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Computational simulation of type-II superconductivity including pinning phenomena
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A flexible tool, based on the finite-element method, for the computational simulation of vortex phe-

nomena in type-II superconductors has been developed. These simulations use refined or newly

developed phenomenological models including a time-dependent Ginzburg-Landau model, a variable-

thickness thin-film model, simplified models valid for high values of the Ginzburg-Landau parameter,
models that account for normal inclusions and Josephson effects, and the Lawrence-Doniach model for
layered superconductors. Here, sample results are provided for the case of constant applied magnetic
fields. Included in the results are cases of Aux pinning by impurities and by thin regions in films.

I. INTRODUCTION

We have developed a flexible and robust computational
tool that can be used to study a variety of phenomena in-
volving vortices in type-II superconductors. The desir-
able features of our algorithms and codes are due to the
use of the finite-element method for the discretization of
the governing system of partial differential equations.
Previously' we used this method in the context of period-
ic problems for the Ginzburg-Landau equations. Here,
we apply the finite-element methodology to a variety of
Ginzburg-Landau based phenomenological boundary
value models for type-II superconductivity. The details
of the application of the finite-element method to the
current settings are very similar to those for the periodic
setting and thus we do not elaborate on these here. One
may also consult Du, Gunzburger, and Peterson ' and
Du for additional theoretical results concerning finite-
elements method in superconductivity.

The development of computational tools has been pre-
ceded by the development, refinement, and analysis of
phenomenological models for superconductivity. An out-
line of the models that we have studied and which are in-
corporated into our codes is given as follows. Details
may be found in the cited references.

Time-dependent Ginzburg-Landau model. ' Theoreti-
cal results have been obtained and finite-element algo-
rithms have been defined, analyzed, and implemented for
the well-known time-dependent Ginzburg-Landau model.
The codes we have developed can be used to study vortex
motion and other phenomena such as the nucleation of
vortices at boundaries.

Variable thickness thin ftlm model -Models for .thin
films having variable thickness have been developed.
Theoretical results have been obtained, and finite-element
algorithms have been defined, analyzed, and implement-
ed. Computational simulations showing the effectiveness
of thin regions for pinning vortices have been carried out.

Models accounting for normal superconductor inte-r
faces. Models that can account for normal materials

such as impurities or layers coexisting with supercon-
ducting materials have been developed and analyzed.
Computational simulations showing the effectiveness of
normal impurities for pinning vortices have been carried
out. The same code has been used to show how the mod-
el can be used to study other normal-superconducting in-
terfaces such as Josephson junctions.

Models for high values of tc. ' Simplified models have
been studied and analyzed that are valid for large values
of the Ginzburg-Landau parameter ~. Computational
simulations illustrating the accuracy of the simplified
model have been carried out.

Lawrence-Doniach modeh. The connection between
this model for layered superconductors and the aniso-
tropic Ginzburg-Landau model has been rigorously es-
tablished. Theoretical results have been obtained, and
finite-element algorithms have been defined. Preliminary
computational simulations have been carried out.

Below, we give some additional details and provide re-
sults of computational simulations for the case of con-
stant applied magnetic fields. The results of other simula-
tions involving applied currents and voltages as well as
thermal Auctuation effects will be given elsewhere.

II. TIME-DEPENDENT GINZBURG-LANDAU MODEL

The time-dependent Ginzburg-Landau (TDGL) equa-
tions were developed by Gor'kov and Eliashberg our
starting point is the version given in Gor kov and Kop-
nin. " We introduce a length scale I and nondimensional-
ize the spatial and time coordinates x and t, the order pa-
rameter g, the magnetic potential A, and the electric po-
tential 4 according to

x +lx, t —+ t, g~&( ~ct
~ /f3)g,

yfi

A~+(8~a l /P) A, and @~2 2

ye,

respectively, where e, =2e and m, are the charge of and
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mass, respectively, of the superconducting charge car-
riers, e is the electron charge, 2M is Plank's constant, o.
and P are the temperature-dependent coefficients appear-
ing in the condensation energy contribution to the
Ginzburg-Landau free energy, and y is a time relaxation
parameter. The Ginzburg-Landau coherence length and
the London penetration depth are given by

and A, =Q (Pm, c /4m.
l a l e, ),

2m, fal

respectively, where c is the speed of light. Of course, the
Ginzburg-Landau parameter s.=A, /g. The most common
choices for the length scale are either /=for (=A, .

In nondimensionalized form, the TDGL equations for
the order parameter f, magnetic potential A, and elec-
tric potential 4 are then given by

2

2 . E

at
+~cy=y lyl y ——

~ V+ —A
E

and

Br
+ Ve =VXVX A+ lyl'A

A,
2

+ — (P*Vg /VS') —in 0,
2 A,

where Q denotes the region occupied by the supercon-
ductor,

2M E

ym, c

and o.„ is the normal conductance. We also have the
boundary conditions

defined weak solutions of (1)—(7) have been demonstrat-
ed; see also Ref. 12. Additional results include the con-
tinuous dependence of the solution on the initial data.
Discretization algorithms for the TDGL equations have
been developed and analyzed. First, semidiscrete Galer-
kin finite-dimensional approximations were examined.
(Here, by semidiscrete, we mean that only discretization
with respect to the spatial variables is considered. ) In
this case, the convergence of the approximations as the
dimension of the approximating spaces tend to I) was
proved. This result was also specialized to the concrete
case of finite-element approximations. The backward
Euler based fully discrete approximating scheme and a
second-order accurate in time scheme were also con-
sidered. In both cases, rigorous error estimates were de-
rived.

These schemes are used in a two-dimensional code we
have developed. Spatial discretization is effected using
piecewise biquadratic polynomials. Typical results of our
computational simulations are given in Figs. 1 —3. The
Ginzburg-Landau parameter ~ is set equal to 20 and the
external field H, which points perpendicular to the plane,
is set equal to 10. Figure 1 shows the time evolution of
the level curves of the magnitude of the order parameter
for the phenomena of vortex nucleation at the boundary
of the sample. (Increasing time runs from left to right
and then top to bottom. Also, for the sake of clarity, we
have only plotted the level curves for lgl ~0.5.) The
sample is a square having sides equal to 20 coherence
lengths. Initial conditions correspond to a perfect super-
conducting state. Vortices first start to form at the edges
and then settle down into the interior. Since the applied
field is a constant and there are no external currents or
voltages applied to the sample, the vortices approach a
steady-state configuration which is depicted in Fig. 2.

E
i V+ —A .n=O on I

E

and

(VX A)Xn=HXn on I (4)

and

P(x, O)=$0(x) in 0 (5)

A(x, O) = Ao(x) in 0,
where we assume that V. AD=0 and i/0(x) l

~ 1; the latter
implies that the magnitude of the initial order parameter
does not exceed its value at the superconducting state.
Solutions of (1)—(6) are unique only up to a gauge trans-
formation, for problems wherein the applied field H is
constant, we use the gauge choice

A.n=O on I and 4=0 in Q .

where n denotes the unit normal vector of the boundary
I of Q and H denotes the applied field, and the initial
conditions

O O

O @ I
0

@ I
OO

The global existence and uniqueness of appropriately
FIG. 1. Time evolution of vortices for a type-II superconduc-

tor.
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III. A VARIABLE THICKNESS THIN-FILM MODEL
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FIG. 2. Steady-state vortex configuration for a type-II super-
conductor.

The steady-state supercurrent field is given in Fig. 3; one
clearly sees the shielding current running along the
boundary of the sample, along with the current circulat-
ing around each vortex. (For the sake of clarity, we have
plotted the current vectors on a coarser grid than that ac-
tually used for the computations. )

The TDGL code we have developed forms the basis for
the other codes that we use to obtain approximations of
solutions of the variants of the Ginzburg-Landau model
discussed below. The results obtained from these codes
are time accurate so that they can be used to simulate
both transient and steady-state phenomena. Elsewhere,
we will report on the application of our methodology to
problems involving applied currents and voltages and
also vortex motions due to temperature fluctuations. We
note that all the results presented here were obtained on
workstations.

We now turn to a description of models that have been
developed for variable thickness thin films. Variations in
thickness can have significant effects on the electromag-
netic behavior of the superconductor, e.g., there is evi-
dence that vortices can be trapped within narrow (thin)
regions. Thin films of superconducting material are often
modeled as two-dimensional objects. The third dimen-
sion, i.e., that across the film, is eliminated by an averag-
ing procedure. If the properties of the material, viewed
as a three-dimensional object, are homogeneous, and the
thickness of the film is invariant with position, then the
result of the averaging process will be a two-dimensional
model having constant coefficients. One would like to
have a two-dimensional model that can account for thick-
ness variations. Any such model would result from an
averaging process across the film that varies from point-
to-point in the plane of the film, and introduces the vari-
able thickness into the coefficients of the resulting two-
dimensional model.

We consider the case where a three-dimensional thin
layer in E is symmetric with respect to the (x,y) plane.
(Other film geometries can be treated in a similar
manner. ) The z axis is thus perpendicular to the symme-
try plane of the film. Then, the thin-film 0, can be
defined by

Q,= I (x,y, z) EE (x,y) HQOC:E,

z C [ —ea (x,y), ea(x,y)]],

where e is small parameter and a(x,y) is assumed to
satisfy a (x,y) )0 for all (x,y) HQo. The constant exter-
nal field may point in directions other that perpendicular
to the center plane of the film, i.e., H =(H„H2, H3 ). The
planform of the film is denoted by Qo and its boundary by
r, .

We choose the length scale I =g. Then, to leading or-
der in e, the order parameter satisfies

(iV+ Ao) a(iV+ Ao)$0+a(~$0~ —l)$0=0 in Qo (8)

p

4 m q S r

E /
r 1 o ~ a a & e,

a

T
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p

p 1 a p l i p

FICx. 3. Steady-state supercurrent distribution for a type-II
superconductor.

and

(iVgo+ Aggro). n=O on 1 o, (9)

where Ao=( Aoi, 202) is a magnetic potential such that
«&&( AO, O) =(O, O, H3 ) and V denotes the two-
dimensional gradient with respect to x and y. Thus, to
leading order, the magnetic field is unaffected by the pres-
ence of the thin film.

When the film is of uniform thickness, i.e., a =1, the
thin-film model of (8) and (9) is identical to a model for
superconducting cylinders as the Ginzburg-Landau pa-
rameter tends to ao; see (28) and (29). This means that all
superconducting materials, whether type-I or type-II in
bulk, behave as type-II superconductors when made into
sufficiently thin films. '

Equations that determine the first-order correction to
the magnetic field have also been derived; these are given
by
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V hi=0 and VXhi=0

everywhere and

(hi Xklo —=3so ~

where [ ]o+ denotes the jump across the plane of the film
and where j,o is the (leading-order) suPerconducting sur-
face current given by

j,o= — (fo—Vit'o it'oVfo) ~go~ Ao .

The total field is given by h=H+ eh&.
Various results concerning the solution of the variable

thickness thin-film equations (8) and (9) have been de-
rived. In particular, the rigorous connection between
solutions of (8) and (9) and solutions of the three-
dimensional steady-state Ginzburg-Landau equations has
been established. For example, one has the following
consistency result. For any e&0, denote by (P„A,) the
solution of the constant coefficient, three-dimensional,
steady-state Ginzburg-Landau equations over the three-
dimensional domain Q,. Let

o~ ~
O Oe 0 Oe 0
0 0

0 0 Oe

oo

a. Constant thickness film.

O

a O

0 4

b. Distribution of thin regions.

0

and

1t,(x,y) = f g,(x,y, z)dz, V(x,y) H Qo
2E'a —ea

c. Variable thickness film. d. Figs. 4b and 4c superimposed.

FIG. 4. Pinning of vortices by thinner regions in a thin film.

A,(x,y)= f A,(x,y, z)dz, V(x,y)EQo .
26'a —ea

Thus, for any (x,y)HQo, 1(, and A, are the averages
across the film of the solutions of the three-dimensional
Ginzburg-Landau equations in the film, the latter viewed
as a three-dimensional object. Then, the consistency re-
sult is the following: the sequence I (Q„A,) I of solutions
of the three-dimensional Ginzburg-Landau equations
converges, as e~0, to a solution (go, Ao) of the variable
thickness thin-film equations (8) and (9). Another in-
teresting conclusion that can be drawn from (7) and (8) is
that all superconducting materials, whether type-I or
type-II in bulk, behave as type-II superconductors when
made into sufficiently thin films. '

We have developed a code for determining finite-
element approximations to the solution of the variable
thickness thin-film equations (8) and (9). Piecewise biqua-
dratic finite-element functions are used. Typical results
are given in Fig. 4. Again, we have a square sample with
sides equal to 20 coherence lengths; the applied field has
magnitude 0.5~; note from (7) and (8) that, to leading or-
der, the order parameter in a thin film does not depend
on ~. In Fig. 4(a), the steady-state vortex configuration is
gj.ven for a constant thickness thin film; again, we are
plotting the level curves of the magnitude of the order pa-
rameter. Next, we introduce ten thin regions into the
sample; each of these is a square with sides equal to one
coherence length. The position of the thin regions is de-
picted in Fig. 4(b). In each of these regions, the thickness
function a is set to 0.1; elsewhere in the sample, a =1.
The vortices for this configuration are depicted in Fig.
4(c); it is clear that vortices are attracted to thin regions,
i.e., they are pinned by these regions. This is even more

evident from Fig. 4(d) for which we have superimposed
Figs. 4(b) and 4(c).

To leading order, the magnetic field is given by the ap-
plied field. The first-order correction to the magnetic
field may be determined from (10) and (11). For the
configuration of Fig. 4(a), the first-order correction to the
magnetic field above the sample is given in Fig. 5(a).
Specifically, that figure depicts the magnetic field in a
portion of the half-plane above the horizontal midline of
the sample. (Actually, we have scaled fields by v, i.e., we
plot hi/x. ) The scaled total field h/v=(0, 0,0.5)+eh, /v
is depicted in Fig. 5(b) for @=0.1. The horizontal mid-
line of the sample is also depicted at the bottom of that
figure; thus, the field is depicted in a region that extends
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FIG. 5. Correction and total magnetic field above the vertical
midline of the sample.
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to the left and right of the sample. One can see in Fig.
S(b) the pinching of the field lines at the vortex cores.

IV. A MODEL ACCOUNTING
FOR NORMAL-SUPERCONDUCTING JUNCTIONS

iRV+
C

2

Models that can account for normal-superconducting
junctions and normal inclusions are of considerable prac-
tical interest. For examples, normal impurities can be
used to pin vortices and Josephson junctions consist of
thin layers of normal material sandwiched between super-
conducting materials. A two-parameter model that can
account for such situations has been developed; it may be
viewed as a generalization of models given in Larkin'
and Likharev.

To understand the steady-state version of the model,
we need to write down the Ginzburg-Landau functional
in dimensional form, which, to within a constant additive
factor, is given by

Here, h denotes the magnetic field so that h= T X A and
H denotes the applied magnetic field. For a supercon-
ducting material, the parameter a changes sign at the
critical temperature T„with a &0 for T & T, and e &0
for T) T, . (The parameter P~0 always. ) In the model,
one chooses a&0 in the superconducting material anda) 0 in the normal material. Whenever a) 0, the role of
the parameter P becomes unimportant, so that one can
choose P=O in the normal material. An arbitrary choice
for the mass parameter m in the two materials is allowed
for as are different permeabilities p. Thus, we define a
free energy

f„a,l@l' + ' lgl'+
S S

iev+ 'A y + '
lh —Hl' dn

C 8~

+ ~~ 2+
n 2P?l ~

iA'V+ A g + lh —H .dA,
C 8m

—'V+ A y y+lql'y=o —in n, ,K
(12)

(P*vg Pvg*) —i/I'—A in 0, , (13)

2
1 i—V+ A /+a/=0 in 0„,ftl K

TXV'X A=—

—v x v x A = — ' (q'vy yves')+ l
yl' A—

p 7?Z 2K

where Q„and Q, denote the regions occupied by the nor-
mal and superconducting materials, respectively. Minim-
izers of this functional must satisfy the equations (nondi-
mensionalizations have been introduced and I =i. has
been chosen)

2

I

denotes the jurnp across the interface I between 0, and
6„, and n denotes the unit normal vector of I . In gen-
eral, one has no control over the values of the permeabili-
ties p„and p, . Likewise, the Ginzburg-Landau parame-
ter ~ is fixed by the choice of superconducting material.
Thus, there are two constants at one's disposal in defining
the model, namely, m and cx. The freedom afforded by
these two parameters enables the model (12)—(18) to ac-
count for a variety of normal-superconducting phenorne-
na. We now describe how the model accounts for some
of these. See Chapman, Du, and Gunzburger for details.

For the model of (12)—(18), the order parameter and
the supercurrent in the normal region do not vanish; the
latter is given by

(g*vg gvf*)+ lgl A— in 0„.
in Q„,

1 l—V+A Q =0,
K

(1S)

(16) Thus, the model can be used to describe the proximity
effect.

In one dimension and in the absence of a potential it
can be shown that on the superconducting side of a
superconducting-normal interface the order parameter
satisfies the relation

—(VX A) Xn =0,1

p
(18)

where m =m„ /m„p =p„ /p„a =m „a„/(m, l a, l ), [ ]

KV a

where ( )' denotes the (normal) derivative. Thus, we re-
trieve the de Gennes boundary condition '
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Mii M(2

M2) M221
n V iA— —

K

1n. V i—A-
K

(19)

for the order parameter and its gauge-invariant normal
derivative across the junction. Here, the M; are real and
are determined by the particular junction and depend on
its thickness, the type of material, etc. De Gennes postu-
lates that for an insulating material M&& and M22 are
close to unity, and M&2 and M2, are small. The junction
is symmetric, i.e., has the same type of superconductor
on each side of the junction, if and only if M&& =M22. In
this case, de Gennes shows that

Mi]M22 —M]2M2] =1 . (20)

Finally, the supercurrent across the junction is given by

J= lg+g Isin(y+ —y ),1

M(2
(21)

with @=a&a/m. The corresponding boundary condi-
tion for a superconducting-vacuum interface should be
g'=0. This boundary condition is recovered from the
model (12)—(18) by letting a~ oo and m ~ ~ in such a
way that &a/m ~0.

The model (12)—(18) can also account for the de
Gennes relations across a Josephson junction. ' Here, one
has a normal region sandwiched between two supercon-
ducting regions. Let ( )+ and ( ) denote evaluation of a
quantity in the superconducting material at the left- and
right-hand interfaces with the normal material. De
Gennes then gave the relation

'+

which, using (22), recovers the de Gennes relation (21).
Note that, as expected, J decreases exponentially as d in-
creases and as a increases. Furthermore, J also decreases
as m„ increases. Since large m„corresponds to a highly
insulating material, this is in agreement with the experi-
mental observation that junctions made from insulating
materials need to be thinner than junctions made from
metals in order to obtain the same tunneling current.

In summary, it is important to note that the model
(12)—(18) recovers all the well-known conditions at the
normal-superconducting interfaces, including the de
Gennes formula for the tunneling current.

We have developed a biquadratic finite element code
for the variable a, variable m model of Eqs. (12)—(18).
Some typical computational results obtained from the
code are found in Figs. 6—9. For Fig. 6, we have a 20
coherence-length square, ~=5 and a perpendicular ap-
plied field having magnitude 2.5. In Fig. 6(a) we have the
steady vortex configuration for a "pure, " i.e., homogene-
ous, superconducting sample. Next, we introduce ten in-
clusions of normal material as depicted in Fig. 6(b); each
inclusion is a one coherence-length square. In each of
these regions, we choose a= 1 for Eq. (14). The distribu-
tion of vortices for this configuration of normal in-
clusions is given in Fig. 6(c); Figs. 6(b) and 6(c) are super-
imposed in Fig. 6(d). Clearly, the normal inclusions have
attracted, i.e., pinned, vortices.

In Fig. 7 we examine a Josephson-junction-type
configuration. Figure 7(a) is for the identical set of pa-
rameters as Fig. 6(a). Next, we introduce a thin vertical
strip of normal material, with a =1 in (14), as depicted in
Fig. 7(b); the width of the strip is 0.2 coherence lengths.
The resultant vortex distribution is depicted in Fig. 7(c);
Figs. 7(b) and 7(c) are superimposed in Fig. 7(d); clearly

M i i
=cosh(2md v'a ),

Miz =(m„/+a)sinh(2ad&a),

M2, =(m, &a/m„)sinh(2~dna),'2

M2z =m, cosh(2ad V'a ) .

(22)

where g denotes the phase of the order parameter. All of
these relations are directly recoverable from the model
(12)—(18). In fact, if we assume that the normal layer
has thickness d, and that we have different superconduc-
tors on each side of the junction, then the model
( 12)—( 18) yields that (19) is satisfied with

O

oo

0O 0 0o 0

Oe I O I 0

a. No normal inclusions. b. Distribution of normal regions.

Here, we have nondimensionalized with respect to one of
the superconductors, so that m„and m, denote the non-

2

dimensionalized masses of the normal material and the
other superconductor. Note that the junction is sym-
metric if and only if m, = 1, i.e., only if the superconduc-'2
tors on each side of the junction are the same, and that in
this case (20) is satisfied. Also, the model yields that the
supercurrent in the junction is given by

— IN+0 l»n(X+ —X ),&a
m„sinh(2xd Va)

(g O Q

O Qo

QO OI
Co) OoO

Oo

Qo o~ oo ~~

QO o
N' oo

Qo I oo

c. Sample with normal inclusions. d. Figs. 6b and Gc superimposed.

FIG. 6. Pinning of vortices by normal inclusions.
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Q ~ O
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a. No normal inclusions. b. Thin strip of normal material.
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p

FIG. 9. Current distribution in a Josephson-junction-type
configuration.

the thin normal strip has attracted vortices. Figure 8
gives the time evolution of the vortices up to the steady
state. Figure 9 gives the steady-state supercurrent distri-
bution in the sample. Note how part of the shielding
current and the current circulating around each of the
seven vortices attracted to the strip pass, i.e., tunnel,
through the normal strip.

An

I
O I
I
O

o

I

I
e'

c. Josephson junction type sample. d. Figs. 7b and 7c superimposed.

FIG. 7. Vortices in a Josephson-junction-type configuration.

V. A SIMPLIFIED MODEL VALID
FOR LARGE VALUES OF a

and A=a. g z. AJ
1 1

J=o K j=o K
(23)

and then substitutes these expansions into the full
steady-state Ginzburg-Landau equations. Equating
powers of K yields, to leading order, the system for Ao:

Superconductors are largely characterized by the value
of the Ginzburg-Landau parameter K. The recently
discovered high critical temperature superconductors are
known to have values of K in excess of 50. Thus, for tech-
nological reasons, there is interest in exploring the
behavior of superconductors in the limit of large K. For
the same reasons, high magnetic fields are also of interest.
Simplified models of the Ginzburg-Landau type that are
valid in the limit of high K and high applied fields have
been developed and analyzed. The discussion below is in
the context of the homogeneous, isotropic, Ginzburg-
Landau model. Analogous simplifications to order mod-
els for superconductivity such as the anisotropic
Ginzburg-Landau and Lawrence-Doniach models for lay-
ered high critical temperature superconductors have also
been effected.

It is assumed that the (nondimensionalized) applied
field H=KHo, where Ho is independent of K. Note that
this does not imply that ~H~ is near the upper critical
field H, 2=~, for example, one could take ~HO~

= I/2. To
derive the model, one formally expands the order param-
eter and magnetic potential in powers of K:

e o C) e
VXVX AD=0 in Q and 0, ,

[ AOXn]=0 on I

[(VX Ao)Xn]=0 on I

(24)

(25)

FIG. 8. Time evolution of vortices in a Josephson-junction-
type configuration. VXA, H, as ~x~ (27)
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and the system for go:

(iV+ Ao) fo go+ ~go~ fo=o in 0,
and

n. (iV+ Ao)go=0 on I

(28)

(29)

where Q denotes the region occupied by the supercon-
ducting material, Q, is the region external to the super-
conductor, and I is the boundary of the superconductor.
Governing systems for the corrections A, and g& have
also been derived.

Note that the system (24)—(27) for Ao is uncoupled
from the system (28) and (29), i.e., one may solve the
former set of equations for Ao and then use this solution
in the latter set in order to determine fo. Furthermore,
the system (24)—(27) implies that, to leading order, the
magnetic potential is exactly the same as that would be
obtained if the superconducting sample were not present.
In many cases, these equations may be easily solved.
Thus, the main task to be performed in solving the high-
~, high-field equations is to solve (28) and (29) for the
leading-order term go in the order parameter. This

H = 0.3K
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FIG. 11. Effect of magnetic-field strength on the distribution
of vortices.
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0O 0Oo 0O

0

tremendous simplification, e.g., uncoupling, is not possi-
ble with the full Ginzburg-Landau model for which the
order parameter and magnetic potential are fully cou-
pled.

On the theoretical side, it has been shown that as
a~DO, solutions of the full Ginzburg-Landau equations
converge to solutions of the leading-order equations
(24)—(29). It can actually be shown that the convergence
is quadratic, i.e., that a ' A, —Ao =0 (a. ) and

Qo=O(a' )
—as x'~~, where (g, A, ) denotes the

solution of the full Ginzburg-Landau equations for a

K=10
0OO1 0Oo~

0O

Q OQ~ QO QO 0

0 Qe Oe Qe 0

Oo O OO

0 Oe 0 Oe

Qoo Qgoo 0

0Oo~e 0Oo

0O

I
Oo

o
0De

QOI

0Oo~

QQe Qe 0O oo

Simplified high-K model.

FICx. 10. Vortices for different values of x and for the
simplified high-sc model.

FIG. 12. Vortex distribution in a 30 coherence-length square
sample.
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FIG. 13. Vortices in a five-layer square superconductor.

given value of ~. This provides partial justification for
the expansions (23) in terms of powers of I/~ .

We have developed a biquadratic finite-element code
for finding solutions of the simplified equations (28) and
(29). Here, in Fig. 10, we compare results obtained using
this code with the results found by using our code for the
full, coupled, Ginzburg-Landau equations. As in the pre-
vious figures, the sides of the square superconducting
samples are of length equal to 20 coherence lengths. The
nondimensional applied 6eld is perpendicular to the sam-
ple and has magnitude equal to a/2. The plots labeled
with finite values of a were obtained from the full
Ginzburg-Landau model with the indicated values of x.
The plot labeled with an infinite value of ~ was obtained
using the simplified model (24)—(29). It is evident from
the plots that there is very little difference between the re-
sults for the full Ginzburg-Landau equations for values of
x ~ 5, and that these are also indistinguishable from the
results obtained using the leading-order equations. Thus,
it seems that the simplified model (24)—(29) yield accu-
rate approximations to solutions of the full Ginzburg-
Landau model even for moderate values of ~ and of the
applied field. In Fig. 11, the effect of increasing applied
fields are examined for the simplified model; again a 20
coherence-length square sample is used; the applied field
has magnitude equal to 0.3~, 0.5~, and 0.7' for Figs.
11(a), 11(b), and 11(c), respectively. We see that as the
applied field increases, more vortices appear. In Fig. 12
we see the effect of increasing the size of the box; now the
square sample has sides equal to 30 coherence lengths;
the applied field has magnitude ~/2. Comparing with the
20 coherence-length sample at the same field value [Fig.
11(b)], we see that many more vortices are present. Also,
the hexagonal pattern of the vortex lattice is clearly evi-
dent away from the boundary of the sample.

VI. THE LAWRENCE-DONIACH MODEL

One of the features of high-T, superconductors is their
layered structure, comprising of alternating layers of su-
perconducting and non- (or weakly) superconducting ma-
terials. In planes parallel to the layers, the material is
isotropic. However, there is a strong anisotropy present
when one compares material properties parallel and per-
pendicular to the layers. The homogeneous, isotropic
Ginzburg-Landau model cannot account for the anisotro-
py of layered superconductors. In its place, alternative
models have been proposed. One of these is the ansiotro-
pic Ginzburg Landau model -or e+ectiue mass mod-el

introduced by Ginzburg in 1952. In this model, the

Ann

FIG. 14. Vortices in a five-layer rectangular superconductor.

effects of the microscopic layered structure are averaged
out so that the anisotropic nature of the material appears
only in the form of a mass tensor with unequal principal
values. The model itself is only a slight variant of the
Ginzburg-Landau model. Another model for layered su-
perconductors is the Lawrence-Doniach model. In
this model, the material is treated as a stack of supercon-
ducting planes, each pair of which is separated by a vacu-
um or insulating material. Furthermore, in this model,
the coupling between the superconducting planes is simi-
lar to that which occurs in a Josephson junction.

The anisotropic Ginzburg-Landau and Lawrence-
Doniach models have been analyzed to show, for exam-
ple, that appropriately defined free-energy functionals
have minimizers in suitable function spaces. The con-
nection between the two models has also been rigorously
established. Speci6cally, it has been rigorously shown
that minimizers of the Lawrence-Doniach equations con-
verge, as the interlayer spacing tends to zero, to a solu-
tion of the anisotropic Ginzburg-Landau equations.
Simplified versions of both models that are valid for high
values of a. and applied fields of O(a) have also been de-
rived.

We have developed biquadratic finite-element codes for
the Lawrence-Doniach model. These codes take advan-
tage of the simplifications that can be effected for high
values of a so that, notwithstanding the three dimen-
sionality of the model, it can be run on workstations.
Here, we present some preliminary results obtained using
our Lawrence-Doniach code. In Fig. 13, we have level
curve plots of the magnitude of the order parameters for
a five-layer superconducting sample. Each layer is a
square having sides of length equal to 13 in-layer coher-
ence lengths. The applied field is given by (0.35, 0.35,
0.35) so that it is tilted with respect to the direction per-
pendicular to the layers. In Fig. 14 a similar plot is given
for a five-layer sample for which each layer is a 10
coherence-length by 20 coherence-length rectangle and
the applied field is given by (0.4, 0.2, 0.4). In these figures
the vortices shift and turn to try to align themselves with
the applied magnetic 6eld.
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