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The conditions for the appearance and disappearance of quantized vortices in rotating superfluid heli-
um are examined. Our approach is based on the two-fluid model of He II. Using a local-momentum-
conservation equation, appropriate when the appearance and disappearance of vortices is on a short time
scale compared with normal fluid viscous times, we find that the free-energy theory has to be modified.
The new theory predicts hysteresis between increasing and decreasing angular velocity, as observed in
some experiments. The theory is applied to some experiments on uniformly rotating superfluid, and also
to experiments on Couette flow. Finally, we consider the stability of a vortex row between rotating
cylinders to perturbations independent of the direction of the rotation axis.

I. INTRODUCTION

The existence of quantized vortices in superfluid heli-
um II was established over 30 years ago, but the question
of how such vortices are created and destroyed is still not
well understood. In this paper we consider
configurations in which the helium is rotating, but we al-
low the possibility of nonuniform rotation, so we include
the case of general Taylor-Couette flow between rotating
cylinders.

Feynman! showed that the energy of uniformly rotat-
ing helium is minimized if the quantized vortices form an
array parallel to the rotation axis (z axis) of density
n =2Q /k where Q is the rotation rate and « is the quan-
tum of circulation, 9.97X10™* cm?s™!. In situations
where there are many vortices in the apparatus, this
Feynman rule is always approximately obeyed. This does
not, however, shed much light on the processes by which
vortices are created or destroyed so that the Feynman
rule state is attained.

Since the vortices are quantized, a complete under-
standing of the processes of creation and destruction will
require a quantum description. This is a substantial un-
dertaking, and is not attempted here; this work is based
on a semiclassical hydrodynamic approach. One of our
objectives is to discover where semiclassical methods can
give agreement with experiments, and where they are
inadequate.

The motivation for this work came from recent experi-
ments by Swanson and Donnelly? and Bielert and
Stamm?® on helium rotating between concentric cylinders.
Swanson and Donnelly* (hereafter referred to as SD87)
predicted using free-energy arguments that the onset of
quantized vortices would occur at a certain value of the
Reynolds number Re=Re, Theoretical work by
Barenghi and Jones® and Barenghi® based on the Hall-
Vinen-Bekharevich-Khalatnikov (HVBK) equations pre-
dicted that at higher Re=Re, a transition would occur in
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the flow with the onset of toroidal Taylor vortices. The
experiments did indeed find critical Reynolds numbers
marking the onset of vortices and the Taylor-Couette
transition. While the Taylor-Couette transition did occur
at approximately the correct value of the Reynolds num-
ber, the onset of vortices occurred at a critical Reynolds
number two to three times greater than that predicted by
SD87. This raised doubts about the validity of the free
energy method for determining the rotation rates at
which vortices onset in the Taylor-Couette problem, and
prompted this investigation.

The mechanisms that we envisage for the creation and
destruction of superfluid vortices are (i) spontaneous
creation or destruction in the interior of the He II, due to
an energetically favorable transfer of momentum between
the normal-fluid component and the superfluid com-
ponent and (ii) creation or destruction of vortices at a
boundary. Actually, the second process can destroy vor-
tices, but it cannot create them, except possibly at very
high rotation rates, because of the energy barrier that ex-
ists near a boundary. "’

Another possibility is that the vortices found in experi-
ments in rotating He II are the result of the stretching of
remnant vortices by large-scale meridional flow. Such
flows occur in classical fluids when the rotation rate is
changed, driven by Ekman pumping in the viscous
boundary layer. This process may well be important in
some experiments, but in carefully controlled experi-
ments at low rotation rates the vortex states attained
have a degree of repeatability which might not be expect-
ed if the formation process depended entirely on random
initial conditions and weak meridional circulations. We
shall not explore this possibility further.

The process of destruction of vorticity at the walls of
the container will be enhanced if instabilities occur which
drive vortices towards the boundaries. It is well-known
that many classical vortex array configurations are unsta-
ble. In consequence, even when the formation of such an
array is energetically favorable, it may disintegrate if the
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array is unstable and the vortices will be lost at the walls.
Naively, because of these instabilities it is hard to see how
vortex arrays can form at all; however, as we see below,
the mutual friction between the superfluid and normal-
fluid components can stabilize certain vortex arrays.

The outline of this paper is as follows: in Sec. II we de-
velop the energy criterion for creation and destruction of
vortex lines under the semiclassical assumption that the
transitions are fast and locally conserve the total momen-
tum of superfluid plus normal fluid components. In Sec.
III we apply this theory to experiments of Mathieu,
Marechal, and Simon,? hereafter referred to as MMS80,
in which repeatable hysteresis loops between vortex for-
mation and destruction were obtained. In Sec. IV we ap-
ply the theory to the onset of vortices in Couette flow. In
Sec. V we examine the stability of vortex arrays to small
two-dimensional perturbations independent of z, and
finally we draw conclusions as to the successes and limita-
tions of this semiclassical hydrodynamic approach.

II. ENERGY CRITERION FOR THE ONSET
OF VORTICES

The principle of minimization of free energy has been
widely applied to predict both the appearance of
superfluid vortices in rotating systems and the expected
final configuration. Some success has been achieved (see,
e.g., Donnelly®), but some problems remain. The method
has proved very successful in predicting final
configurations of a given number of vortices, !° although
the existence of a number of local minima in the free-
energy function sometimes makes it difficult to be sure
that an experiment will always find the absolute
minimum configuration. However, the method is not
nearly so successful in predicting when vortices appear or
disappear. In particular, it is not clear how the free-
energy method is to be extended to cases where nonuni-
form rotation is to be expected, as in Couette flow. Swan-
son and Donnelly* have proposed a criterion for the first
appearance of vortices, but recent experiments®> suggest
that the actual first appearance of vortices occurs at a ro-
tation rate two to three times faster than their formula
predicts.

A further difficulty with the free-energy argument is
that it predicts that vortices should disappear as the rota-
tion rate is reduced at the same angular velocity as vor-
tices appear as the angular velocity is increased. It does
not predict hysteresis. However, experiments, particular-
ly those at lower temperatures, suggest that such a hys-
teresis does exist. Packard and Sanders,!! for example,
found a significant difference between the behavior dur-
ing spin-up and spin-down, with vortices persisting as the
angular velocity is decreased well below the value at
which vortices appeared as the angular velocity in-
creased.

A more conceptual objection to the free-energy argu-
ment is that although the rotation rate of the container
explicitly appears in the formula for onset, it is not al-
ways entirely clear how what is happening to the con-
tainer can affect the superfluid. Of course, if a normal-
fluid component is present, it will spin up to the angular
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velocity of the container by viscous action. However, the
free-energy argument is independent of the normal-fluid
density, suggesting that it should apply even at zero tem-
perature when there is no normal fluid. If the superfluid
does not interact with the container and there is no nor-
mal fluid, how can the superfluid know that the container
is rotating at all? Nevertheless, despite these objections,
it is clear from the experiments that there is a connection
between free energy and vortex formation, so we now
reexamine the conditions for vortex formation, explicitly
taking into account the role of the normal fluid and con-
sidering possible coupling to the container.

We consider a transition from a state with a given
number and distribution of superfluid vortices to a state
with a different number and distribution. Since we think
of this transition as a single event, the state achieved after
the transition will not necessarily be the final state; fur-
ther transitions or adjustments may occur subsequently.
We let the velocity of the normal fluid before the transi-
tion be v, and the velocity of the normal fluid after the
transition be ¥,. All velocities refer to an inertial (labora-
tory) frame, rather than the rotating frame sometimes
used in free-energy calculations. Similarly, the velocities
of the superfluid component before and after the transi-
tion are v, and ¥, respectively. The transition will only
be possible provided that the energy of the configuration
before the transition exceeds the energy after, i.e.,

E,+E,>E,+E, , (2.1)

where E, =p, [v2/2dv and E;=p, [ v}/2dv are volume
integrals over the whole fluid, and E,,E, are defined
similarly. We shall henceforth assume that if the energy
for a transition is available, it will take place.

We assume that the initial state is known, so that we
can calculate E,, and from the proposed transition be-
tween superfluid states we can evaluate E, and E,. Cri-
terion (2.1) will hold whether the transition is fast or
slow, but to use it we need to find En, and this requires
some assumptions about the nature of the transition.

The first assumption we make is that the appearance of
each individual quantized vortex happens on a very rapid
quantum time scale, so that momentum is conserved lo-
cally, at each point in the fluid. This time scale can be es-
timated as tquam~a2/K~ 1013 s, where a is the vortex
core parameter. We also assume that at the moment of
creation, the vortex is not coupled to the walls, so that no
angular momentum is transferred to the walls. Immedi-
ately after the formation of the vortex, adjustment to the
pressure distribution, and hence to the momentum distri-
bution, will occur on the sound speed time scale. Further
adjustments will occur on the viscous diffusion time scale.
We assume that the quantum time scale is much faster
than these effects, so that they do not affect the process of
formation, but only what is subsequently observed.

The transitions that involve the creation or destruction
of a vortex in the interior of the fluid will then be fast,

and local conservation of momentum then implies
PnVn TPV =pp¥, TpV, . 2.2)

We can now eliminate ¥, from (2.1) using (2.2) to obtain
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fps(vs—v,, )dv > fps(vs—v,, )2dv

+ 2w, v, Pav 2.3)

Pn
as the necessary and sufficient condition for the transition
to occur.

If the normal fluid is initially in a state of uniform rota-
tion, and if p, /p, is small, we can then neglect the second
term on the right and the transition will take place pro-
vided that

E—QL>E—-QL,, (2.4)
where Ls=fpsr><vsdv and f,s=fpsr><7sdv is the an-
gular momentum of the superfluid before and after transi-
tion. (2.4) is equivalent to saying that the system will
minimize the ‘“free energy” E,—Q-L;, the criterion
which has been very extensively used to predict the final
state of vortex configurations (see Hall;!? references and
discussion in Donnelly®).

However, (2.3) is not equivalent to (2.4) unless
&=p,/p, is small, i.e., the temperature is close to the A-
point temperature, T,. It is helpful to apply (2.3) to the
classic problem of the formation of a single vortex' at the
center of a cylinder of radius b rotating at angular veloci-
ty Q. If the initial state is one of uniformly rotating nor-
mal fluid and stationary superfluid, and we consider a
possible transition to a state in which there is a singly
quantized superfluid vortex, (2.3) predicts transition pro-
vided

Q> b

K
27b?

In (2.5)

(1+8,

where a is the core parameter, normally 0(107%) cm,
which differs from the result given by the free-energy ar-
gument,

K
b2

In (2.6)

Q> Q4= b
2 a

(e.g., Donnelly,’ Eq. (2.21)] by the factor (1+¢). The
physical reason for this difference is that our argument
assumes that the momentum gained by the superfluid is
lost (locally) by the normal fluid. This is a more restric-
tive assumption than the free-energy argument which as-
sumes that superfluid momentum can be passed to the
container during transition, which is further assumed to
have a large moment of inertia (e.g., to be fixed in the ro-
tating frame). Note that the essential difference between
(2.5) and (2.6) relies on there being no transfer of angular
momentum to the container during the vortex formation
process; subsequent to the vortex formation, the normal
fluid will again come into solid body rotation with the
container through the action of normal-fluid viscosity, so
that angular momentum will always eventually be
transferred to the container, as indeed has been observed
in experiments. '3

Given that we know very little about the quantum pro-
cesses involved in the transition between different states,
it is of interest to consider the results derived from mak-
ing assumptions other than strict local momentum con-
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servation (2.2). Suppose instead that for the formation of
a single vortex in a rotating cylinder the local angular
momentum of the superfluid and normal fluid is con-
served outside a cylinder of radius ¢, but that within a ra-
dius c only the total angular momentum is conserved. We
will assume there is no interaction with the container
during transition, but that the normal-fluid velocity after
transition is that which gives the minimum critical value
of (. This might provide a crude model of a situation
where the mean free path of excitations is ¢, and so
momentum transfer on the quantum time scale might ex-
tend over a distance c rather than being purely local. We
then find (assuming b >>a) that the critical value of Q is

o=—~ ‘ln b

27h? a

2 2
c " —a
~——— +In
c?+a?

+&

e

In the limit of exact local momentum conservation,
where ¢ =a since the vortex is assumed hollow core, we
recover (2.5). In the limit where ¢ =b so that momentum
transfer can occur over the whole fluid (but not to the
walls) we obtain

a=—_In|&
21b a

If coupling to the container is permitted then the § term
in (2.8) is removed and we have the usual formula (2.6).
In most laboratory configurations In(b /a) will be in the
range 15-20, and the factor p, /p, will be similar at tem-
perature T~ 1.4 K.

The above arguments cannot give a definitive answer to
whether (2.5), (2.6), or (2.7) is the more appropriate cri-
terion, and in the absence of a quantum theory of liquid
helium the theoretical position is not clear. However, the
characteristic time for the diffusion of momentum in the
normal fluid in the rotating cylinder is the spin-down
time

tdiﬂ':(bz/vﬂ)l/z >

(2.8)

ot

where v is the normal-fluid viscosity. This time will be of
the order of minutes in a typical experiment; it seems
very likely that the time taken to establish the transition
from one superfluid vortex state to another will be much
less than this, and that (2.2) and (2.5) are generally the
most appropriate formulas; we know of no observations
which suggest that fractionally quantized vorticity exists
in He II even transiently. Nevertheless, it would be in-
teresting to know how fast these transitions take place.

There is some doubt about whether local momentum
conservation can be appropriate at very low tempera-
tures, because the mean free path of the excitations which
make up the normal fluid increases as the temperature
decreases. If the mean free path becomes comparable to
the dimensions of the apparatus, it no longer makes sense
to use the two-fluid model in the way we are doing. The
problem then becomes a much harder one in which the
assumption of local thermodynamic equilibrium is no
longer valid; we have reached the limit of semiclassical
methods and require a quantum approach to resolve this
issue.
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As mentioned above, the free-energy argument does
not predict hysteresis. However, if we use (2.3) to investi-
gate a transition in the rotating cylinder configuration
from a superfluid state with a singly quantized vortex on
the axis to a state with no superfluid vorticity, we find
that as the angular velocity is reduced the central vortex
disappears when

K

Q< (1—0)1
2mpz 1 On

b ] . (2.9)
a

Since this differs from (2.5), local conservation of momen-
tum implies the existence of hysteresis. Indeed, accord-
ing to (2.9) if p,>p,, so that {>1, as happens below
about 1.95 K, even if the angular velocity is reduced to
zero the central superfluid vortex will remain forever.

We now briefly review the experimental evidence to see
whether our arguments are consistent with what has al-
ready been done. First we note that experimenters have
noticed that in order to get results in agreement with the
free-energy predictions it is necessary to first establish the
rotation of the apparatus and then to lower the tempera-
ture below T, rather than to first establish the tempera-
ture and then to increase the rotation rate.!* The above
considerations indicate why that should be so; if the rota-
tion rate is held constant as the temperature is lowered
below T, the system goes through a state just below T’
where p, /p,, is small, so that (2.1) and (2.2) give the same
result as the free-energy argument. Once the vortex (or
vortices) has formed just below T, it will remain as the
temperature is lowered. On the other hand, if the tem-
perature is first lowered below T, and then the rotation
is started up, the angular velocity has to get to the higher
value suggested by (2.5), since p;/p, is then never small
during the rotation. This suggests that (2.5) [and hence
(2.1) and (2.2) on which it is based] bears at least as good
a comparison with experiments as (2.6).

Some supporting evidence for (2.5) is found in the ex-
periment of Lynall et al.'> They measured the critical
velocity () for the appearance of vortices in an annulus as
a function of temperature. Their aim was to determine
the core parameter a from the free-energy formula (2.6)
for Q, Although they failed to reproduce the expected
change of a with temperature in the region near T, their
data for T <2.1 K are relevant to our discussion because
they were taken by first lowering the temperature and
then rotating the annulus. In this range Lynall et al.
discovered a temperature dependence which cannot be
explained by (2.6). For example, for an annulus of width
b =0.0762 cm, they found that  changes by 21.2%
from T=2.07 K to T=1.97 K. This large change can-
not be taken into account by the weak variation in tem-
perature of the vortex core parameter,'® for which Q,
changes by only 3.9%, but is more consistent with our
prediction (2.5) because 1+ ¢ changes by 21.9%. Similar
results were obtained using other values of the width b.

There are however some experiments which are
difficult to explain on the basis of (2.5). The first is the re-
sult of Packard and Sanders;!! they found the appearance
of the singly quantized vortex in a very small cylinder at
1.2 K to be at 1.6 rad s~ ! when the free-energy argument
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redicts 1.0 rads™!. Because the ratio of p /p, is so
p Ps/Pn

large at this low temperature, (2.5) predicts a much
higher critical Q than 1.6 rads™~!. Apparently, local con-
servation of momentum does not hold at temperatures
this low, otherwise it is hard to see how the vortex could
form. Perhaps this is not too surprising, because at this
temperature the mean free path of the excitations respon-
sible for the normal fluid is long. In some way, the vortex
seen by Packard and Sanders must have formed by a
direct coupling between the superfluid and the walls, al-
lowing transfer of angular momentum from superfluid to
container on a fast time scale.

The second is the experiment of Swanson and Donnel-
ly, 17 which was cooled first and rotated later. The critical
velocity was found to be about 10% lower than predicted
by (2.6) at temperatures ranging between 1.5 to 2.165 K,
in disagreement with (2.5). A similar percentage lower
value was determined by Shenk and Mehl'® at 1.8, 1.65
and, with some uncertainty, at 1.4 K. A possible ex-
planation is that, as pointed out by Swanson and Donnel-
ly,!° the amount of mechanical vibrations introduced by
the stepping motor was significant and the cell was set in
rotation relatively quickly. Swanson and Donnelly and
Shenk and Mehl did not observe the hysteresis found by
MMS80, who took great care to reduce the noise due to
the transmission coupling (servomotor, ball bearings, etc.)
and the electronics. Mechanical vibrations are likely to
introduce violations of the local law of conservation on
which (2.5) is based, and MMS80 report that the effect is
very sensitive on the noise level.

Note also that (2.3) does not depend on the normal
fluid being initially in a state of uniform rotation, so that
it can be applied to situations such as Couette flow with
as much validity as when applied to the rotating bucket
experiments. However, the criterion (2.3) needs care
when being applied, for the appearance or nonappearance
of a new state depends now on how it is reached; for ex-
ample, if we slowly increase the angular velocity in the
rotating cylinder, we might find an €, at which the tran-
sition from no vortices to one vortex occurs, and an £,
where the transition from one to two vortices occurs.
However, this ), will not necessarily be the same rota-
tion rate as would be required for a direct transition from
no vortices to two vortices.

When comparing results of the free-energy theory with
experiment, many authors have used the concept of me-
tastability to explain why their observed states do not
correspond to the state of minimum free energy. From
our point of view, at a finite temperature below T, free-
energy theory is invalid when considering transitions
which change the number of vortices; however, when
considering the final configuration of a fixed number of
vortices, our requirement that any change locally con-
serves momentum no longer applies. There is no reason
why an adjustment of the positions of the vortices should
take place rapidly, so the momentum constraint is re-
laxed and free energy should try to minimize. It is how-
ever possible that a local minimum rather than a global
minimum will be found by the system, and we describe
such a state as a metastable state. We prefer to make a
sharp distinction between situations where the number of
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vortices is constant, in which there is a potential for the
system which may give rise to metastability, and situa-
tions where the number of vortices is not constant in
which there is no potential for the system so that the con-
cept of metastability is inappropriate.

III. APPLICATION TO THE EXPERIMENT
OF MATHIEU, MARECHAL, AND SIMON

In the experiment of MMSB80, a rectangular cavity 6
mm by 49 mm containing He II was rotated. Superfluid
vortices formed, and were detected using the second-
sound method. As expected from free-energy theory, the
vortices form an array in the interior of the cavity, bor-
dered by a vortex-free strip. At a rotation rate of
Q=0,=1.3 s7!, they showed that the free-energy
method predicts a strip of width d;=0.25 mm, with
N,=6970 vortices in the cavity. They noted that after
any strong perturbation of the system this state was ob-
tained. However, if the velocity was very gradually in-
creased and decreased over a range
Q,—AQ <Q <Qy+AQ and the number of vortices N in
the cavity was measured, a hysteresis loop was obtained;
their experimental data is replotted in Fig. 1. The key
observation is that this hysteresis loop, although depen-
dent on the temperature, was reproducible between
different experimental runs.

In addition to the experiment, MMSB80 also set up a
rather elegant mathematical technique for calculating the
energy and momentum changes associated with changing
vortex distributions, which enables us to approximately
evaluate the integrals in (2.3) for this configuration. At
0=, the extremes of the hysteresis loop correspond to
N =N, and N =N, vortices, corresponding to a vortex-
free strip of width d =d;=0.39 mm and d =d,=0.15
mm, respectively. Our new ideas only affect vortex for-
mation and destruction; for a fixed number of vortices we
expect to find the configuration of minimum free energy
(ignoring the possibility of metastability in the sense
defined in Sec. II), which, as shown by MMS80, consists
of an array of vortices at the density n =20 /k given by
the Feynman rule surrounded by the vortex-free strip.
We interpret the experiments, as did MMSB80, as indicat-
ing that as the angular velocity is increased along the
lower slope of the hysteresis loop the width of the strip is
constant at d =d, and vortices are being added to keep
the interior region at the Feynman rule density. When
the angular velocity is then reduced down from Q,+AQ
initially no vortices are lost, but the Feynman rule pre-
dicts that the density of vortices must decrease, so the
width of the vortex-free strip starts to reduce. This is
why there is a flat top to the hysteresis loop. However,
when the interior region has expanded so that d =d,,
vortices start to disappear, and the system moves down in
angular velocity along the upper slope of the hysteresis
loop. This continues until the angular velocity is re-
versed at Q,—AQ. Then along the flat bottom of the
loop the number of vortices is constant but the vortex-
free strip widens, until it reaches d =d, and vortices start
coming in again along the lower slope of the loop.

The theoretical points that require explanation are why
do new vortices start to enter when d is increased past d,
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and why are vortices lost when d is reduced past d,? Ac-
tually, an explanation of why vortices are lost when
d =d, was given by MMSB80, and we believe their reason-
ing was correct; the free-energy barrier at the walls disap-
pears at approximately d =0.11 mm in reasonable agree-
ment with the observed value d =d, =0.15 mm. As they
remark, their calculation assumes that the disappearance
of the vortices leaves the interior continuum undisturbed,
so one would not expect exact agreement. The disappear-
ance of this energy barrier allows vortices to pass across
the vortex-free strip to be absorbed at the walls.

They pointed out that vortices could not come in from
the walls, because the barrier against the entry of the first
vortex is very large (see their Fig. 6); if the mechanism of
vortex entry was that creation occurred at the walls and
vortices passed across the vortex-free strip into the interi-
or, the process could never get started. The vortices that
enter at d =d,; must therefore do so in the interior
through the mechanism outlined in Sec. II.

We make the same approximation as MMSS80, that the
N-vortex configuration in the interior is unperturbed by
the addition of a new vortex at a distance y from the wall
y =0. The superfluid velocity before transition v is that
produced by the N vortices in the interior, and the
superfluid velocity after transition, Vv, corresponds to v,
with an additional vortex at r=(0,y). We let
v, =V, +V,,, where v, corresponds to the irrotational
part of the flow with perpendicular velocity equal to that
at the boundaries, and v, corresponds to the flow in-
duced by the vortices and their images. Corresponding
to vy, we have a stream function 1, such that
v,,=ZXV1,, and ,=0 on the boundary. We adopt a
similar decomposition for ¥,. The normal-fluid velocity
before transition is v, = Xr. From MMS80,

1 o 1

Sps [ Ii=91ds =p, [ vl —¥},)ds (3.1)
(the integral being over the whole cavity), because the to-
tal energy is the direct sum of the rotational and irrota-
tional parts of the flow. Now

1 2o 1 W, N
2ps stdS‘— 2Ps fci¢2—87dl— iglzps’“ﬁl(ri) )

(3.2)

where r; is the location of the ith vortex, and C; is a con-
tour of radius a around each vortex. When evaluating
the energy, we take a as the healing length appropriate
for a hollow core vortex,

Uy(r;)= X kG(rp1;) ,

i#*j

(3.3)

where G(r,r;)=g(r,r;)+In|r—r;|/27 is the Green’s-
function solution of

V2G =8(r—1,)

vanishing on the boundary. Writing similar equations for
v, but summing over N +1 to include the extra vortex,
we obtain
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psk®

1 2_214S = 1
2psf[vs ¥21dS =p,kih,(r)+ g(r,r)+ - —Ina

(3.4)
We must also calculate
[ psvu (¥, —v,)dS=p,Q [ (r-V)WdS =2p,Q [ Wds ,
(3.5)

where W=1,—1, is the streamfunction due to the single
additional vortex at r. Finally we need

1 1 3w
¢f PV =V S =—Lp, fc“"a;‘”

= — SEpxW(r)

__1 2 1
2§psx glr,r)+ Py Ina

(3.6)

To evaluate the required quantities explicitly we adopt
the further approximation that the cavity has infinite ex-
tent in the x direction, the walls being y =0 and y =/. In
the appendix of MMSB80 it is then shown that if the width
of the vortex-free strip is d, then

P,=—Q( —2d)y , (3.7
and if y and d are small compared to / then

__1 _1
gnn=—--l[y], [¥dS=_yp-D. 68

Substituting these expressions into (3.4), (3.5), and (3.6),
and using the criterion for transition (2.3), we see that the
transition to the extra vortex state is allowed if

(1+8)p,x’

kp,Qy(2d —y)— y=

In(2y/a)>0, O<y <d .

(3.9)

Note that as in the MMSB80 calculation the criterion does
not depend on /, the distance between the walls. The cri-
terion is essentially a local one, dependent only on condi-
tions in the vortex-free strip. Inserting the numerical
values appropriate to the MMS80 experiment, Q,=1.3
s7!, ¢£=1.3 at 1.9 K, and a =10"7 cm and looking for
the smallest value of d which allows (3.9), we find that the
criterion (3.9) is first satisfied at d =0.44 mm with y then
0.42 mm. The close proximity of y to d is slightly unfor-
tunate, because the addition of the new vortex that close
to the interior vortices will disturb the interior vortex
configuration, at least for those vortices close to the point
where the new vortex enters. Nevertheless, the observed
value of d;=0.39 mm is in reasonable agreement with
our predicted value of 0.44 mm. The experimental and
theoretically predicted curves of N against ) are shown
in Fig. 1. The theoretically predicted hysteresis loop is
constructed by finding N,=Ny+2(dy,—d,)L(28y/k)
where L =4.9 cm, N,=6970, and Q,=1.3 s~ ! in the
MMS80 apparatus, and
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FIG. 1. The number of vortex lines N — N, as a function of
angular velocity —{),, showing that the number of vortices
depends on whether the angular is being slowly increased (lower
branch) or decreased (upper branch). In the MMS80 experi-
ment No=6970 and Q,=1.3 s~!. The points are the experi-
ments, the dashed line being to guide the eye. The solid line is
the theoretically predicted hysteresis loop.

N,=N,—2(d,—dy)L (2Qy/k) .

The gradient of the hysteresis loop dN /d on the upper
branch is given by 2L(l —2d,)/k and on the lower
branch by 2L (I —2d,)/k where [ =0.6 cm. The extremi-
ties of the loop are given by the experimental value
AQ=0.186s" 1- this data enables the points labeled A4, B,
C, and D on Fig. 1 to be found, and the loop to be con-
structed. Considering that the approximation of ignoring
changes of configuration of the interior vortices has been
made, the agreement between theory and the experimen-
tal values seems quite satisfactory.

The change in the free-energy between the states with
and without the vortex is given by MMS80 Eq. (A7) as

2
s

PsX 102y /@) —kp, Qp (2d —y)
o In(2y/a)—kp,Qy y) .

AF(r)= (3.10)
As we would expect, if =0 then AF <0 is equivalent to
(3.9). For values of d >d,=0.11 mm, AF has a local
maximum in the vortex-free strip, so that it is then not
advantageous for a vortex to move out from the interior
vortex array to the boundary. However, if d <d,=0.11
mm the maximum disappears, and it is then favorable for
a vortex to move out of the interior array towards the
wall, where it is destroyed.

One further point has been revealed by the comparison
of this experiment with our theory; if the system is given
a strong perturbation, MMSS80 found that the system re-
turned to the free-energy equilibrium state of N, vortices
at (5. We note that our extra factor of (1+¢) arises be-
cause of the extra constraint of local momentum conser-
vation. If that constraint is removed, for example by jar-
ring the cryostat or momentarily feeding a large dc heat
flux into the cavity, hence allowing an external momen-
tum source into the system, the system returns to the
minimum free-energy state.
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IV. APPLICATION TO COUETTE FLOW

We now apply our theory to the problem of the
Couette flow of helium between rotating concentric
cylinders. We only examine the case where the outer
cylinder is at rest, although the extension to general rota-
tions is straightforward. The main reference here is to
Swanson and Donnelly* (SD87). The normal-fluid veloci-
ty

v,=(Ar+B/r¢ , @.1)

where $ is the unit vector in the azimuthal direction and
A=—QR?/(R}—R?)and B=— AR3, R, and R, be-
ing the radii of the inner and outer cylinders, respective-
ly. As pointed out by SD87, as the rotation rate of the
inner cylinder Q is gradually increased, the first transi-
tions are not from vortices entering the gap between the
cylinders but from virtual vortices arising at the axis
building up the irrotational flow of superfluid in the heli-
um. These are however, undetectable by the second-
sound technique, since no real vortices enter the gap until
the angular velocity Q is much larger. Applying condi-
tion (2.3) to find the value of Q) at which the transition
from the state of n virtual vortices to the state of n +1
virtual vortices occurs we obtain

nk B ’

————A4 d
27r r e

R
o, [

1

R
o 12|

(nt+1)k B
2mr r

— Ar

2
2
+¢& py= }rdr, (4.2)

which reduces to

ln(Rz/RlH-%(R%—R%)

_@ntlk

B
47

> € In(R,/R,) . (4.3)
4

If the gap d =R, —R,; between the cylinders is small
compared to the radii of the cylinders (normally the case
in these experiments), we can expand in powers of d /R,
to obtain

Q,= (n—1/24¢&/2)k
2T

[1+5d/3R,+0((d/R,)*)]

(4.4)

and the transition from the n to the n +1 state occurs
when Q> Q, as Q is increased. The strength of the virtu-
al vortex at the origin is I'y=n« where

F0=Q,,1TR§[1—5d/3R2+0((d/R2)2)]——(£—%M .

4.5)

Now we examine the transition where vortices enter
the gap. The angular velocity is ) and since the number
of virtual vortices at the origin is large, the vortex
strength at the origin, T, is given by (4.5) with Q, re-
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placed by  to sufficient accuracy. Before the transition
the normal-fluid velocity is given by (4.1) and the
superfluid velocity is given by
FO A

" 2mr (4.6)

vS
After the transition the superfluid velocity field has / vor-
tices equally spaced on a circle of radius (R;+R,)/2
(that this is the optimum position for the vortices was
demonstrated by Fetter, 20 hereafter referred to as F67),
and the irrotational part of the flow is given by (4.6) but
with IT'; replaced by an as yet unknown constant I';. Cri-
terion (2.3) can be written

Ey>E,—E,+E,, @.7)
where

E0=f%ps(v§——2vs-v,,)dv , E1=f%psvfdv ,
1 ’ (4.8)
E2=fpsvs'vndv ’ E3=§f-2—ps(vs-—vs)2dv :

We need some results which are fortunately easily obtain-
able from F67;
2

E = f; 1n(R,/R,) rl—%zx
K2l
+p41T [In(2d /ma)+1/4] 4.9)

comes from formula (32) of F67 taking the narrow gap
limit and locating the vortices midway between the gap.
The other quantities we need only require the azimuthal-
ly integrated ¢ component of the superfluid velocity ¥,
which is just the circulation around a circle of radius 7;
this is easily found from Kelvin’s circulation theorem, the

result being formula (17) of Fé67,
f(f”rvd,ci(z;:r1 +Ikn(r—r,) (4.10)

where r,=(R;+R,)/2 and n(x)=(1+x/|x])/2 is the
step function. We obtain

E,=p,T'\[ Adr,+BIn(R,/R,)]

A(R,+r.)d
—«klp, ————2———————B In(R, /r.) 4.11)
and
_ &ps 2
E,= {In(R, /R (T —Ty)—Ix('{—Ik/4)]

4
+2T gl In(R, /r,)+ 2 [In(2d /ma)+1/41) .
4.12)

We now find the value of T
E,—E,+E,, which gives

= Ie  (E— 1)k
I=Fot +2(§+1) '

that minimizes

(4.13)

Inserting (4.13) into (4.9), (4.11), and (4.12), and then put-
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ting these into (4.7), gives the required criterion. Ex-
panding in powers of d /R, the criterion for transition
becomes

Q> -Z:—I;F—%)ﬁ[ln(Zd/wa)+1/4]=Qo(l+§) . (4.14)
2

which is the criterion derived by SD87 except for the fac-
tor 1+ on the right-hand side. In Fig. 2 ©/Q is plot-
ted as a function of temperature. Also shown are the
points from the data sets of Swanson? and Bielert and
Stamm? also plotted in units of €. The SD87 results are
well below the experimental data. For higher tempera-
tures, our theory is an improvement, but is still somewhat
below the data points. Below around 1.8 K our results
predict 2 much too high and the SD87 theory gives a re-
sult much too low. One possibility is that the vortex
configuration at onset has a more complicated geometry
than a simple ring of vortices midway between the
cylinders. Another possibility is that our results are inap-
propriate at low temperatures because of the problem of
the mean free path of excitations no longer being small.

Finally it must be remarked that our theory neglects
the possible existence of remnant vortex lines created
when cooling through the A point.?! These lines may
remain attached to the cylindrical walls, may affect the
transfer of angular momentum and may interfere with
the generation of the first row of vortices via a vortex mill
process.’ Schwarz?? estimated the velocity of depinning
a vortex line from a small bump of radius r, as
Vgep =K /(2mD)In(ry/a) where D is the channel size. Us-
ing the values D =b =1 mm and r;=0.0015 cm reported
by Bielert and Stamm, we find v4,, ~0.02 cmsec™ ' which
is smaller than QR ;~=0.1 cmsec™!. This suggests that
our assumption is justified.

5__
o]
Q/Q, ] {}I
3—.
]
2—
1— o
Oo+——T—7T7T T T T T T T T T T T T T T
15 1.75 2.0
TK]

FIG. 2. The angular velocity at the first appearance of vor-
tices as a function of temperature. The angular velocity is plot-
ted in units of Q¢=(2«/7mR,d)[In(2d /ma)+1/4] so that the
dashed line corresponds to the SD87 theoretical value. Filled
circles with error bars: data of Bielert and Stamm (Ref. 3).
Open circles: data of Swanson (Ref. 2). Solid line is prediction
of this theory, 1+¢.
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V. STABILITY OF VORTEX ROWS

The above considerations can give us information
about whether a vortex array can form, but it may be
that such arrays are unstable and break up after forma-
tion. Indeed, the classical theory of the stability of vortex
arrays? tells us that most configurations are indeed un-
stable. Here we investigate the stability of a vortex row
in a narrow gap, relevant to the problems studied in F67
and in the Couette flow experiments.

We consider an array of vortices between parallel
plates at y =—d /2 and y =d /2. This approximates the
situation of vortices between concentric cylinders provid-
ed the gap is narrow compared to the radius. We assume
that the vortices are initially in a row at y =0 a distance /
apart (we depart from Fetter’s notation, so that here [ is
no longer the number of vortices in the gap). If the nor-
mal fluid is in a state of uniform shear with vorticity o

v, =—wyX . (5.1)

We assume that the vortices remain line vortices, so that
we are only considering disturbances independent of the z
coordinate. There are two forces acting on a vortex in
this flow: a Magnus force f;, due to the motion of the
superfluid around it, and a force f, which is the sum of
the Magnus force induced by the motion of the normal
fluid and the drag caused by the mutual friction between
the normal and superfluid components.® We neglect the
inertia of the vortex lines, so that
fM+fD ZpsK(Vs—VL )X’Z\_YO’Z\X[/Z\X(vn —Vvr )]
+'J/6,Z\><(VH—VL):0 ’ (5.2)

where p; is the superfluid density, y, and y are the mu-
tual friction parameters and v, is the velocity of the line
vortex itself. The mutual friction parameters are tabulat-
ed in Barenghi, Donnelly, and Vinen.'® If the position of
a vortex is at (x,y,), (5.2) gives

(5.3a)
(5.3b)

Yo¥Xo +90(PsK_76)=PsKUsy—7WJ’o ’
Xo(Yo—PsK)+PoY 0= —PskVs — V0@V >

where v, is the velocity induced at (x,,y,) by all the oth-
er vortices and their images. The vortices are initially lo-
cated at (ml,0), m running over all integers, the images
of strength « are initially located at (ml,2nd), and those
of strength —« are at [m/,(2n +1)d]. To investigate sta-
bility, we give the (m,0) vortex a perturbation (x,,,y,,)
so that the two sets of image vortices move to
(ml+x,,2nd +y,,) and [ml+x,,(2n +1)d —y,, ], re-
spectively. We assume small perturbations of the form

X, =agexp(At +ime) , y,, =Byexp(At +im¢), (5.4)
where ¢ is a constant which we can choose without loss
of generality to satisfy 0<¢ <27. Inserting (5.4) into
(5.3) and linearizing, we find that the condition for non-
trivial solutions is that

A3+ (pk—70)* 1+ ypskA[C; — Cy + ]

—pskCy(pkCi+yow)=0. (5.5)
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The constants C, and C, appearing in this formula are
given by double sums running over the integers m and n,
arising from the fact that there is a doubly infinite array
of image vortices. Furthermore, these double sums con-
verge slowly so that direct numerical evaluation is not
feasible. Fortunately, however, it turns out that all the
sums over n required can be evaluated using residues. We
thus obtain expressions for C;, and C, involving only
sums over all positive integers m,

C, = Z—';— >, cosech mml cosm ¢ cosech v;nl
m=1
Tml 1
coth p 4 (5.6a)
and
C,= 7—;% mz:l(cosmqﬂ— 1) cosech ﬂ-;nl cothl&rﬂ
(5.6b)

These sums over m converge very rapidly, and hence can
be easily evaluated numerically. For stability, we require
that the roots of (5.5) should have negative real parts. To
analyze this, we first look at the case where there is no
coupling to the normal fluid, obtained by setting the mu-
tual friction parameters y, and ¥ to zero. For stability
we then require C;C, <0. Now all the terms in the sums
appearing in C, and C, are negative, so that the product
C,C, is necessarily positive, equality only occurring as
| — w0, the case where a single vortex is left in the chan-
nel. We deduce that in ideal fluid with no coupling, the
vortex array is always unstable.

We can now consider the criterion for the normal fluid
to stabilize the vortex row, bearing in mind that for all
wave numbers ¢ and ratios //d, C; < —1/4 and C,=0.
The two conditions that must be satisfied are

C,—C,+0=0 (5.7a)

and

pkCi+16@>0, (5.7b)

so the results are actually independent of the coefficient
Yo- Since C; = —1/4, from (5.7a) the normal fluid can
only stabilize the vortex row if the coefficient y is large
enough, i.e., the coupling to the normal fluid is
sufficiently strong. The value of w, the normal-fluid vorti-
city, must also be large enough for the restoring force
provided by the normal fluid to overcome the vortex row
instability. The ratio y/p,k is quite small unless we are
close to T, so when the vorticity o is large enough to
satisfy (5.7b), (5.7a) is easily satisfied. The inequality
(5.7b) is therefore the controlling inequality except very
close to T,. Furthermore, the first configuration to be
stabilized for all ¢ is that where / >>d, i.e., the vortices in
the row are well spaced out. In this limit, C; ~ —0.25, so
we can easily construct the stability boundary for @ pro-
vided we have tables of p; and y as a function of temper-
ature. In Fig. 3(a) we apply (5.7b) with C; = —0.25 to the
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Bielert and Stamm? experiment; ®=QR, /d, so the criti-
cal value of (1 is given by

psTK’

=—, (5.8)

where € is the rotation rate of the inner cylinder,
R, =2.9 cm is the inner cylinder radius and d =0.1 cm is
the gap width. In Fig. 3(a), we plot the stability bound-
ary of the angular rotation rate () of the inner cylinder as
a function of temperature for the apparatus of Bielert and
Stamm; their data points are given for comparison. We
see that the vortex row is unstable at the data points
below about 1.8 K, but stable above. The equivalent Fig.
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FIG. 3. (a) The stability boundary for a row of vortices for
the narrow gap limit. The curve is evaluated for the experimen-
tal configuration of Bielert and Stamm (Ref. 3), and their data
points are plotted for comparison. This stability curve is deter-
mined by the //d — o limit. (b) As for (a), but evaluated for
the experimental configuration of Swanson (Ref. 2), with the
data points plotted for comparison.
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FIG. 4. The stability boundary for a row of vortices for the
narrow gap limit as a function of vortex spacing ratio //d. The
curves for T=1.8 K and T"=2.0 K are shown. The curves are
evaluated for the experimental configuration of Bielert and
Stamm (Ref. 3).

3(b) is plotted for the Swanson® data. It is interesting to
note that the temperature below which the vortex row be-
comes unstable marks some anomalous behavior in the
Swanson data [Fig. 3(b)], and coincides with the tempera-
ture at which the Bielert and Stamm data had rather
large error bars [Fig. 3(a)]. This could therefore mark a
transition point: the data in both experiments on the
right of the stability boundary may correspond to situa-
tions where the vortices form a simple row in the middle
of the gap, but at lower temperatures, some other (possi-
bly more complex) distribution of vortices may occur.

In Fig. 4 we plot the stability boundary of () against
1/d at two fixed temperatures; this illustrates how the
vortex row is more likely to be unstable if the vortices are
closer together. This is what we would expect, since the
ideal vortex instability is enhanced by interactions be-
tween neighboring vortices. However, we note from this
figure that even with the spacing //d =1 the stability
boundary is not that different from the / — o limit.

The main result of this stability analysis is that we ex-
pect a row of vortices to be stable at temperatures greater
than 1.85 K but to be unstable below that temperature.
We have, of course, only considered two-dimensional per-
turbations independent of the coordinate parallel to the
rotation axis. The question then arises, what is the
configuration of vortices found in the experiments at tem-
peratures below 1.85 K? There are two possibilities: ei-
ther the single row configuration is stabilized by end
effects (possible pinning of the vortex lines to the end
walls), or the first configuration to appear is not in fact a
single row of vortices but a double row arranged as in a
Karman vortex street. In an infinite domain, this ar-
rangement of vortices is stable; whether this remains the
case when the vortices are confined between walls will re-
quire further analysis. It appears reasonable that this
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configuration will be easier for the normal fluid to stabi-
lize than the single row.

VI. CONCLUSIONS

The free-energy theory has proved a very useful tool in
predicting vortex configurations. However, it does have
some limitations. The possibility that a vortex system will
find a local minimum rather than the global free-energy
minimum (the metastability phenomenon) has been real-
ized for some time. In this paper we have drawn atten-
tion to the extra constraint coming from local momen-
tum conservation that must be applied when vortex
creation or destruction occurs. This can lead to the hys-
teresis observed in some experiments between increasing
and decreasing rotation rate. The revised criterion for
the formation of vortices has an extra factor
1+&=1+p,/p, over the formula derived by free-energy
methods. For temperatures in the range 1.85 K
<T < T, this seems generally to give better agreement
with experiments. The agreement obtained with MMS80
hysteresis experiments is encouraging, and the Taylor-
Couette experiments become somewhat more comprehen-
sible. At temperatures below 1.85 K the theory does not
work well. A number of explanations for this breakdown
are possible: the simplest is that at low temperatures the
mean free path of the excitations is too large for the nor-
mal component to act as a fluid, i.e., the two-fluid model
breaks down and a quantum description is required. An
alternative explanation might be that the geometry of the
vortex formation is more complicated, so that initially
vortices are not formed entirely parallel to the rotation
axis but are instead attached to the rotating walls. If the
vortices are pinned at the walls, this could break the
momentum constraint.

Two processes of vortex destruction are indicated. At
temperatures below 2 K, the loss of a vortex line in the
interior of the fluid can be energetically favorable, be-
cause the factor 1—§{=1—p,/p, can be positive. At
slightly lower temperatures, as in the MMS80 experi-
ment, vortices can be pushed into the walls. It is not
clear that this mechanism can work when there are only
a small number of vortices, because of the energy barrier
against an isolated vortex at a wall. At still lower tem-
peratures the breakdown of the two-fluid model may al-
leviate the local momentum conservation constraint and
make it easier for the system to lose vortices.

In addition to considering the energy and momentum
conditions on vortex formation and destruction, we have
also considered the stability for simple vortex
configurations on the two-fluid model. These indicate
that in some circumstances the energetically preferred
configuration for formation is actually unstable. After
formation the vortex pattern must therefore readjust it-
self. Further work is needed to determine whether more
complex arrangements such as the Karman vortex street
configuration are produced in these circumstances.

Finally, we note that it is unlikely that a complete pic-
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ture of vortex formation and destruction can be obtained
from hydrodynamic models alone. A more fundamental
quantum approach is required, especially at low tempera-
tures. The most promising way forward seems to us to be
through the condensate model for superfluid helium.
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