field, except for the special directions
along the nodes or antinodes. As a consequence the mag-
netic field in the screening layer, 6, is not parallel to the
applied surface field H. This implies that there is an in-
plane magnetic torque which acts to align the nodes of
the gap, and therefore the crystal axes, with the surface
field.

The magnetic free energy of the superconductor, in.the
presence of the surface field H, is given by

is exponentially small for l; y )) (p. Thus, the linear field
dependence and anisotropy of the penetration depth will
be unaffected by impurity scattering in the weak scatter-
ing limit. The crossover field may be much higher, even
in the dilute limit, for strong scattering. In the unitarity
limit (b -+ vr/2) the crossover field scale is

vr I'„H* Hp
" (unitarity) .

For I'„/Ap = 10 4, which is a good bound for I'„ob-
tained from the data of Ref. 1, we obtain H* 2.6 x
10 Hp 26 G. Thus, even in the unitarity limit there
is a large field range, 25 G H* ( H ( H i 250 G, in
which the linear field dependence of bA[[(H) is expected
to hold. Of course it is important to be at low temper-
atures in order to avoid the thermal crossover. Figure
15 shows our numerical results for the field-dependent
penetration depth (dc) calculated for T/T, = 0.004 and
unitarity scattering. The field range is approximately
0 & H & H, i 250 G. In the clean limit (I'„= 0)
the curvature at very low fields is due to the thermal
crossover discussed earlier. As the impurity concentra-
tion increases the curvature sets in at higher fields; the
arrows indicate the impurity crossover fields calculated
from Eq. (69); note that the calculated crossover field ac-
curately reflects the field dependence obtained from the
numerical calculations. The results for I „/Ap 10
suggest that a nonlinear Meissner effect with a linear field
dependence over 80% of the field range from zero to H, i
should be observable in single crystals of comparable pu-
rity to those of Ref. 1.

V. ANISOTROPY
OF THE IN-PLANE MAGNETIC TORQUE

Another test of the presence of nodal lines associated
with a d 2 y2 order parameter would be to measure the
magnetic anisotropy energy, or magnetic torque, for in-

+filxn

d3X M(H') . dH'.

The integration is carried out assuming that the orienta-
tion of H' is fixed; H' = H'[sin( 6)[x' —cos(8)y'], and

M(H) is the equilibrium magnetization for the given
value of H, which is easily found by solving the nonlinear
London equation in the film geometry (see Appendix B).
The resulting anisotropic contribution to the magnetic
energy is obtained by integrating over the volume of the
film [the authors of Ref. 15 erred in calculating the mag-
netic anisotropy energy by a factor of 3; the corrected
result is given by Eq. (72)],

U~„(9) = — A A[[ (4) sin (0) + cos (8), (72)4' Hp

(@) = 2
d/2A

ii sich [ss) [s + cosh (
——"s[]

)3 cosli ( 2A )

In the thin and thick film limits we obtain

(74)

Note that the anisotropy energy is minimized for field di-
rections along the nodal lines, and is maximum for fields
along the antinodes.

At finite temperature an analytic expression corre-
sponding to Eq. (70) is not available except in spe-
cial limits (see Appendix A). In order to calculate the
magnetic torque at finite temperature, we note that for
~v fvii

~
&& Ap, we can write jss & y p yv y (we drop

the primes on x and y, but emphasize that the axes refer
to two orthogonal nodal directions) with

where A is the surface area of the film, and (see Appendix
B)
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' *'" = 1 —g (v yv, y/pb, o),
P

1 —g(, „/q&, ))=O, (76)
II

where A~~ is the penetration length in the limit of zero
Geld. The solution for the velocity Geld can be obtained
by performing a perturbation expansion in vyv, /pro.
For a superconductor occupying the half-space z ) 0,
the solution is

VfV8~ y z(g
tL~ y Z =u „pe

PLp

t g ii~ &oe
—~'/x

+ -~/x
A

(77)

where g(x) = J' x'g(x')dx'. The value of the uo is de-
termined by the boundary condition dv, „/dz~,
+-'Hy, . thus,

where g(x) is a dimensionless function (see Secs. IVB 1
and IV B2). At T = 0, g(x) = ~x~, manifesting the non-
analytic behavior of the current, while at finite temper-
ature g(x) has a linear region for large x (vyv, /T ))
1), and crosses over to a quadratic region for small x
(vfv, /T « 1).

The How velocity and field distribution are determined
by the nonlinear London equation

the torque can be calculated &om a simple integration
of the current-velocity relation. At T = 0 the torque
equation (79) reduces to

1 H
H A sin 8cos 8(sin 8 —cos 8),4~ Hp

0 & 8 & m/2, (80)

in agreement with the derivative of the anisotropy energy
in Eq. (72).

For H = 400 G, A = (2000@m), and A = 1400 A,
the zero-temperature maximum magnetic torque w,

(1/12~3m)H (H/Ho)AA 10 dyncm/rad. In Fig. 16
we show results for the magnitude of the torque at Gnite
temperature. The torque is only weakly reduced for T &

1 K, but drops rapidly above T 1 K.
In order to maximize the torque it is desirable to sup-

press vortex nucleation so that the torque measurement
can be performed at a higher magnetic Geld. In this
respect, thin Glms with dimensions d & A might be de-
sirable, because the vortex nucleation field is increased
by roughly (A/d) in a thin film. The optimum geometry
might be a superlattice of superconducting and normal
layers with an S-layer thickness ( « d & A. In this case
the Geld at each superconducting-normal interface is es-
sentially the external Geld, and the anisotropy energy is
enhanced by the number of S layers.

Hy
~gyp = T2 +

0 H„
—Ho2
3

(78)

2

4~ (8 ') H. (-', Ho)

H.
,

( H„),
Hw & —.'Ho) (79)

The magnetic torque can be obtained from the magnetic
anisotropy energy, ~, = —OU „/08, or equivalently M x
H. The integral of 6 = V' x A can be expressed in terms of
v, at the surface, since jo 6 „dz = +—'v, „~,—o. Thus,
for a thick Glm

A. Measurements of the transverse magnetization

In a recent paper Buan et al. reported measure-
ments of the transverse magnetic moment induced by an
in-plane surface Geld in an untwinned single crystal of
LuBaqCu307 g. The surface field was rotated in the a-
h plane and the Fourier component of M~(8) oc cos(48)
was extracted and compared with predictions based on
the theory of Ref. 15. Buan et al. report a measured
transverse magnetization signal [~ cos(48)] of Mz"~
0.8x10 emuatH = 300GandT = 2K, anda
resolution limit of 0.3 x 10 emu. Buan et al. also re-
port a theoretical value of M&

' - 2 x 10 emu, for
the same temperature and Geld, obtained &om numeri-
cal solution of the London equation with the nonlinear

x10
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H=4006
FIG. 16. Magnitude of torque as a func-

tion of 8. Note that 8 = O, m/2 correspond
to node positions, 8 = n/4 corresponds to an
antinode position, and the maximum torque
(for T = 0) occurs at 8 = —sin (2/3) 21'.
The torque has fourfold symmetry and points
to the nodal positions.

0.00
0.0 z/2
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current-velocity equation &om Ref. 15. This estimate is
2.5 times the experimental signal and nearly an order of
magnitude above the resolution limit. The authors con-
clude that the cos(48) signal is too small to be consistent
with a pure d-wave pairing state, that there are no nodes
in the gap, and that the cos(48) signal is consistent with
a higher harmonic of the cos(8) and cos(28) signals asso-
ciated with the shape anisotropy of the crystal.

While it may be that the observed cos(48) signal is as-
sociated with extrinsic effects of geometry, the conclusion
that the measurement rules out a pure d-wave state with
nodes relies principally on M&

' )) M&" . The esti-

mate of M&
' 2x10 emu at T = 2 K and H = 300

G is based on the parameters A, = 1 @m, A~~
= 1700 A.

and geometric parameters for the crystal, a = 1.2 mm,
b = 0.9 mm, and c = 0.07 mm. The transverse magnetic
moment per unit area is given by M~ = r, /(area H),
which is proportional to H2A &om Eq. (80) for T -+ 0.

II

Buan et al. argue that finite-size effects require that A~
~

in the formula for M~ be replaced by an effective pene-
tration depth A 4000 A. in order to account for c-axis
currents. This procedure leads to an increase in the in-
plane transverse magnetization due to current flow along
the c axis, which is opposite to what is expected. In par-
ticular, in a geometry with an aspect ratio c/a 0.07
and a field lying in the a-b plane, say, along the b axis,
the current flows predominantly along the a axis. The
"return current" at the edges flows mainly along the
c axis. The main effect of the c-axis currents is a re-
duction in the area with current flow in the a-b plane,
A, ir A(1 —2A, /a) . Thus, the in-plane, transverse
magnetization for the semi-infinite geometry will corre-
spondingly be reduced by roughly A, ir/A = (1 —2A, /a).
The reduction factor is tiny for the geometry of Ref.
17, A, ir/A 0.999; however, the theoretical value for

M&
' ' reported in Ref. 17 is overestimated by a factor

of (A/&~~) 5.5. Dividing their theoretical estimate of

2 x 10 6 emu by 5.5 gives M&
' 0.36 x 10 emu,

very near the resolution limit and below the observed
signal at H = 300 G.

Thus, in our opinion this null result is inconclusive
and does not force one to eliminate a pure d-wave
state as a possible candidate for the order parameter of
the cuprates. Experiments designed to minimize shape
anisotropies at temperatures well below T 2 K should
be able to detect the intrinsic anisotropy associated with
nodal excitations, should they exist.

APPENDIX A: TEMPERATURE
AND FIELD DEPENDENCE OF THE CURRENT

FOR A SUPERCONDUCTOR
WITH LINE NODES

In general we need to solve two problems: (i) the self-
consistent calculation of the order parameter A(py) in the
presence of a condensate flow field at finite temperature,
and (ii) the computation of the temperature and field
dependence of the current j, for a given A(py, v„T).
These problems are in general coupled because the How
field leads to suppression of the gap parameter L, which
contributes to the field dependence of the current. We
show that at low temperatures, T/T, « 1, and low fields,
vyv, /T, « 1, the contributions to the current from the
gap suppression can be neglected.

We also discuss the functional form of the current at
low temperatures and low velocity in the clean limit. In
the limit T/T, « 1 and vyv, /T (& 1, an expansion in
vyv, is valid, and as a result, the leading Geld depen-
dence of the superfluid density p, is quadratic in the flow
field, while in the limit T/T, &( 1 and vyv, /T )) 1, the
quasiparticle contribution to the current is nonanalytic.
For simplicity we confine ourselves to cases where v, is
parallel to a node or an antinode, in which case j, and
v, are parallel, and so we drop the vector symbols.

In the limit ~vyv,
~

&& T && Ap we can expand j, in a
power series in v, vy,

( T l (vyv. )'j.= —ezsn~ v. 1
(4p) TAp

(A1)

where Ap ——Ap(v„T), and pi, p2 are numerical coef-
ficients of order 1 whose values depend on the angular
slope parameter p defined in Eq. (45). The pi term is
the usual linear dependence of p, on T. The p2 term,
being proportional to 1/T, signals the breakdown of the
Taylor expansion in v, for suKciently low temperatures.

The magnitude of the gap has the expansion

T
b,p(v„T) = Ap(0) 0) 1 —ni

~

qAp 00 )
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2

(A2)'
qZ p(0, 0) q qZ, (0, 0) y

Thus, it is clear that the leading correction to j, from
the flow fiel.d v, is given entirely by the p2 term; gap
suppression is a higher-order correction.

In the limit T « ~vyv,
~

&& Ep, we obtain
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I lvf "8 I

$8 = —elf vf v 1 —p]
0

T'
~ ~ ~'

I lvxv. l&p)

The pz term was calculated earlier, and the pz term can
be obtained &om the Sommerfeld expansion of integrals
involving the Fermi function, with lvyv, l playing the role
of the chemical potential for the quasiparticles. Note that
both coefficents depend on the direction of v, . Also note
that the p2 term gives a nonanalytic current independent
of lv, l, but the result is only valid for T « lvfv, l. The
gap in the above formula is

Ap(vg, T) = Ap(0, 0) 1 —ni
l(bp 0, 0

dV

dz z=0 C

u —u(1 —u ) =0, (B4)

with the boundary conditions

du e ~nv AHA
( )d( q=p c (B5)

A first integral is obtained by multiplying by du/d(, inte-
grating, and applying the asymptotic boundary condition
u + 0 as z —+ oo to obtain

The Geld, and therefore the screening current, also van-
ishes deep inside the superconductor. We introduce a
dimensionless velocity u = ~o.v, /v, and distance ( =
z/A(T); the difFerential equation for u(() becomes

, (lvfvli( T— ' l(~.(0'0))l '(~.(0, 0))l— du 1 2—= —u 1 ——u2.
d( 2

(B6)

which gives higher-order corrections to j,. The quadratic
correction to j, is unaffected by the gap suppression; the
lowest-order temperature correction is given by the term

Vf Vs jAp

In the physically relevant limit lul « 1, we replace
(1 —2u2)i~ M (1 —4u2), and integrate to obtain

up

Qu2p/4 + (1 —up2/4) e2&

APPENDIX B: NONLINEAR LONDQN
EQIJATIDNS

The dimensionless magnetic field is given by

du up (1 —up/4) e'&
(B8)

1. Conventional superconductor
with an isotropic gap

V'x(V'xA) = —j, ,c

consider Grst an isotropic superconductor with a conven-
tional gap. The constitutive equation for the current
is given by Eq. (58). In the absence of phase vortices,
V x 'I7y = 0, we obtain the nonlinear London equation

1 fv, lt'9' v, ——v, 1 —n(T)
l

—'
l

=0,
A2

& v. ) (B2)

We include solutions of the nonlinear London equations
for a parallel surface magnetic field penetrating into a
superconductor. Starting from Ampere's equation

and the constant up is determined by the boundary
condition on magnetic field at the interface, Eq. (B5);
hp ———up(l —up/4), or for weak nonlinearity, up
—hp(l + hp/4), which yields the solution

hp e2~

[h /4+ (1 —h /4)e2&j
(B9)

1 1 1dh 1 3
(hp)—:— ———= — 1 ——hp

A,s A hp d( A 4
(B1o)

Note that if we neglect the h& terms in the denominator
we recover the linear response solution to the London
equation, 6 = hpe

A strong surface Geld produces a reduction in the
screening current at the surface and a correspondingly
longer initial penetration depth. We take the initial de-
cay rate to define the effective penetration depth

where we have chosen the gauge V v, = 0. This gauge
choice is consistent with current conservation provided
that the current is transverse to the spatial variation of
the Geld, which requires that there be no vortices present.
Gonsider the geometry in which the superconductor oc-
cupies the half-space z ) 0. A surface field H = Hx
is parallel to the interface, and the screening current v,
is then parallel to y. The field in the superconductor is
given by b = —'(dv, /dz)x. Continuity of the parallel field
at the interface imposes the boundary condition

hp = Av~ H= V~--vfe H
Lc 0

(B11)

where Hp —— A/ cAvy ePp/A( H, and H, is the ther-
modynamic critical Geld.

This definition is equivalent to identifying the effec-
tive penetration depth with the surface impedance, i.e.,
I/A, ~(hp) oc j,(0)/H. Note that the effective penetra-
tion depth increases with field as expected. In physical
units,
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2. d 2 y2 superconductors V' x A~, p, which becomes

Vl' —u;(1 —uj=0, i =x, y, (B12)

Now consider a superconductor with a d 2 y2 order
parameter at T = 0. Choose a coordinate system in
which the nodes of the gap are directed along the +x
and +y axes. The nonlinear London equations for the
corresponding projections of the condensate velocity are

dQ~ = —hp cos0, " = —hp sin8,
d q=p d (=p (B13)

where 0 is the angle of H measured relative to the node
along —y, and hp ——', AH—/vp. Note that hp H/Hp.
The differential equation can be solved perturbatively;
the Grst integral is

where u, = v, /np, ( = z/A~~, and the velocity and length
scales are vp ——pKp/vf and A = A~~. These equations

are to be solved subject to the boundary condition H =

"' = —u;(1 —-u;
[d( 'g 3 'r

which can be integrated to give

(B14)

~'(&) = '0

su, p + (1 —-'u;p) cosh(() + 1 —-u, p sinh(())
(B15)

where u;p is the value of the velocity field at ( = 0, which
is fixed by the boundary conditions on the field. In the
limit h,0 (( 1 we obtain

u p ——hp cos0
i
1+ —hp cos0

i

dtLy
hp cos 0 = —hp sin 0 . (B20)

d +d/2A d +d/2A

We solve the di8'erential equation perturbatively. Let
u, (() = L, (t,") + a;(g), where L;(() is the solution to
the boundary-value problem for the linearized differential
equations, i.e.,

u„p ——hp sin 0
I

1 + —h, p sin L;(() = a; sinh((), (B21)

The magnetic field in the screening layer, 6 = V' x A, is
given by

with a; axed by the boundary conditions

(d)
a cosh

~

—
~

= —hp cos 0,
g2A)

(B22)

2= +sin0e ~
~
1+ —hp sin0[l —e ~j ~,3

(B18) a„cosh
~

—
~

= —hp sin0.
(2Ar

The perturbation satisfies the inhomogeneous equation

hp qdgr
G 0!i —o. . = —L. Z = X)g. (B23)

—cos0e ~
~

1+ —hp cos0[1 —e ] ~

. (B19)
r3

Note that the field in the screening layer is not parallel to
the applied surface field. This leads to an in-plane mag-
netic torque acting on the superconductor which tends to
align the nodes of the order parameter and the surface
field.

The solutions are obtained by writing n(() = R(()P(g),
where 'R(() is a solution to the homogeneous equation.
The function P(() then satisfies

(B24)

3. Field penetration in a thin 61m d 2

superconductor
The first-order equation for P is obtained by multiplying
Eq. (B24) by the integrating factor 'R,

A geometry in which the torque anisotropy may be
measured is a film of thickness d A~~. The field H
is oriented as in the half-space geometry, parallel to the
CuO planes and. the surfaces of the film. Choose the
origin at the center of the film; the boundary conditions
for both interfaces are now

&'(&)=, L'(*)&(*)«.
0

(B25)

The boundary conditions are satisfied at both interfaces
by choosing the homogeneous solution to be 'R = sinh((),
in which case
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—a'
P'(() = sinh (x) dx

0

Q
cosh(() —sech ((/2) (826)

6„/II = +—
~

*
~

= —cos 8 [p(() + hp cos 8 4 (()],
1 /'du )
o Ed

(B29)

One additional integration yields

G
P(() —Po ————[sinh(() —2 tanh((/2)],

3

('d1
P(() = cosh(()i cosh

~

—
~q2A)

' (B3O)

where Po is also chosen such that the full nonlinear so-
lution satisfies the boundary conditions. The resulting
solutions for the magnetic field are

1 /du„'')
6 /H = ——

~

"
~

= + sine [p(() + hosin84'(()],
ho q d( )

(B28)

, (dl , fd) t'd)
4(() = —sech

~

—
~

cosh(() sinh
~

—
~

cosh
~

—
~(2a) &4~) «~r

&dl . s f'(') ((l—cosh
/

—
/

sinh
/

—
/

cosh
/

—
/

&2) &2)

Note that the nonlinear correction is largest at a distance
of order A/2 from the interface.

W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and
K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).
D. A. Wollman, D. J. VanHarlingen, W. C. Lee, D. M.
Ginsberg, and A. J. Leggett, Phys. Rev. Lett. 71, 2134
(1993).
N. E. Bickers, D. J. Scalapino, and R. T. Scalettar, Int. 3'.

Mod. Phys. B Bl, 687 (1987).
T. Moriya, Y. Takahashi, and K. Ueda, 3. Phys. Soc. Jpn.
59, 2905 (1990).
P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev.
Lett. 67, 3448 (1991).
L. Gor'kov, Sov. Sci. Rev. A 9, 1 (1987).
M. Sigrist and K. Ueda, Rev. Mod. Phys. 68, 239 (1991).
J. Sauls, Adv. Phys. 43, 113 (1994).
P. Chaudhari and S.-Y. Lin, Phys. Rev. Lett. 72, 1084
(1994).
C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A.
Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev.
Lett. 73, 593 (1994).
D. A. Bonn, S. Kamal, K. Zhang, R. Liang, D. 3. Baar, E.
Klein, and W. N. Hardy, Phys. Rev. B 50, 4051 (1994).
3. Lee, K. Paget, and T. R. Lemberger, Phys. Rev. B 50,
3337 (1994).
A. G. Sun, D. A. Gajewski, M. B.Maple, and R. C. Dynes,
Phys. Rev. Lett. 72, 2267 (1994).
D. A. Bonn, D. C. Morgan, K. Zhang, R. Liang, D. 3. Baar,
and W. N. Hardy, J. Phys. Chem. Solids 54, 1297 (1993).
S. K. Yip and J. A. Sauls, Phys. Rev. Lett. 69, 2264 (1992).
D. Xu, S. K. Yip, and 3. A. Sauls, Physica B 194-196,
1595 (1994).
J. Buan, B. Stojkovic, N. E. Israeloff, A. M. Goldman, O.
Valls, J. Liu, and R. Shelton, Phys. Rev. Lett. 72, 2632
(1994).
G. Volovik and L. Gor'kov, JETP Lett. 89, 674 (1984).
S. Yip and A. Garg, Phys. Rev. B 48, 3304 (1993).
M. Takigawa, P. C. Hammel, R. H. Heffner, and Z. Fisk,
Phys. Rev. B 89, 7371 (1989).
S. E. Barrett, D. 3. Durand, C. H. Pennington, C. P.
Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg,
Phys. Rev. B 41, 6283 (1990).
J. Annett, N. Goldenfeld, and S. R. Renn, in Physical Prop-
erties of High Temperature Superconductors II, edited by D.
M. Ginsberg (World Scientific, Singapore, 1990), p. 571.

J. W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).
D. Rainer, in Progress in Low Temperature Physics, edited
by D. Brewer (Elsevier Science, New York, 1986), Vol. 10,
pp. 371—424.
D. Rainer and J. A. Sauls, in Lecture Notes on the 1992
Spring College on Condensed Matter Physics, Trieste, Italy,
1992, edited by L. Yu (World Scientific, Singapore, 1994).
G. Eilenberger, Z. Phys. 214, 195 (1968).

"L. Gorkov, Sov. Phys. JETP 36, 1364 (1959).
L. J. Buchholtz and D. Rainer, Z. Phys. B 35, 151 (1979).
L. J. Buchholtz and G. Zwicknagl, Z. Phys. B H23) 5788
(1981).
L. Gor'kov and P. A. Kalugin, JETP Lett. 41, 254 (1985).
P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
A. A. Abrikosov and L. P. Gorkov, Sov. Phys. JETP 9) 220
(1959).
A. A. Abrikosov and L. P. Gorkov, Sov. Phys. JETP 12,
1243 (1961).
A. J. Leggett, Phys. Rev. 140, 1869 (1965).
F. Gross, B. S. Chandrasekhar, D. Einzel, P. J. Hirschfeld,
K. Andres, H. R. Ott, Z. Fisk, J. Smith, and J. Beuers, Z.
Phys. B 64, 175 (1986).
A. J. Millis, S. Sachdev, and C. M. Varma, Phys. Rev. B
37, 4975 (1988).
R. J. Radtke, K. Levin, H.-B. Schiittler, and M. R. Nor-
man, Phys. Rev. B 48, 653 (1993).
G. Preosti, H. Kim, and P. Muzikar, Phys. Rev. B 50) 1259
(1994).
R. Fehrenbacher and M. R. Norman, Phys. Rev. B 50, 3495
(1994).
C. Choi and P. Muzikar, Phys. Rev. B 37, 5947 (1988).
M. Prohammer and J. P. Carbotte, Phys. Rev. B 43, 5370
(1991).
P. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219
(1993).
J. E. Sonier, R. F. KieQ, J. H. Brewer, D. A. Bonn, J. F.
Carolan, K. H. Chow, P. Dosanjh, W. Hardy, R. Liang, A.
MacFarlane, P. Mendels, G. D. Morris, T. Riseman, and J.
W. Schneider, Phys. Rev. Lett. 72, 744 (1994).
D. Harshman, L. Scheemeyer, J. Waszcak, G. Aeppli, R.
Cava, B. Batlogg, and L. Rupp, Phys. Rev. B 39, 851
(1989).
S. Chakravarty, A. Sudb@, and P. W. Anderson, Science



51 NONLINEAR MEISSNER EFFECT IN UNCONVENTIONAL. . . 16 253

261, 337 (1993)..
R. Laughlin (unpublished).
A. T. Fiory, A. F. Hebard, P. M. Mankiewich, and R. E.
Howard, Phys. Rev. Lett. 61, 1419 (1988).
3. Annett, N. Goldenfeld, and S. R. Renn, Phys. Rev. B
43, 2778 (1991).
3. M. Pond, K. R. Caroll, and 3. S. Horwitz, Appl. Phys.
Lett. 59, 3033 (1991).
S. M. Anlage and D.-H. Wu, J. Supercond. 5, 395 (1992).
D. Achir, M. Poirier, D. A. Bonn, R. Liang, and W. Hardy,
Phys. Rev. B 48, 13 184 (1993).
3. Y. Lee and T. R. Lemberger, Appl. Phys. Lett. 62, 2419

(1993).
G. E. Volovik and V. P. Mineev, Sov. Phys. 3ETP 54, 524
(1981).

s4 R. Combescot and T. Dombre, Phys. Rev. 33, 79 (1986).
P. Muzikar and D. Rainer, Phys. Rev. B 27, 4243 (1983).

ss C. Choi and P. Muzikar, Phys. Rev. B 36, 54 (1987).
R. 3. Radtdke, S. Ullah, K. Levin, H. Schuttler, and M.
Norman, Phys. Rev. B 46, 11975 (1992).
A. Umezawa, G. W. Crabtree, U. Welp, W. K. Kwok, and
K. G. Vandervoort, Phys. Rev. B 42, 8744 (1990).

. Stojkovic and O. Valls, Phys. Rev. B 51, 6049 (1995).


