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A description is proposed for the low-field critical behavior of type-II superconductors. The starting

point is the Ginzburg-Landau functional in presence of an external magnetic field H. A set of fictitious

vortex variables and a singular gauge transformation are used to rewrite this finite H Ginzburg-Landau

functional in terms of a complex scalar field of zero average vorticity. The continuum limit of the

transformed problem takes the form of an H=0 Ginzburg-Landau functional for a charged field coupled

to a fictitious "gauge" potential, which arises from long-wavelength fluctuations in the background

liquid of field-induced vortices. A possibility of a phase transition involving zero-vorticity degrees of
freedom and formation of a uniform condensate is suggested. A similarity with the superconducting

(Higgs) electrodynamics and the nematic-smectic-A transition in liquid crystals is noted. The experi-

mental situation is discussed.

There are two basic theoretical approaches to the fluc-
tuation behavior of high-temperature superconductors
(HTS) and other strongly type-II systems in a magnetic
field: The Cxinzburg-Landau (GL) theory confined to the
lowest-Landau level (LLL) for Cooper pairs (the CsL-LLL
theory) ' and the XY-model approach, in which one
focuses on the field-induced London vortices and
suppresses other superconducting fluctuations. General-
ly, it is expected that the GL-LLL theory describes the
high-field regime, close to H,z(T), behavior, while the
London vortex theory should be appropriate at low fields,
far from H, 2( T). It is often presumed that there is a
smooth crossover between the two regimes.

It is argued here that there is an important physical
difference between the critical behaviors at high and low
fields, reflected in the nature of low-energy fluctuations.
At high fields, all such fluctuations are represented by the
motion of X& field-induced vortices. This is so because
the states within the LLL can be expressed as different
configurations of zeros of the holomorphic order parame-
ter. Higher LL's have a finite gap and contribute only
by renormalizing various terms in the GL-LLL theory.
In contrast, at low fields, even if we imagine that the
field-induced vortices are fixed in their positions, there
are low-energy fluctuations of many degrees of freedom
which are not associated with 6eld-induced vortices:
nonsingular phase fluctuations, vortex-antivortex pairs,
vortex loops, etc. It is precisely these zero vorticity de-
grees of freedom that produce the zero-field supercon-
ducting transition. At finite but low fields, it is reason-
able to expect that these degrees of freedom still account
for most of the entropy change in the critical regime and
dominate various thermodynamic functions.

In this paper a description is derived of the low-field
critical behavior associated with these zero vorticity fluc-
tuations. The key step is to rewrite the original partition
function of the GL theory in terms of a complex scalar
field @ of zero average vorticity, instead of the usual su-
perconducting order parameter field 4 whose average
vorticity is X&, as fixed by the magnetic field. This vorti-
city shift by N& is functional space of the fluctuating or-

der parameter is accomplished by first introducing a set
of X& auxiliary vortex variables, which we may call "sha-
dow" vortices (or s vortices), and then performing a
"singular" gauge transformation 4—+4. The continuum
hydrodynamic limit of the transformed problem is a field
theory involving a complex scalar 6eld N in an effective
average magnetic field equal to zero coupled to a ficti-
tious gauge potential S produced by local fluctuations of s
vorticity around its average value. In intuitive terms, N
represents those degrees of freedom of the original super-
conducting order parameter which cannot be reduced to
motion of field-induced. vortices, while S arises from the
long-wavelength density and current fluctuations in the
background system of these field-induced London vor-
tices. The physical insight gained by this transformation
is that we have now uncovered in the original GL prob-
lem those hidden off-diagonal correlations, represented
by 4, whose range extends far beyond the average sepa-
ration between field-induced vortices (set by the magnetic
length). At the same time, the range of original super-
conducting correlator involving 6eld 4' remains limited
by the magnetic length. It is these novel off-diagonal
correlations with range longer than magnetic length that
govern the low-field critical behavior. Furthermore, a
possibility is pointed out of a finite-field (FF) phase transi-
tion involving divergence of a certain susceptibility relat-
ed to N and S. As field tends to zero the line of the FF
phase transitions terminates in the familiar zero-field (ZF)
critical point at T = T,o. Next, a connection is made be-
tween the FF critical fluctuations and the critical
behavior of liquid crystals and the ordinary supercon-
ducting (Higgs) electrodynamics at zero field. An intui-
tive picture is proposed for this FF transition in the con-
text of the three-dimensional (3D) XY model where the
N-ordered phase is identified as the incompressible Lon-
don vortex liquid state, while the 4-disordered state cor-
responds to the high-temperature compressible fluid of
unbound vortex loops. Finally, the experimental situa-
tion is discussed.

The anisotropic GL partition function is the appropri-
ate starting point for HTS and other layered super-
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conductors:
where

Z= f2)[%'(r, g)]expI F—oL[4(r, g)]/T j,

2

+x„I~pl'

F&L= f d rdg a Vl +—IV +yi Vi+
C

being the area of a layer and the magnetic length, respec-
tively. This shift is accomplished by introducing a
set of N& auxiliary variables, Iz, (g) j, which one may
call shadow vortices (s vortices). We now change
variables in the functional integral: %(r, g) ~@(r,g)=4'(r, g)exp[ i—6(r, g) ], where 6(r, g) =g, tan '

[ [y—y, (g)]/[x —x;(g)]j,z;(g)=x;(g),y;(g)], and rewrite
the GL functional (1) as

r=(x,y) and g are the coordinates perpendicular and
along H, V—:[V,B&], a=a [(T/T, o) 1], —P, yi, y!~ are
the GL coefficients, and V X A =H, with the magnetic
field H perpendicular to the layers. Fluctuations of the
electromagnetic field are neglected throughout the paper
(a.»1).

An important feature of I'&L is the formation of Lan-
dau levels (LL's) for Cooper pairs. The LL structure
arises from the quadratic part of I'&L. The quartic in-
teraction term, however, mixes different LL's and acts to
suppress the LL structure in the Auctuation spectrum. It
is instructive to divide the effect of the quartic term into
the intra-LL and inter-LL correlations. At high fields,
H ))Hb, where the cyclotron gap between LL's is much
larger than the interaction term, only the intra-LL corre-
lations are important and the LL structure will be
reAected in the theory. In this regime the GL-LLL
description captures essential features of the physics. In
the opposite limit of low fields, H «Hb, the inter-LL
correlations become dominant and the LL structure
is suppressed at long wavelengths. The crossover field

Hb, which separates the high-field LL regime from
the low-field "semiclassical" one, is given by
Hb —(8/16)( T/T, o)H, 2(0), where 9 is the Ginzburg fluc-
tuation number. In terms of the parameters of the GL
theory 8=213H,'2T o/Poa—o yI!~, where H,'2 =[dH, 2/dT]
at T = T,o. This expression for Hb was derived in Ref. 4
by comparing the strength of quartic correlations in (1)
with the cyclotron gap between LL's. In HTS
0-0.01—0.05 and Hb 0. 1 —1 T.

In the low-field limit, H «Hb, a semiclassical descrip-
tion becomes possible. The idea proposed here is to shift
the overall vorticity of the fluctuation spectrum by Xy,
where N&=Q/2~l, 0 and l=i/c/2eH=:QPo/2vrH

fd'«g ~lcl'+ —cl'+)i Vi+iVi6+ A 4
C

+1'!!I [~g+ i~P]@I' (2)

while simultaneously introducing the function integral
over s vortex variables, J ii;Pz, (g) V'[0&, I z, (g) j ]/N!, in

the measure. '7[@,I z,.(g) j ] is the Jacobian of this [singu-
lar] gauge transformation and it ensures that in the low-
temperature limit, where 4(r, g) takes the form which
minimizes Foi for a given configuration of [z, (g) j, the
above formulation becomes equivalent to the standard
London description. Note, however, that s vortices are
fictitious objects and do not directly correspond to the
physical vortex excitations of %(r, g). The whole trans-
formation is an identity if the short-wavelength behavior
is properly regularized, for example, by having %(r, g)
and s vortices defined on dual sublattices.

The integration over s vortex variables would now lead
to a new, and complicated, representation of the original
problem (1). Such an exact integration is beyond reach.
What has been gained, however, is that we now have a re-
formulation of the problem in terms of field @ whose
average vorticity equals zero. Therefore, certain aspects
of the physics become more visible. In particular, the
long-wavelength functional for N can be extracted by the
following "smoothing out" procedure: New variables
are introduced, p(r, g) —=g;5[r—z;(g)], j(r, g)—:g;[dz;/dg]5[r —z;(g)], which represent microscopic
s vortex density and "current, " respectively. In
terms of [p, j] we have [Vi6,8&6]—:fdr'(r —r')
X [e~(r', g), —j(r', g)]/lr r'I, w—here e, is a unit vector
along H. The GL partition function is transformed into

Z= f2)[C ]2)[p]2)[j]exPI F' [C,p,j ]/T—+ W[p,j]j,
dz;(g) dz

expI W[p, j]j—:fQ, 'TQ5 p(r, g) —+5[r—z,. (g)] 5 j(r, g) —g -5[r—z, (g)]
ig r 1

(3)

where FoL is given by Eq. (2) with [Vi6,8&6] expressed via [p, j].
The above expression is formally exact but useless, since p and j are wildly varying functions. For H «Hb, however,

it is expected that replacing p(r, g)~P(g)+5p(r, g) in (3), where p(g)=(2rrl )
' is the average s vortex density and

5P(r, g) is a smooth function describing variations around the average, should be adequate at wavelengths long com-
pared to l. Similar smoothing out is performed in j(r, g). This leads to the hydrodynamic limit of the GL functional:

Z = fX)[@(r,g)]2)[5P(r, g)]2)[j(r,g)]exp I FoL [C&(r, g), 5p(r, g—), j(r, g)]/T+ W[5p, j]j,
(4)

FoL = fd'«0 ~I+I'+ —I+'I'+yil [Vs+is(r, g)]+'I'+y!!I [~g+i~g(r, &)]+ I'
2
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with the form of S'[5p, j] apparent from (3) and
a new vector field 4'—= [s,s&]= Jdr'(r —r')X[e,5p(r', g),—j(r', g) ] /lr —r'l'

The main feature of FG.L is that 8 has now disappeared
from the problem. The vector potential A has been can-
celed by the average s vortex density, p, which appears in
(V'Ie(r, g))(( . ) denotes thermal average). The aver-
age magnetic field felt by 4 is zero. We have thus arrived
at the following simple description: The critical behavior
of the GL partition function (1) can be represented by a
complex scalar field 4 of zero average vorticity coupled
to a fictitious "s gauge" potential A' produced by local
Auctuations of vorticity around its average value X& set
by the external fie11.

While the above picture appears intuitive it is by no
means obviously justified. The above derivation re1ies on
the assumption of separation of long-wavelength Auctua-
tions in N from the rapidly changing short-wavelength
variations of the microscopic, i.e., not smoothed out, s
vortex density. To demonstrate that such separation
indeed takes place in (1) is no trivial task. In fact, the
high-field, LL regime is entirely dominated by such core
effects. In the low-field limit of the XI'model, where the
microscopic core size a satisfies a ((l, it is hoped that
these core efFects eventually become irrelevant for the
long-wavelength behavior. For the rest of the paper it is
assumed that the magnetic field is sufticiently low so that
core effects in (1), even if relevant, acct critical behavior
only at distances much too long to be of practical in-
terest. The range of the validity of this semiclassical
description can then be established empirically.

These clarifications noted, I now demonstrate the utili-
ty of this description of low-field critical behavior. The
free energy of Eq. (4) can be evaluated in the mean-field
approximation 4(r, g)=No:

4myqT, O

Tq(H) —= To c—I H
IZo o

1 —E 1
X + —ln

2 4
2&»T.ohio

' „(,)
where c& 2 are constants of order unity. The transition is
weakly first order due to long-range interactions in OCP,
with the jumP A4o= "l/4—IryIH/2PPo.

T@(H) [or H@(T), as in Fig. 1] could be interpreted as
tile ffuctuatlon I'e1101'IIlallzed H~2( T). This @ 'tlallsltlo11

is driven by the growth of a novel ofF-diagonal order asso-
ciated with 4, and not the original superconducting field

Above the mean-field H, 2(T), the correlation length
of y~(r, g)—:(4(r, g)N'(0, 0) ) in the xy plane g~ is much
shorter than I and is approximately equal to g+, the latter
being the usual superconducting correlation length, asso-
ciated with g~(r, g)—:(%(r,g)%'(0,0) ) (the XY region in
the inset of Fig. 1). In the critical region below H, I(T),
g~ saturates at -l, but g~ grows rapidly and becomes» I (the C& region in the inset of Fig. 1). This illustrates
the main physical idea of this paper: While the original
pairing correlations in the critical region remain limited
by the motion of field-induced vortices, which form a
liquid both above and below Hz, (T), there are other off'-

diagonal correlations in (1) whose range greatly exceeds I.

g(I )= ——~ 2E+ln1 2
I +2 I +2

2/I

where E~=0.5772. . . is Euler's constant. @o is deter-
mined by minimizing F r. Below some Tz, (H), which
has to be determined numerically, the minimum of F

&

shifts from @o=O to finite %0. A simple approximate for-
mula is

where P=P=2Cylgo/a~~T, oH, C is of order unity and

all max ~II'd ' w th ~II and d being the coherence length
along 8 and the interlayer separation, respectively. In
deriving (5), I assumed 2Cylpo/a~~ pT, oH &&1, which
is appropriate for Bi-Sr-Ca-Cu-0 HTS. g fc(I ),
with I =Q /T: l4ol yips/T—, is the free energy of
the 20 one-component Coulomb plasma (OCP), fc
=(1/2)ln(V'2l/a)+g (I"). An approximate form, reli-
able for 1 + I, is

FIG. 1. A schematic representation of the critical region.
LVL—London (s) vortex liquid; LVS-London (s) vortex solid;
SCDW —charge-density-wave of Cooper pairs (see Tesanovic in
Ref. 1). The dotted line indicates that H is too high for the
semiclassical approximation to be reliable in determining
H+(T). The dashed line is the mean-field H, &(T}. The full line
represents the London (s) vortex solid-liquid melting transition
in the low-field regime while it separates the normal state from
the density-wave of Cooper pairs at high fields. The low-field
melting line is well-separated from H~(T) because the melting
transition takes place only for a rather large I (I,~, -140}and
is well below the nominal critical region [see Eq. (6) and the text
above it]. The arrow on the H axis indicates the crossover from
the high-field to the low-field regime of critical behavior,
Hb-(0/jk6)(T/T, o)H, 2(0)-1 T in HTS. The inset shows re-
gions of XP and @ critical behavior as described in text. The
dashed-dotted XF 4& crossover-line is set by /~i T,H =0)—I.
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H@(T) has no analog in the high-field regime. There
H, 2( T) is only a smooth crossover.

The mean-field theory predicts that these N correla-
tions become long ranged below H@(T). To examine this
prediction we consider Auctuations in @. The smoothed
out variables [5p, j] are well-defined only on length scales

longer than inter-s vortex separation (-v'2ml) .Let us
define a cutoff, A( T,H) & i/2~1. The fiuctuations
in @ at wavelengths shorter than A are integrated
out. Finally, the functional integral over [5p, j ] is
replaced by the one over S=[s,s&]. The result is
Z ~ J2)[N]2)[$]exp [

—Po„/T+%'],

7 = Jd r dg a C' +
2

141 +y, I [V,+is(r, k)]C'I'+ri~l [~&+i&C(r &)]C'I +Kii(VX)'+K (VX~)' (7)

where K~~ i(T,H) is the bare "stiffness" of the s gauge
field 4'=—[s,s&], produced by the short-wavelength
( (A) fiuctuations in C&(r, g), which also renormalize
the GL coefficients. At T—T,o, K

~~
~

7'i] X T,OA. Higher-order terms in 4'

which also are generated by the integration of short-
wavelength ((A) modes are presumed irrelevant. This
procedure is internally consistent in the hydrodynamic
limit. Similarly, 'N[s, s&], which is simply W of Eq. (3)
reexpressed in terms of 4', is assumed to have an expan-
sion in 4'(r, g). In addition, the above integration pro-
cedure with a specified cutoff may produce quadratic
terms in 4' which violate the fictitious s gauge invariance,
an example being the mass term m, g . All such terms
will be absorbed into the redefinition of "lg[s, s&]. Con-
versely, the s gauge invariant part of 'N will be absorbed
into K~~, XJ. The remaining Auctuations in e and those
of 4' come from wavelengths & A. 9'oL in (7) defines the
bare level functional which serves as the starting point
for study of the finite-field critical behavior. Note that,
for H ~0 along the T = T~(H) line, K

~~
i ~ A

~ I /&H ~~, the 4 fiuctuations in 9'oi are suppressed,
and the N transition goes into the zero-field supercon-
ducting transition.

9'oL has a form reminiscent of the standard supercon-
ductor (Higgs) electrodynamics (SHE) at zero field (the
anisotropy is easily rescaled out ). The finite structure
constant is unity rather than 1/137, the GL parameter is

(II i) &OKi
Il

T, H) 1'll, i' and the gauge is fixed in an

unusual way. This s vortex gauge has physical origin in
the underlying connection between [s,s&] and [5p, j]. It
is, however, awkward to work with since the long-
wavelength nonsingular phase Auctuations of @, with
~4&~ =@0 fixed, still couple to 4'. The presence of this
coupling allows only power-law correlations in
(@(r,g)N*(0, 0) ) at low temperatures. It is expedient to
introduce new variables: 4—+4=@exp[iII(r, g)],

S=S—VII, where II=V Bp&. This is a simple
gauge transformation as far as VoL is concerned. This al-
lows us to extract the leading two-point correlations in
(7), which are (@(r,g)C&*(0,0) ) = (@(r,g)
Xexp[iII(r, g)/4*(0, 0)exp[ —iII(0,0)]), and not
(N(r, g)@*(0,0)). These 4 correlations involve com-
bined phase Auctuations in @ and the s vortex transverse
current fluctuations which enter through H via s&, N or-
der is expected to be long ranged below T@(H).

After this gauge transformation, VoL in (7) becomes

I

equivalent to SHE in the Coulomb gauge, V S=O (apart
from the anisotropy). %V[X] in contrast, does not possess
this fictitious gauge invariance of Voi. Its form refiects
only the spatial symmetries of the original problem (1).
This form changes when 4' —+S. A similar situation arises
in studies of the nematic-smectic-3 transition in liquid
crystals. ' There one also has the part which is
equivalent to SHE and additional terms which reAect
spatial symmetries of that problem. Here I adopt the
renormalization-group (RG) analysis of the nematic-
smectic transition by Halperin, Lubensky, and collabora-
tors. "An important result is that the pure isotropic SHE
is one of the fixed points of (7). At this fixed point

K~~~, Ki~K' and 'N/K* —+0. Furthermore, this fixed
point is stable to finite 'N perturbations to all orders in
the e expansion. Consequently, if the bare K~~, Kj are
large enough, the RG Aows should be attracted to the
SHE fixed point. It is dificult, however, to evaluate
K~~(T, H) and Ki(T, H) from first principles with a pre-
cision greater than what is given below Eq. (7). At this
point further approximations become necessary. An esti-
mate based on the self-consistent integration of Auctua-
tions in N at wavelengths short compared to A suggests
E

~~~,
K j that are growing exponentially for H —+0, at

T & T,o, but this is probably too crude. A more efficient
alternative approach might be to treat K~~, Kj given
below Eq. (7) as a phenomenological input to the theory
and proceed to compute various consequences of PoL.
The comparison to experiments and numerical simula-
tions can then be used to establish more precise values of
K~~, Kj. At any rate, for low enough fields, K~~,Xj be-
come large in the critical region and the plausible
scenario within the e expansion is that the Auctuation
behavior would show crossover from mean-field to aniso-
tropic SHE to isotropic SHE and ultimately to a very
weak first-order transition at renormalized H@(T). '

This SHE scenario is valid if the mass terms for 4' are ei-
ther absent or small at the bare level, i.e., if
K

~~
i /m, &&A, where m, is the "bare" mass of 4'. '

The SHE phase transition has been studied also by
Dasgupta and Halperin' using the lattice superconduc-
tor model (LSM). They have concluded that, within
LSM, the transition appears continuous and is in the in-
verted XY universality class, defined by the interacting
vortex loops. In our model this implies a proliferation of
unbound large vortex loops in N(r, g) at H@(T). They
also find that the transition moves to lower temperature



as the stiffness of the gauge field is reduced and complete-
ly disappears below certain critical value of the stifFness.
This should be the case here for higher fields, where

EC~~~, E~ are limited by core efFects and may become large
only at comparatively low temperatures. Ultimately, it is
expected that T+(H)~0 as H increases toward Hb. At
these higher fields, where E

~~, K~ are getting smaller, the s
gauge field fluctuations are enhanced and transition may
become discontinuous as observed in numerical simula-
tions. ' This transition to the high-field limit, represent-
ed by the dotted line in Fig. 1, is beyond the semiclassical
approximulation of this paper. An interesting question in
this context is the interference between the N transition
and the London (s) vortex liquid-solid (LVL-LVS) transi-
tion (the crossing between the dotted Hz, (T) line and the
solid LVL-LVS line in Fig. 1) which is left for future
study.

The above connection to the critical behavior of SHE
is theoretically appealing and deserves additional discus-
sion (it is now assumed that the bare mass m, is negligi-
ble). The problem here is that the critical behavior of
SHE itself is still not fully understood, as illustrated
above. The e expansion predicts the first-order transition
while various numerical studies indicate a continuous
transition, at least for strongly type-II systems. Further-
more, the 1/X expansion also favors continuous transi-
tion. ' Interestingly, the problem of the finite-field (FF)
critical behavior in type-II superconductors provides ad-
ditional motivation for the study of SHE since the ficti-
tious s gauge Higgs electrodynamics introduced here has
a much larger intrinsic fine-structure constant than the
real SHE (unity versus 1/137). Consequently, the domain
of FF critical fluctuations could be considerably wider
than that of the real SHE at the zero-field (ZF) normal-
superconducting transition. While the above uncertain-
ties concerning SHE remain to be resolved, it is still pos-
sible to exploit this connection to make some general re-
marks on type-II superconductors in a low magnetic field,
assuming their Auctuation behavior is faithfully
represented by the 3D XY model. The low-temperature,
Meissner phase of SHE is related to the London (s) vor-
tex liquid (LVL) state of a type-II superconductor (see
Fig. 1). This an incompressible 4 ordered liquid phase
with long-range interactions between (s) vortices and
with the overall vorticity locked at X&. Large thermally
excited vortex loops are suppressed. The strength of this
long-range London interaction is given by the "photon"
mass of the fictitious s gauge electrodynamics which is
directly related to the "helicity modulus" of the con-
densed @ field. Thus, as we approach T+ (H) from
below, the long-range component of the (s) vortex in-
teraction is renormalized by fiuctuations in the same
fashion as the London magnetic penetration depth in the
real SHE. Above T~(H) large thermally excited vortex
loops proliferate across the sample and the system
behaves like a compressible (s) vortex "gas," with the
strongly fluctuating overall vorticity. The fictitious s
gauge photon is now massless, the N order is absent and
(s) vortex density-density interactions and 4& correlations
are both short ranged. This phase can be identified with
the normal state.

I now state potential sources of concern with the above
description. The 'N[S] term could produce subtle non-
perturbative effects on the critical behavior. Further-
more, the core effects, which have been ignored on the
basis of a/l «1, might have a nontrivial effect at long
wavelengths which could modify critical behavior and
suppress N order, even at low fields. Still, I expect the
description proposed here to retain its usefulness at low
fields near T,o and at. the length scales typically encoun-
tered in experiments. This is so because the present
theory does perform at least one important task: it ex-
tracts from the original GL functional those off-diagonal
correlations whose range extends well beyond the mag-
netic length, I. This is illustrated in the inset of Fig. 1.
Above the dashed-dotted line the 4 correlator has basi-
cally the same range as the standard superconducting 4
correlator. In this region, labeled as XY, we can exploit
the proximity of the zero-field (ZF) critical point to de-
scribe the physics and construct various thermodynamic
quantities. Below the dashed-dotted line, in the region la-
beled as @, the range of the superconducting 4 correlator
saturates at l, while 4 correlations continue to grow and
ultimately diverge, at least within the present description
based on the effective functional Voi (7). To be sure, Voi
itself results from a particular approximate way of taking
the continuum limit and thus one must allow for the pos-
sibility that additional relevant terms, not included in the
present description, might modify the ultimate long-
wavelength behavior of the problem. Such subtle issues
not withstanding, the clear message of the present ap-
proach, and the one likely to remain in place, is that the
fiuctuation behavior in the 4 region (Fig. 1) must be
governed by the proximity to some new finite-field (FF)
critical point and not to the zero-field transition. It ap-
pears likely that Voi captures at least basic features of
the physics associated with this new critical behavior.

There is empirical support for the picture presented in
this paper. H, z( T) determined from magnetization mea-
surements of Ref. 17 shows expected linear behavior at
high fields but deviates from linearity at low fields. This
deviation is consistent with Tz, (H) of Eq. (6) if we relate
the crossover in magnetization to the point where ( ~4~ )
starts growing. A detailed analysis of the specific-heat
data in 1-2-3 HTS (Ref. 18) in terms of the XI'-model
critical scaling leads to poor agreement unless one allows
for the (unexplained) strong field dependence of the
coefIicients. ' This strong field dependence can be inter-
preted as the crossover from the XY to the N-critical
behavior described by (7). This crossover takes place as
one moves from the high-temperature regime, gc, (l, to
the true critical regime, g~))l. Finally, Li and Teitel
have reported Monte Carlo simulations of the XY model
which show a suppression of large vortex loops followed
by a sharp onset of the helicity modulus for field-induced
vortices. This effect should arise as a consequence of the
@ ordering, with the disappearance of unbound vortex
loops leading to a sharp increase in the line tension of
field-induced vortices. It is clear, however, that addition-
al experimental and computational efFort will be needed
before a complete picture of the low-field critical
behavior is in place. It is hoped that the present work
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will stimulate such developments.
In summary, the main advances reported in this paper

can be viewed as twofold: First, on a conceptual front, a
description is derived for the low-magnetic field critical
behavior of the GL theory. In contrast to the GL theory
in high fields, where the only fluctuating degrees of free-
dom are positions of field-induced vortices, the low-field
critical behavior is dominated by thermally induced
zero-vorticity excitations, like vortex-antivortex pairs,
vortex loops, etc. By shifting the vorticity in the original
GL partition function and taking the hydrodynamic lim-
it, the low-field critical behavior is related to the field
theory describing a complex scalar field in a zero average
magnetic field coupled to a fictitious gauge field produced
by the long-wavelength fluctuations in the background
system of field-induced vortices. The conceptual advance
here is that this derivation uncovers the hidden ofT'-

diagonal correlations of the GL theory whose range is far
longer than that of the original superconducting correla-
tor. Second, when it comes to the theory of real type-II
superconductivity, the main utility of this novel formula-
tion is in the fact that it describes the finite-field (FF) crit-

ical behavior in contrast to the familiar zero-field (ZF)
critical point at T= T,o. The strong Auctuation regime of
type-II superconductors for T & T,o and low fields will be
controlled by the proximity to such a FF transition rath-
er than the ZF one, contrary to what is often assumed in
the literature. ' Even if the predicted FF transition itself
turns out to be hard to access in a real experiment, ' the
description introduced here should still be valuable in
providing a systematic approach to physical problems
which up to now were beyond analytical reach: The con-
struction of thermodynamic functions describing the
ZF-FF crossover, the renormalization of London vortex
interactions by critical Auctuations, the issue of the high-
field versus the low-field thermodynamic scaling, etc.

I am gratefu1 to Professor M. Salamon for asking im-
portant questions, to Dr. I. F. Herbut, Professor S. Teitel,
and Professor O. T. Valls for discussions, and to Profes-
sor T. C. Lubensky for explaining to me the subtleties of
Ref. 11. This work has been supported in part by the
NSF Grant No. DMR-9415549.

G. J. Ruggeri and D. J. Thouless, J. Phys. F 6, 2063 (1976); E.
Brezin, D. R. Nelson, and A. Thiaville, Phys. Rev. B 31, 7124
(1985); M. A. Moore, ibid. 39, 136 (1980); E. Brezin, A. Fuji-
ta, and S. Hikami, Phys. Rev. Lett. 65, 1949 (1990); S. Ullah
and A. T. Dorsey, ibid. 65, 2066 (1990); Z. Tesanovic and L.
Xing, ibid. 67, 2729 (1991); Z. Tesanovic, Phys. Rev. B 44,
12635 (1991); 46, 5884(E) (1992); Y. Kato and N. Nagaosa,
ibid. 47, 2392 (1993);J. Hu and A. H. MacDonald, Phys. Rev.
Lett. 71, 432 (1993);R. Sasik and D. Stroud, Phys. Rev. B 49,
16074 (1994);S. A. Ktitorov, B. N. Shalaev, and L. Jastrabik,
ibid. 49, 15248 (1994); Z. Tesanovic, Physica (Amsterdam)
220C, 303 (1994).

D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); M. P. A. Fish-
er, ibid. 62, 1415 (1989); D. R. Nelson and H. S. Seung, Phys.
Rev. B 39, 9153 (1989);M. V. Feigel'man, V. B. Geshkenbein,
and V. M. Vinokur, JETP Lett. 52, 546 (1990); D. R. Nelson
and P. Le Doussal, Phys. Rev. B 42, 10 113 (1990);D. S. Fish-
er, M. P. A. Fisher, and D. A. Huse, ibid. 43, 130 (1991);L. I.
Glazman and A. E. Koshelev, ibid. 43, 2835 (1991);L. N. Bu-
laevskii, M. Ledvij, and V. G. Kogan, Phys. Rev. Lett. 68,
3773 (1992); G. Blatter and B. Ivlev, ibid. 70, 2621 (1993);M.
V. Feigel'man, V. B. Geshkenbein, L. B. Ioffe, and A. I. Lar-
kin, Phys. Rev. B 48, 16641 (1994).

Z. Tesanovic, Phys. Rev. B 44, 12 635 (1991);46, 5884(E) 1992).
4Z. Tesanovic and A. V. Andreev, Phys. Rev. B 49, 4064 (1994).
5The semiclassical description proposed in this paper cannot be

reached within the Gaussian approximation or various per-
turbative schemes applied to the original F«(1): R. Ikeda,
T. Ohmi, and T. Tsuneto, Phys. Rev. Lett. 67, 3874 (1991);J.
Phys. Soc. Jpn. 60, 1051 (1991);I. D. Lawrie, Phys. Rev. B 50,
9456 (1994). Such approaches are unable to produce strong
inter-LL correlations.

A. Alastuey and B. Jancovici, J. Phys. (Paris) 42, I (1981),and
references therein.

7A. Schmid, Phys. Rev. 180, 527 (1969); H. Schmidt, Z. Phys.
216, 336 (1968).

86. Blatter, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev.

Lett. 68, 875 (1992); H. Hao and J. R. Clem, Phys. Rev. B 46,
5853 (1992).

The gauge is fixed since s is purely transverse in the xy plane.
P. G. DeGennes, Solid State Commun. 10, 753 (1972).
B. I. Halperin and T. C. Lubensky, Solid State Commun. 14,
997 (1974); B. I. Halperin, T. C. Lubensky, and S. Ma, Phys.
Rev. Lett. 32, 292 (1974); T. C. Lubensky and J-H. Chen,
Phys. Rev. B 17, 366 (1978).

~~As shown in Ref. 11 the standard SHE also exhibits a first-
order transition, both within the mean-field [compare with

Eq. (6)] and the RG analysis. Note that, in our case, at very
large distances and/or very low fields, the real electromagnet-
ic field fluctuations may have to be included as well since ~,
while large, is still finite. This will clearly modify the FF crit-
ical behavior and may lead to the @ transition becoming only
a sharp crossover or a weak first-order transition involving no
symmetry breaking. The effect of these real electromagnetic
field fluctuations, while clearly of theoretical interest, is also

of practical significance in HTS and other extremely type-II
systems. In these materials ~ is as large as 10'—10 and the
magnetic-field penetration depth in the critical region will

typically be longer than the length scale over which the sys-

tem can be considered homogeneous. This is reminiscent to
the issue of smearing of the Kosterlitz-Thouless-Berezinskii
(KTB) transition in superconducting films by the electromag-
netic screening. In practice, the effective magnetic-field

penetration depth is often larger than the sample size and one
can observe the original ~~ ~ KTB fluctuation behavior.
Since our theory does not have the local gauge symmetry
of the SHE, such terms are generally permitted. If
K~~ ~ /m, —A, s gauge-field fluctuations will be reduced in the
critical region. For discussion of related issues in the pure

SHE, see M. Kiometzis, H. Kleinert, and A. M. J. Schakel,
Phys. Rev. Lett. 73, 1975 (1994).

~4C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47, 1556
(1981).
J. Bartholomew, Phys. Rev. B 28, 5378 (1983).



16 210 ZLATKO TESANOVIC 51

L. Radzihovsky, Euyrophys. Lett. 29, 227 (1995).
R. Jin, A. Schilling, and H. R. Ott, Phys. Rev. 8 49, 9218
(1994).

8S. E. Inderhees, M. B. Salamon, J. P. Rice, and D. M.
Ginsberg, Phys. Rev. Lett. 66, 232 (1992).
S. %'. Pierson, Ph.D. thesis, University of Minnesota, 1993.

20Y. H. Li and S. Teitel, Phys. Rev. 8 49, 4136 (1994); S. Teitel
(private communication). More precisely, these authors ob-
serve that, at some well-defined temperature T„,an intercon-
nected tangle of wandering field-induced vortices and
thermally induced vortex rings percolates through the system
in the plane perpendicular to the applied field. At the same
temperature, the helicity modulus along the field direction,
which was found to be finite below T„, goes continuously to
zero. This is just what one expects at the 4 transition of our
model: As one approaches T„ from below, large thermally
induced vortex loops in N proliferate across the system. Such
vortex excitations are confined within a Aux tube of the ficti-
tious gauge field. This Aux tube represents the screening
cloud of field- and thermally induced vorticity and corre-
sponds to the above "interconnected tangle" observed in the
Monte Carlo simulations of Li and Teitel. The cross-

sectional area of such a tangle is given by the product of per-
tinent penetration depths of our fictitious electrodynamics.
The helicity modulus along the field directly measures the
formation of a uniform @ condensate. Thus, their T„can be
identified with T~(H). The resistivity anomalies along the
field observed by H. Safar et aI., Phys. Rev. Lett. 72, 1272
(1994), are presumably also related to T+(H). In this context,
it should be noted that the label London vortex liquid (LVL)
below T~(H) (Fig. 1) indicates a translationally invariant
phase in which the long-wavelength density-density interac-
tion of the fluctuating vorticity has a characteristic London
form, the strength of which is given by the superfluid density
of the 4 condensate. This phase has strong thermal Auctua-
tions throughout the critical region which makes it impossi-
ble to locally separate field-induced from thermally induced
vortex excitations. Thus, the LVL phase (Fig. 1) should be
clearly distinguished from the often used London line liquid
description (Ref. 1) in which only field-induced vortices are
considered and a11 other Auctuations are ignored. Such
description is applicable only at temperatures well below
T~(H).

T. Schneider and H. Keller, Int. J. Mod. Phys. 8 8, 487 (1994).


