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We review in detail a recently proposed technique to extract information about dynamical correla-
tion functions of many-body Hamiltonians with a few Lanczos iterations and without the limitation
of 6nite size. We apply this technique to understand the low-energy properties and the dynamical
spectral weight of a simple model describing the motion of a single hole in a quantum antiferro-
magnet: the t-J model in two spatial dimensions and for a double-chain lattice. The simplicity of
the model allows a well-controlled numerical solution, especially for the two-chain case. Contrary
to previous approximations, we have found that the single-hole ground state in the infinite system
is continuously connected with the Nagaoka fully polarized state for J —+ 0. Analogously, we have
obtained an accurate determination of the dynamical spectral weight relevant for photoemission
experiments. For J, = 0 an argument is given that the spectral weight vanishes at the Nagaoka
energy faster than any power law, as supported also by clear numerical evidence. It is also shown
that spin-charge decoupling is an exact property for a single hole in the Bethe lattice but does not
apply to the more realistic lattices where the hole can describe closed-loop paths.

I. INTRODUCTION

After the discovery of the high-T materials, there has
been increasing attention to the study of strongly corre-
lated fermion systems. In his pioneer work Anderson
first pointed out that a doped Mott insulator, described
by the one-band Hubbard model, should contain the ba-
sic physics of the high-T superconductors. The Hubbard
model was proposed independently in 1963 by Gutzwiller,
Hubbard, and Kanamori. Despite its simple-looking
Hamiltonian and a lot of effort, the physics of the model
is still a subject of debate.

In the large U limit, it is more convenient to use a
canonical transformation to project out the doubly occu-
pied sites, costing energy U. This leads to the so-called
t-J model:

with J and U essentially unrelated. This makes the t-
J model even more appropriate to describe the copper-
oxide planes at low energies rather than the original one-
band Hubbard model.

During the last few years, a huge amount of analytical
and numerical work has been devoted to the study of
the t-J model. However the physics contained in the t-J
model is far from clear because of the interplay between
antiferromagnetic long range order and charge degrees of
freedom. Exact numerical methods are usually Limited to
a very small linear size in more than one dimension (1D)
and practically nothing about the low-energy physics has
been understood numerically.

In this paper we will make a detailed numerical study
of a simplified version of the t-J model, i.e., neglecting
the spin fluctuations in the exchange term [S;.S~ —+ S;. S'
in Eq. (1)j and considering only the properties of a single
hole. Due to the simplification of the model, we are able
to work directly in the infinite size system and have a
satisfactory description for the low-energy dynamics of a
single hole in such a simple model of an antiferromagnet:

where the constraint of no double occupancy is under-
stood. Here c,. (c;) creates (annihilates) an electron at
site i, n, = P n; is the corresponding density opera-
tor with n; = c,. c, , the symbol (i, j) means summation

over nearest neighbors, J =
U is the superexchange cou-

pling and finally the spin density operator S; is defined

by the Pauli matrices o: S, = P, c, 2

'
c;

Starting from a more realistic three-band Hubbard
Hamiltonian describing the copper-oxygen layer, Zhang
and Rice showed that the low-energy physics of cuprate
superconductors is determined by the singlet state
formed by the additional hole on oxygen with the existing
hole copper. They also showed that the hopping of this
singlet is described by an effective one-band t-J model,

II = t ) (ct c, +—H.c.) + J, ) S;S;.
(i j)

A basic motivation of this work is to obtain reliable nu-
merical results on this simple t-J model since it may
be useful for further investigation of the more interesting
t-J model. For instance, the t-J, model was often used
in the past ' to test several approximations on the t-J
modeL. In fact most of the physical properties of the t-
J model probably remain valid even for the t-J model.
From this point of view it is worth mentioning that the
t-J model and the t-J model have the same limit for
J or J m 0 and for infinite spatial dimensions the two
models coincide, since the spin fluctuations are irrelevant
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in this limit.
The single-hole problem represents certainly a further

simplification but is still physically relevant, since the
single-particle excitations in magnetic insulators can ac-
tually be studied by the photoemission and the inverse
photoemission spectroscopy.

For a single hole a rigorous theorem proven by Na-
gaoka is known for J = 0. The so-called Nagaoka the-
orem states that for a bipartite finite lattice in more
than one dimension (d ) 1) the ferromagnetic state with
maximum spin is the unique ground state with energy
e~ ———zt, in any subspace with given total spin projec-
tion.

A complete description of the one-hole spectrum in the
J, = 0 limit, not limited to the ground state, was first
given in Ref. 11,where the so-called "retraceable path ap-
proximation" (RPA) was introduced. In the Ising limit
as a hole hops in a Neel state, it scrambles the spins
along its path. In order to return the spin configuration
to its original state, it was argued that, to a good approx-
imation, one can consider only paths in which the hole
retraces its path back to the origin, thereby returning all
of the spins to their original position. In this approxima-
tion one can write down an explicit analytic solution for
the Green's function:

E„=a„gz —1t
~

'
~

—2+z —1t,
(J, (z —2) )
q 2&z —1t)

where a„are the zeros of the Airy function Ai(z). Re-
cently, it has been shown that the string picture is exact
up to order &, , where d is the spatial dimensionality.

Contrary to the J = 0 case, at finite J the spectral
weight has b-function peaks at energies E . The weight
of the b function at the lowest energy is called the quasi-
particle weight Z and is found to vanish linearly in J,
using the continuous limit (5).

Later Kane, Lee, and Read introduced a self-
consistent Born approximation that can be considered
an extension of the RPA to the more physical t-J model.
Their approach is widely accepted since they were able to
reproduce the asymptotic behavior of the t-J model in
the string picture and a large amount of numerical work
on small lattices seems to be in qualitative agreement
with the predictions of this theory.

In the retraceable path approximation or in the string
picture and similarly within the self-consistent Born ap-
proximation, closed loop paths are neglected in order to
simplify the analytic structure of the one-hole Green's
function. However, this certainly introduces an approxi-
mation even in the simple t-J, model. In fact the most
important effect due to the inclusion of closed-loop paths
in this model was first noted by Trugman. In 2D a hole
can hop around a square plaquette one and a half times
without disturbing the spin background with a net trans-
lation to the next-nearest neighbor along the diagonal.
This means that the hole can unwind" the string and
self-generate a next-nearest-neighbor hopping. The full
localization of charge carriers found within the retrace-
able path approximation and the string picture is an ar-
tifact of the approximation.

Another interesting issue is whether the spin and
charge degrees of freedom are decoupled or not. ' Spin-
charge decoupling is a well-known phenomenon in one di-
mension, where a one-electron excitation can be decom-
posed into a spinon excitation which carries spin but no
charge and a holon excitation which carries charge but no
spin. We will show in the present paper that spin-charge
decoupling is an exact property of the t-J model in the
Bethe lattice with arbitrary coordination number z at
single-hole doping and present some numerical work, rul-
ing out the possibility of spin-charge decoupling in phys-
ically relevant lattices where closed loops are allowed.

In this paper, we make use of the Lanczos method to
calculate the single-hole spectral function in the infinite
system. We will first introduce a transformation to elim-
inate the charge degree of freedom to get an effective
spin Hamiltonian in a given momentum subspace (Sec.
II). Then we will use the Lanczos method in order to
diagonalize the effective spin Hamiltonian in the infinite
lattice (Sec. III). We will concentrate on two-chain (2C)
and two-dimensional (2D) square lattices. The 2C case
is much easier for numerical study compared to the 2D
lattice. The 2C lattice is not a trivial lattice for the t-J
model, because it has the basic properties of a higher-
dimensional lattice, such as the existence of closed-loop

z /~2 —4 (z —1) —(z —2)~
Gk((u) =

and the spectral weight A(k, w) = —'s" ImGI, (w) reads

z /4(z —1)t2 —(u2
A(u)) =

47r(z2tz —~2)
4

where z = 2d is the number of nearest neighbors. The
spectral weight is completely incoherent and dispersion-
less with a one-particle band, which is 75% narrower (in
3D) than the noninteracting band. The RPA is exact in
1D and for the Bethe lattice (where Nagaoka theorem
does not apply), and recently it has been shown to be
exact in the limit of infinite spatial dimensionality.

For finite J,/t, the competition between the kinetic
energy t favoring the ferromagnetic configuration and
the exchange energy J, favoring the antiferromagnetic
alignment of the neighboring spins makes the problem of
particular interest. By neglecting closed loops, e.g. , in
the Bethe lattice case, it is possible to derive a closed
solution, ' which we will refer in the following as the
"string picture. " In the string picture, the hole moves in
an antiferromagnetic spin background, leaving behind a
string of overturned spins, which costs an energy propor-
tional to the length of the path. The overturned spins
behave like an effective linear potential for the hole. In
the continuum limit, valid for J ~ 0, the problem is
reduced to a one-dimensional Schrodinger equation with
a linear potential V xJ where x is the length of the
StI iIlg.

8 = —gz —1t + ' ~ —2+z —1t (5).02 J, (z —2)
ax 2

The solution of this Hamiltonian leads to a series of
bound states. The hole is essentially localized with a
discrete energy spectrum:
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paths and the validity of the Nagaoka theorem.
Most of the above results were obtained by use of the

Lanczos spectra decoding method. . This method allows
us to analyze the Lanczos data in the infinite system,
where only a small number of Lanczos iterations is possi-
ble (Sec. III). The validity of the Lanczos spectra decod-
ing is proved analytically and numerically on the Bethe
lattice (Sec. IV). In Sec. V, we will show our numerical
results both for the J = 0 and finite J case. Finally
we will discuss the formation of a ferromagnetic polaron
around the hole for small J„and the analytic form of
the spectral weight close to the Nagaoka energy.

(7)

where ~S~) is a pure spin state that satisfies (i) n~~S~) =
~So) for all sites B; (ii) ng~~So) = ~S~), i.e. , the spin at
the origin is fixed to 00 ———2, (iii) the total spin along
the z axis is a well-defined quantum number in the state
~So), i e, S~~So) = M. ~So). The operator TR in (7) is
the translation operator that brings the origin 0 to the
lattice point B. It is formally defined by

TR CR', aT—R —CR+R', cr ~

II. FORMAI ISM

A. EfFective spin Hamiltonian

The t J, Ham-iltonian (2) is translational invariant, so
the most general one-hole state with total spin S,
M, + 2 and total momentum —p (hole moinentum p)
can be written:

States with definite momentum ~gp) are eigenstates of
T~ such that T~~Qz) = e '" ~gz). Note also that the
sum over o in the definition of ~g„) in (7) is used only for
later convenience.

A pure spin Hamiltonian can be derived as following.
We evaluate the expectation value of the t-J, Hamilto-
nian on the one-hole state ~g„), E„= (Q„~H~@p), and
consider first the case J, = 0:

)
R1 iR2, Rial

' (So~T z, cz —P c~+ „cz c~, , Ta, ~So).

Now (i) oi ——o2 since the total S, has to be conserved
in order to give a nonvanishing contribution in Ez. (ii)
B = B2 and B+w„= B», otherwise we create a doubly
occupied site which is projected out either by I or by
overlapping with (So~. Finally we obtain that E„
(So~H„'+~So) with

H„' = t ) e '~ "T (c",c co co ). (10)

Hp acts only on spin states . In fact for 8 =
2 it is

possible to express the term between parentheses in terms
of spin operators only:

| t

o.,a'

Finally H„reads

Note that the product of the operators T and y~
appearing in H„' permutes spins and leaves the origin 0
unchanged. Moreover, since the operator y interchanges
the spins at sites B; and B~, we have that y~, R,
yR, ,~,. and that y~ ~ —1.

Analogoously we can extend to J, g 0 the derivation

I

of a pure spin Hamiltonian and obtain

H„' = t) e*" "g~ T + J, ) S~ S~. . (13)
(',~)go

The full Hamiltonian commutes with So (since it actu-
ally does not depend on the spin at the origin) and thus
it can be defined on N —1 sites.

In conclusion, for any eigenstate ~So) of H' with def-

inite S@SO) = —
2 ~SO) we have an eigenstate of the t J, -

Hamiltonian written in the form (7). In fact, by use of
the variational principle any eigenstate of (2) or (13) is
obtained by g~ (Qp~H~Qp) = 0, qs (So~H„' ~So) = 0

with the condition (g~~g„) = 1, (S~~So) = 1, respec-
tively. »n«E„= (4„~H~4,) = (So~H„~~So) and

(Q„~Q~) = (S& So), it clearly follows that all the eigen-
states of H„with definite spin at the origin define a true
eigenstate of H by use of (7). In conclusion the one-hole
problem is mapped onto a diagonalization of a pure spin
Hamiltonian H„' for the given momentum p. A similar
efFective Hamiltonian can be obtained for the t-J model,
by substituting S' with S in (13).

It is interesting to note that H„' is not translational
invariant and that the momentum of the hole appears as
a simple parameter. It is just this property that allows
us to diagonalize the t-J model in certain momentum
subspace in the infinite lattice.

As it is shown in the Appendix many useful dynamical
quantities such as the Green's function and current oper-
ators can be easily translated in terms of spin operators
acting on this spin space in which the hole is fixed at the
origin.
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B. Green's function for J = 0

Following Brinkman and Rice, we can expand
the Green's function G in terms of the momenta
(Hl(H„' )"lH) of the Hamiltonian on the translation in-
variant ground state of the undoped system lH). For
J = 0, at vanishing doping, the Hamiltonian is classical
and lH) is given by

In the Ising case O((Ri) ) vanish for odd n and are sim-
ply equal to either zero or one for even n depending on
whether the skeleton path change the Neel order or not.
Instead they are complicated correlation functions in the
t J-model for J -+ 0. In this case expression (16) is still
valid provided we include the odd n contributions.

Two possible limits can be exactly solved using the
previous expression (16) for the Green's function.

IH) = (l~) + l~')) (14) Hethe lattice caae

where lK) and l%') are the two possible determinations
of the Neel state.

The one-hole Green's function can be generally written
as a summation of all possible paths traced by the hole
during its motion on the lattice. A path is then defined
by a set of coordinates (Ri) with l = 0, ..., n, which are
connected by nearest-neighbor vectors ~„:

Among all the possible paths it is useful to identify the
skeleton ones. A path (Ri) of length n is a skeleton
path if Ri+i g Ri i for any l = 1, ..., n —l. By definition,
for any skeleton path, the hole never retraces its path
immediately. It is clear that all the remaining paths can
be obtained by dressing each site R~ of the skeleton path
by all possible retraceable paths. The retraceable paths
can then be summed exactly.

Instead of giving the detailed derivation, we will
present the Anal result and discuss some of the special
cases. The most general Green's function can be written
in a formal expansion of skeleton paths of length 2n:

G(R„,~) = 0(R„) G'"(ur), (20)

where G "' = GBR(2) K(w) . It is interesting that the
"strong correlation" in the one-hole problem in the Bethe
lattice is only contained in the static function O(R ),
since Gr'"(w) is exactly the free electron Green's func-
tion. This has direct consequences on the spin charge
decoupling. (See next section. )

The Bethe lattice is defined on a Cailey tree with co-
ordination z and for z = 2 it coincides with the one-
dimensional chain. In the Bethe lattice there is only
one path that connects two arbitrary sites of the lat-
tice because there are no closed loops in this lattice (see,
e.g. , Ref. 16 for a more detailed definition of the Bethe
lattice). As in one dimension there is only one skele-
ton path connecting the origin to a given point B and
Q((Ri) ) = A(R ), which is only a function of the final
position B . We can immediately write the exact expres-
sion of the Green's function on a Bethe lattice using the
previous general expression (16):

G(R, ~) = GBR((u) ) K(~) "C„(R), (16)
2. t-J~: Brinkman-Rice almoat "exact"

where GBR is the Brinkman-Rice result (3), which in-
cludes only retraceable path contribution starting from
the origin B = 0 and coming back to the same site:

GBR(~) = 1 i K(cu)
z gA ~ 1 —K (d

while the function K(w) is the exact contribution of all
possible retraceable paths on each site of the skeleton
path diBerent from the origin:

Let us consider the diagonal Green's function G(R =
0, w) for the t J, model. In -the general expression (16),
A((Ri) ) is either one or zero depending on whether a
given permutation preserves the Neel order or not. The
shortest skeleton path with O((Ri) ) = 1 is known to be
three times the path around the elementary square pla-
quette. Thus n = 12 for such a skeleton path. There are
eight possibilities to build such a path starting from the
origin in 2D ( four neighbors times two possible opposite
directions) and 2d(2d —2) in dimension d. Then the next
leading correction to the Brinkman-Rice result is

1
K(~) =—

~ 1 —Z'i((u)
1

(u —sgn(~ +~2 —4(z —1)t'
2(z —1)t

Finally in (16) the coefficients C (R) are deterinined by
C„(R) = P „,„„„„f~ I,„B((Ri)2"),where Q((Ri)")
are spin correlation functions, which, generally speaking,
depend on the path,

G(R = 0, ~) = GBR(~) (1+2d(2d —2)K(~)' + ) .

(21)

Since lK(w)l & for any u, the correction to the
Brinkman-Rice result turns out to be less than l. l%%uo in
d = 2 and 0.15%%uo in d = 3. This has also been noted in
the

& expansion but also appears quite natural in this
formalism.

C. Spin-charge decoupling

In 1D, if spin charge decoupling occurs, the one-
particle Green's function can be written as a simple prod-
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uct of a spinon contribution and a holon contribution:

G(R t) = G'~'"~"(R t) G"o'~"(R, t) (22)

This property is exact in d = 1 for the infinite U Hubbard
model and is asymptotically valid for large (R, t) at finite

21

The spin-charge decoupling manifests itself in the one-
particle Green's function and in principle can be detected
even at higher dimensionality as speculated by several au-
thors following Anderson. For J, J, ~ 0, or U ~ oo one
expects no dynamics for the spinons and that the holon
contribution has exactly the &ee particle behavior, be-
cause there is only a unitary charge carried by the single
hole.

Thus, as a consequence of spin-charge separation, the
one-hole Green's function should be written in the fol-
lowing way:

G(R, t) = 0(R) G'"(R, t)

The free electron Green's function is nothing but the free
propagator in the Nagaoka limit:

Gfree (k
(d —ck + 28sgn (d

where er, = 2t(cos k +cos A:&) is the energy of a free hole.
By Fourier transforming in time and by taking the

imaginary part of Eq. (23) we obtain the spectral weight
as a function of the final position of the hole and the
frequency u:

A((u, R) = O(R) A" ((u, R). (25)

A((u, R') O(R')
independent of w. (26)

The ratio &(
'
&), according to expression (26), should~(~,a')

be independent of w if spin-charge decoupling occurs.
This is unlikely in a dimension higher than one as the
presence of the skeleton paths strongly renormalizes the
spectral weight with the distance of the hole from the

22origin. The absence of spin-charge decoupling is par-
ticularly evident already for the 2C case (Fig. 1), where

A(cu, R)/A(w, R = 0) is cu dependent for relatively large
A and quite low energy.

Based on the numerical and the analytical results, we
conclude that spin-charge decoupling can occur mainly
in lattices where closed-loop paths are forbidden by the
geometry. In these type of lattices the Nagaoka theorem
cannot be applied. We have thus found an interesting

The previous expression is exact in one dimension even
for this simplified t-J model where the spinon function
is particularly simple B(R) = b~ o. By Eq. (20) spin-
charge decoupling is valid in the Bethe lattice for the
single-hole problem.

Equation (25) can be considered as a direct and mea-
surable consequence of spin-charge separation. In fact,
by measuring the spectral weight for two different posi-
tions of the hole we should get the ratio

(o)
0.8
0.6
0.4
0.2

0
w —0.2
g —0,4

~0,2—
CO
A

FIG. 1. (a) The ratio of the spectral weight at difFerent sites
for the two-chain lattice. The spectral weight as a function
of R was obtained by Fourier transforming A(p, cu) obtained
by the standard Lanczos spectra decoding. Moreover, since
at fixed n A(R, cu) is exactly zero for R large enough, only a
finite number of momenta are necessary to implement ezactLy
the mentioned Fourier transform. (b)The calculated spectral
weight for B = O. The solid line is determined by summing
the spectral weight for all momenta verifying the independent
relation A(R = O, w) = I —$A(p, u). The data points are
calculated directly by the Lanczos spectra decoding using a
trial state with a hole localized at the origin, i.e. , without
using the translation invariance.

relation between the Nagaoka theorem, spin-charge de-
coupling, and presence or absence of skeleton paths in a
given lattice. Of course we cannot rule out a more com-
plicated form of spin-charge decoupling such as the one
discussed in Ref. 23, or that at finite doping the situation
may change.

III. LANCZOS SCHEME

s, = H'~Pz) for i = 0, 1, . . . , n. (27)

The Lanczos technique is widely used in strongly corre-
lated electron systems. Contrary to the quantum Monte
Carlo technique, it does not suffer the "fermion sign prob-
lem" or any other instabilities at low temperature. Dy-
namical correlations can be easily obtained using this
technique. However, it has been restricted so far to small
systems, typically 4 x 4 (for Hubbard models), or at most
26 sites (for t-1 and t 1, models) -and 36 sites (for Heisen-
berg models). On the other hand a systematic way for
a finite size scaling analysis in a doped system such as
the t-J model is not known yet and some infinite-system
properties are still unclear or even misleading.

In this section, we will develop a scheme which allows
us to analyze the infinite-system Lanczos data in a very
eKcient way, so that we are able to calculate the spectral
function of the t-J model with good accuracy.

The Lanczos method is devised to diagonalize a huge
Hamiltonian Inatrix with dimension Nh. The method
starts with a trial wave function PT. A new basis is
generated by Hamiltonian multiplication,
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Then an orthogonal basis (e;) can be iteratively calcu-
lated, after orthogonalization of the vectors s, . Formally
we have

b*+ile'+i) = Hle') —o' le') —b'le*-i)
a, = (e, lHle, ),

b;+i = (e;+ilHle, ), (2S)

where bp ——0, lep) = lPT). In the Lanczos basis, the
Hamiltonian turns to a tridiagonal form where a, are
the diagonal elements and b; the o8'-diagonal ones for
i=1- - n.

For n = Nh, the spectrum of the tridiagonal matrix
coincides with the one of the original Hamiltonian. Un-
fortunately the dimension of the Hilbert space is usually
given by %h 10 —10, and it is prohibitive to perform
a full diagonalization with the available computers. Nev-
ertheless the ground state and the corresponding energy
converge for relatively small n 10 « Np. This justifies
the success of the method which enables one to restrict
the diagonalization to a very small basis n « Nh where,
according to the Ritz theorem, the variational principle
applies for all the eigenvalues of the smaller tridiagonal
matrix and in particular for the ground state energy.

A. Lanczos scheme in an infinite lattice

o /

FIG. 2. The application of the efFective t Hamiltonian (12)
on the trial state. (a) The Neel state with one hole. The
hole is located at origin. (b) The state after the action of
T „.T „ translates the Neel state one lattice space along the
direction p, . The hole moves to the nearest neighbor. (c) The
anal state. The spin exchange operator moves the hole back
to the origin and leaves an overturned spin defect in the Neel
background.

In an infinite system, the Lanczos scheme (28) can
be applied efhciently, provided there is a proper way
to define a simple finite basis to represent the vectors
s = H lpga ) (27), generated by the iterative application
of H to the trial state. This is in fact the case for the
effective t J, Hamilton-ian (13), where s; is represented
by overturned spins on the Neel state localized around
the hole.

For any fixed momentum p, we start &om a Neel state
with a hole at origin. Since the J term of the Hamilto-
nian is diagonal, the only part of the e8'ective t-J Hamil-
tonian, relevant to generate new states, is the kinetic
term. In each multiplication of the effective Hamiltonian,
the hole is translated to its z nearest neighbors by the
translation operator T (see Fig. 2). Then the spin ex-
change operators y~ move the hole back to the origin,
leaving an overturned spin background and generating z
new states.

The possibility to work with a finite basis even in the
infinite system was first noted by Trugman. In fact the
overturned spins are located within a region around the
hole with radius n. We can thus update only the defects
over the Neel state, which are finite at any finite number
of multiplications of H. After n steps, the Hilbert space
is finite having at most dimension z

This exponential growth of the Hilbert space z
makes the problem intractable even for relatively small n.
Fortunately many of the generated states appear several
times during the expansion of the Hilbert space, due to
the presence of the Trugman-like paths, and also due to
the translation symmetry implicitly exploited by use of
the effective Hamiltonian (13). After all, the dimension
of the Hilbert space turns out to be considerably smaller

than the previous estimate, and in fact it grows much
slower than z", e.g. , 1.9" for z = 3. In this way we
have reached n = 26 for the 2C case and n = 14 for the
2D case with a Hilbert space dimension at most equal to- 12.2 x 10'.

The smallest finite lattice which contains the full in-
formation of the first exact n Lanczos steps has linear
dimension 2n+ 1. Therefore, our results correspond to
a 53 x 2 lattice in the 2C case and to a 27 x 27 in 2D,
which is by far larger than the size of a typical finite size
Lanczos calculation. However, the finiteness of n of-
ten leads to appreciable systematic errors. In these cases
we overcome this difFiculty by carrying out a systematic
extrapolation in 1/n ~ 0, following a scheme which is
analogous to the finite size scaling analysis for finite lat-
tice calculations.

We conclude this section with some technical com-
ments about the algorithm. The basis generated by the
iterative application of H does not depend on the mo-
mentum p of the hole. Hence we only need to generate
it once, which takes less than 200 s of CPU time on a
Cray-C90. After that, we can do the usual Lanczos it-
erations for fixed parameters p and J„which typically
takes 10 —10 s of CPU time on the same computer.

B. Lanczos spectra decoding

With the n+ 1 eigenvalues E, and eigenfunctions l@,)
of the Lanczos matrix truncated after n step, the spectral
weight can be formally calculated as
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1 1
A(k, ~) = Irn — OT @7)

7t ur —H —zb'

=) I(+'I+~)I'~( —E')
i=O

Z((u) = (n+ l)Z; (31)

may define a smooth function of u at the discrete Lanczos
energies u = E, The full spectral weight is then closely
related to the previous function:

In the following we assume that the energies E; are set
in ascending ord. er: E;+i ) E,

As a result of the finiteness of the restricted Hilbert
space, we get a sum of b functions in the spectral weight
at any fixed n. Due to the Lehmann representation of
the spectral function this feature is also present in any
finite size calculation. In this case the thermodynamic
limit is obtained by smoothing the b functions in Eq. (29)
with Lorenzians of a given small width b,

I

7r 1

h((u —E;) -+ Im (3O)

and then taking the limit b —+ 0. For small finite b, rea-
sonable results can be obtained by the finite size Lanczos
algorithm, provided that the;esolution of the energy lev-
els becomes much smaller than b, i.e. , n large enough but
still much less than %h.

Numerically we have been able to perform n = 26 and
n = 14 Lanczos iterations for the 2C and the 2D lattice,
respectively. Even though the ground state energy is al-
ready well convergent, such a small number of Lanczos
steps is usually far from enough for a good estimate of
the spectral weight. In fact by the conventional method
of smoothing the h functions described in (30), either one
misses the details of the spectral weight for large b or in
the opposite case one gets too rapid oscillations which
are obviously unphysical.

A more efBcient method for evaluating the spectral
weight was recently introduced by us. In the following,
for reasons of completeness we will give a brief review of
this new method named Lanczos spectra decoding. In
this simple method, we introduced an interpretation of
the Lanczos scheme. With this interpretation, the spec-
tral function can be calculated accurately, eKciently, and
easily even with a small number of iterations n. As we
have seen in fact the Lanczos scheme in the infinite sys-
tem has a computational cost growing exponentially with
n, whereas in any finite size calculation the algorithm is
only linear in n. We expect therefore that our method
is essential in the first case but maybe helpful only for a
small computer-time factor in a finite size calculation.

As is well known the spectral weight A(tu) is a dis-
tribution that may be divided into two parts A(w)
A, g(w) + A;„, g(w), a coherent one A, i, (w) which con-
tains only b function contributions and an incoherent one
A;„, i, (~) which is a continuous and usually smooth func-
tion of u. The Lanczos spectra decoding exploits the
smoothness properties of A;„, h(w) in a simple and effi-
cient way. In the following we therefore assume that the
spectral weight is incoherent. This is not a limitation
since coherent peaks can be easily separated out from
the incoherent part by identifying all the quasiparticle
weights Z; = I(4;I4'7 ) I2 that remain finite for n ~ oo.

If the spectral weight is incoherent, since by complete-
ness P, o Z; = 1, one expects that Z; oc —.Thus

A(~) = Z(ur) pg((u),

where pL, represents the Lanczos density of states
(I DOS) in the restricted Hilbert space generated by the
Lanczos algorithm:

1
pL, (cu) = ) b(ur —E;),

z=O

(33)

where the factor z is determined by the normalization
condition f dipl, (e) = 1. For n = NzL in a finite sys-
tem, pl. coincides with the actual density of states of the
many-body system, but, in an infinite lattice ( Nz, = oo),
this is not generally true, as it will be shown for the Bethe
lattice case.

By definition, the number of states dN between ener-
gies e and e + A is given by

dN = (n+ 1)pl, (e)de. (34)

So the Lanczos density of states can be calculated as

1 dN
«(e) = „ (35)

Finally, using the finite difFerence instead of difFerential,
the coarse grained Lanczos density of states can be esti-
mated up to order 0(—,) by

1

(n+ 1)(E,+j —E,) ' (36)

where the energies

z—
2

(37)

lie at the middle of two consecutive eigenvalues.
The function Z(w) which is known at energies E, can

be easily interpolated at the energies ~; where also pI. is
known:

z(r, ) = (z;, + z;)/2. (38)

If Z(u) is a twice-difFerentiable function, Eq. (38) is
accurate up to 0(—,) as well. Thus within the same
accuracy A(u) = Z(w) pL, (u) easily follows at the discrete
energies w = e;:

1 If' Z;+z + Z; )
2 (E+z —E; p

The knowledge of A(w) close to the previous "special"
points e; can be easily achieved by standard piecewise in-
terpolations or extrapolations. At the end, we can verify
the sum rule f A(w)der = 1, as a check for the accuracy
of the calculation.
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IV. LANCZOS SPECTRA DECODING ON THE
BETHE LATTICE

In this section we will show that Z(u) and pg(~) are
well-de6ned functions and can be calculated exactly in
the Bethe lattice.

On the Bethe lattice, the problem is exactly solvable
because the skeleton paths are absent and the retraceable
paths can be summed analytically. This exact solution
has two meanings for us: (1) as a test for our scheme
and assumptions, (2) as a hint to interpret the Lanczos
scheme for the physical 2C and 2D lattices.

Using the Lanczos basis defined in Eq. (28), the Hamil-
tonian has a vanishing diagonal part (a = 0) and
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b, =~z,
b„=gz —1 for n& l. (40)

This easily follows since, on the Bethe lattice, each mul-
tiplication of the Hamiltonian generates z —1 new states,
except for the 6rst iteration, which generates z states.
Due to the simplicity of such Lanczos matrix it is then
possible to compute analytically Z and pl, in Eqs. (31)
and (33).

In fact the wave- function components g, , i
0, 1, . . . , n of an eigenstate with energy cu satisfy the it-
erative relation in the Lanczos basis:

~zvji ——~gp, i = 0,

~zgp+ v'z —1@2 ——(upi, i = 1,

(@,+i+ vjr, i)v z —1 = ~g;, i & 2.

4J —Z2

4p

Finally gp is determined by the normalization condition
P,. v(2 = 1, and the function Z(~) = lim ~ @p(n+ 1)
reads

2 2Z((u) = for (u (41)

From the third equation solutions are possible for ~
where tHR = 2tgz ——1 is the Brinkman-Rice

approximation for the single-hole ground state energy.
Then the components of the eigenstates on the Lanc-
zos basis are given by @; = Re(A A' i), where A

(/~2 —enR —u)/eHR and the complex number A is ob-
tained by the first two equations, yielding Qi ———
and

FIG. 3. The single-hole quasiparticle weight of the t-J
model on the Bethe lattice with z = 3 and z = 4. The
inset is an expansion of the small J region and the axes have
been scaled by a factor 1000. The Lanczos matrix was trun-
cated after n = 40 000 Lanczos steps, by far enough to obtain
convergent n = oo results even for very small J .

the conventional calculation.
At 6nite J, the only change is with the diagonal part

of the Lanczos matrix:

J-
ao ———z,

4
J

a, = —[3z —1 + 2(z —2)(i —1)] for i g 0.
4

(43)

(44)

This result can be easily obtained by counting the num-
ber of broken bonds in the states generated at diferent
Lanczos iterations. In this formalism we obtain therefore
that the motion of a hole in a Bethe lattice is exactly
equivalent to a one-dimensional motion of a particle in a
linear potential, provided we identify the distance of the
particle from the origin with the label i of the Lanczos
basis.

By diagonalizing numerically the Lanczos matrix for
large n we can easily con6rm the prediction of the long
wavelength Hamiltonian (5), namely that the spectral
function is k independent, and that A(~) contains only h

function peaks. In fact due to the linear potential all of
the one-hole states are localized states. It is important
to remark that the corrections to the asymptotic J -+ 0
behavior is quite important for the quasiparticle weight Z
even for very small J, . For Z the correct linear behavior
oc J, is found only for J, 10 (see Fig. 3), whereas
the behavior of the ground state energy and the gap are
more reasonable.

The Lanczos density of states (33) is then determined by

pl (~) = A(~)/Z(~), (42)
V. RESULTS AND DISCUSSION

where A(cu) is the Bethe lattice density of states in
Eq. (4). In this case, pr, (u) has singular inverse square
root behavior near the band tail.

By use of the Lanczos spectra decoding introduced in
the previous section we have obtained a good approxima-
tion to the exact solution with ri 10, much less than in

A. Spectral weight for the J = 0 case

For J, = 0 the spectral weight A(~) is an even function
of ~ and in the following we will concentrate on its neg-
ative &equency region. In this model we found a sharp
peak in the spectral weight located at an energy close
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to the retraceable path prediction, eBR = 2—ti/z —1,
and, a second peak at energy —t. In the 2D case, the
spectral weight looks similar, although the first peak is
rather small. In 1D, the exact BR solution leads only to
one peak but with a divergent spectral weight

+cap —EB
at the bottom e~ of the band. Already in the 2C case
such a divergence disappears within the retraceable path
approximation, as well as in our numerical scheme, which
includes all closed-loop paths.

We also found that the first peak in the spectral func-
tion has a remarkable dispersive feature although the
bottom of the spectrum appears k independent. The
dispersion of the erst peak is present neither in 1D nor
in in6nite dimension and the importance to go beyond
the retraceable path approximation is already clear even
in 2D.

For the density of states D(~) = f (""),A(~, p)
A(R = 0, cu), our results present some small oscillations
around the retraceable path analytic solution (3). In
2D however the retraceable path expression for z = 4
seems already quite accurate, at least away from the
band tails. All the above results have been confirmed
recently.

As discussed in the Introduction, a key question is
the determination of the band edge energy e~, i.e. , the
threshold energy where the spectral weight begins to van-
ish. As a first step we identify the Lanczos ground state
energy E„ for n ~ oo as e~, which may or may not
converge to the Nagaoka energy e~. For instance, by
neglecting closed-loop paths, one obtains the Brinkman-
Rice energy eBR as a variational estimate of E . In the
retraceable path approximation e~ coincides with E
as one generally expects.

In order to have an accurate estimate of E, it is use-
ful to have a guess about the asymptotic behavior of the
quantity 4 = E —E for n ~ oo. The way 4 van-
ishes for n —+ oo is related to the form of the Lanczos
density of states at low energy. In the Brinkman-Rice
case the exact solution in (4) gives pL, (e) (w —e~)
Thus, using Eqs. (36), E ~, yielding A„
For J, = 0 the inclusion of the skeIeton paths seems to
support a finite Lanczos density of states (see Fig. 4),
yielding, by the same argument L~ —.We have plot-
ted in Fig. 5 the estimated ground state energies as a
function of 1/n for several momenta for the 2D and the
2C cases. Many of the estimated Lanczos energies exact
upper bound of the true ground state energy —are clearly
below enR (even for the 2D case also shown in the pic-
ture). Thus, a previous suggestion that the one-hole en-

ergy in a quantum antiferromagnet should be close to
eBR (Refs. 26 and 27) is not confirmed by our numerical
results. In Fig. 5, the 2C case, it is remarkable that all of
the extrapolated energies are very close to the Nagaoka
energy, independent of the momentum of the hole, i.e. ,
E = —3+ 0.02.

The above results give robust evidence that pz, Dos is
finite up to the Nagaoka energy. Even in this case the
spectral weight A(u) = Z(w) pLDos(w) can in principle
vanish for ur ) e~ due to the vanishing of the factor Z(ur).
This is the scenario suggested in Ref. 20 using the expan-
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FIG. 4. The Lanczos density of states on the Bethe lattice
(for z = 3 and z = 4), the 2C, and the 2D lattice. Triangles,
squares, and circles correspond to the small, medium, and
large n calculation, respectively. The solid lines are the exact
results for the Bethe lattice and guides to the eye for the 2C
and 2D lattices.

sion for the Green's function in terms of K(w) (16). In
the interval K(w)cr. ( 1 (for ~u~/t ) (' ) +n ) when the
expansion (16) converges the Green's function is surely
real, thus determining a lower bound for e~. After some
extrapolation it was found in Ref. 20 that o. ( z —1,
i.e. , e~ should be higher than e~ for the 2C or the 2D
case using the first 18 or 12 coeflicients C (R) of the
Green's function expansion, respectively. Although the
above analysis is surely correct, the basic conclusion is af-
fected by systematic errors due to the limited knowledge
of a few coeKcients in the expansion.

As is shown in Fig. 6, this scenario looks unlikely
within the Lanczos spectra decoding method because
Z(w) seems to be smoothly connected to the Nagaoka
energy. It is clear however that this is not enough for a
definite conclusion.

—2.8

I I I I I I I I 1 I I I I I

0 0.05 0. 1 0.15
n '

3 7 I I I I I i I i I

0 0.05 0. 1 0.15
n-'

FIG. 5. Plot of the lowest eigenvalues of the 2C and 2D
models as a function of 1/n, the inverse of the Lanczos it-
eration number. For the 2C case, the wave vector A: ranges
from from (0, 0) (bottom) to (7r, 0) (top) with nine equally
spaced values. For the 2D case the k path in the magnetic
Brillouin zone is I —+ M —+ A -+ I', where I' = (0, 0) (bot-
tom), M = (7r, 0) (top), and A = (7r/2, z/2). The horizontal
dashed lines denote the Brinkman-Rice ground state energies.
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2.5 I I I
i

I I I I
)

I I I I

n=26
of length 2n can be easily calculated as

M„= (s„is„).

N ] 5

+
1

By properly undressing the retraceable paths, we can
convert the total number of paths M to the number
of the skeleton paths C„.

As is shown in Table II, the Miiller-Hartmann —Ventura
extrapolation,

C„(R) = C(R) (46)

FIG. 6. The expected smooth quantity Z(&u) = (n, + 1) x Z
at J = 0 plotted as a function of the energy for differ-
ent Lanczos iterations. The solid line connects the n = 26
data. By comparing the data at different Lanczos iterations,
Z(u) seems to be nonvanishing just above the Nagaoka en-

ergy e~ ———3t for 2C. The inset is an expansion of the band
edge.

In order to solve the latter controversy without relying
on the Lanczos spectra decoding, we have reproduced
the Muller-Hartmann —Ventura expansion (Table I) and
extended it up to the first 26 coeKcients for the 2C case.
Since we have generated all of the s;, defined in (27), up
to i = n = 26 for the 2C case, the total number of paths

used to determine the radius of convergence o. is not sta-
ble when large skeleton paths are included. For large n,
we find that n, P(R = 0), and C(R = 0) are always
going up. At n = 26, C(R = 0) becomes 10 times larger
than their value obtained for n = 18, while o. changes
from 1.88 to 1.91 (Table II).

Instead of using the fit (46), we apply the well-
established ratio method, which is well known in the
study of critical phenomena. Using this method we evalu-
ate the radius of convergence o;, and the power law expo-
nent 0 describing the vanishing of the Green's function at
the band tails, corresponding to the critical temperature
and to the conventional critical exponent in the language
of critical phenomena, respectively. We de6ne

(47)

TABLE I. The nonvanishing coefficients C„(R) of the t-J, Hamiltonian on the 2C lattice. Only those coefficients which are
not included in Miiller-Hartmanni —Ventura s table are shown. The notation is similar to the one in Ref. 20, i.e. , d = ~R~ and
nq2 is the number of skeleton paths at a given distance and for a given direction (note that there is an extra factor of two for
R g 0 if we do not distinguish the two possible directions as in Ref. 20). The data for n = 26 are accurate up to +5.
2n
32
34
36
38
40
42
44
46
48
50
52

c.(d' = o)
193448
590154
1824844
5677040
17818480
56220728
178693158
570790364
1834737522
5926011194
19240493885

C (d = 2)
152314
472488
1471492
4609274
14539266
46154304
147425926
473551402
1529492974
4963905566
16187397249

C„(d' = 4)
108676
340675
1068182
3385018
10760828
34459409
110826815
358473393
1164976270
3804186739
12476330859

C„(d' = 1O)
70960

223698
708496

2264848
7287326

23573566
76581474
249911680
819090516

2695446152
8905934658

C„(d' = 16)
39081
128823
414196
1348874
4397638
14437674
47561630
157303528
521903825
1737377480
5800668507

C„(d = 26)
17614
58446
196574
670086
2245908
7572526
25474418
85932926

290492088
983973358

3338934862

2n C (d =36) C (d =50) C (d =64)
32 5714 1140 0
34 19510 4294 534
36 70917, 18258 2981
38 251056 67790 12460
40 883914 258922 55639
42 3126095 968326 222326
44 10934279 3569044 886787
46 38263835 13147300 3468307
48 133406362 47855170 13327978
50 464563759 173622392 50912034
52 1616935261 626834742 192138728

C„(d = 82)
0
0
0

1190
7634

35058
164380
697614
2901958
11813430
47077158

C (d = 100)
. 0
0
0
0
0

2661
19237
96205

472897
2117499
9171222

C„(d = 122)
0
0
0
0
0
0
0

5944
47830
258896
1332690

C„(d = 144)
0
0
0
0
0
0
0
0
0

13277
117733

C(» =o)
984446

3087090
9727036

30898232
98692630

317324618
1025581138
3332494632
10882673258
35702392358
117646241223
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1.88136
1.88356
1.89515
1.89049
1.89824
1.89667
1.90428
1.90575
1.91050

PR=O
2.39084
2.42844
2.63760
2.54888
2.70449
2.67137
2.83985
2.87370
2.98860

+R=O
1.26191
1.38458
2.34793
1.86730
2.81409
2.57441
4.08250
4.48588
6.20875

2n
22—36
22—38
22—40
22—42
22—44
22—46
22-48
22—50
22-52

1.88136
1.88399
1.89752
1.89228
1.89925
1.89721
1.90523
1.90657
1.91148

PR=O
2.39084
2.43662
2.68445
2.58627
2.72657
2.68362
2.86235
2.89433
3.01404

+R=0
1.26191
1.41397
2.65495
2.06374
2.98843
2.66328
4.34957
4.75851
6.68424

2n
22—36
24-38
26-40
28-42
30-44
32-46
34—48
36—50
38—52

at —~ 0 with two next consec-and the linear intercept at —~ wi
utive points

p nl 1
n-n n —2) = —[np, (n) —(n —2)p, (n —2)]. (48)

In fact p is expected to behave as

p(n) = n 1 +— (49)
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0.3

0.2
3

0. 1

-'5.95 —2.9 —2.85 —2.8 —2.75

FIG. 9. The behavior of Z(u) at band tail for p = (0, 0)
and p = (z, 0). The solid lines are the least squares fit by
expression (52).

coding method characterizes the behavior of the smooth
function Z(w) at an energy w = e~ + const/n. Solv-
ing for n &om the latter equation and assuming, as we
have already mentioned, that ( cc n we can substitute
V oc (~ —e~) " in (50) and obtain

B. Spectral weight for Bnite J,

For finite J a coherent part shows up in the spectral
weight. However, contrary to the string picture, only the

A(cu) oc Z((u) oc((u —e~) '~'e ~( ' ) for 2C,

(51)

A(~) cc Z(~) oc (~ —e~) " 'e ~( '" for d ) I,
(52)

where L is an overall constant depending on the dimen-
sionality. Using the above formulas we have obtained
good agreement with numerical results over a range for
Z covering up to two decades (see Fig. 9).

erst few energy levels contribute to the spectral weight
with true 8 functions (see Fig. 10). In order to identify
these b-function contributions we can check whether the
quasiparticle weight Z; converge to some finite value for
n —+ oo, whereas if the energy level E; belongs to the
incoherent part Z(m) = (n + 1)Z, remains finite for n —+

oo. Another method to distinguish the coherent part
from the incoherent one is to analyze directly the wave-
function components of the eigenstate 4; on the Lanczos
basis (e~). As we have seen in the previous section the
label j measures the length of the overturned spins in
the state i. The quasiparticle weights Z, are finite only if
the Neel state e~ 0 will have a nonvanlshlng component
with the state @,. This obviously occurs if the eigenstate
4, is "localized" in the Lanczos basis even for n ~ oo,
otherwise only a probability —to be in the Neel state
is expected.

Using the above criteria, shown in Fig. 11, we have
clear evidence of a single-quasiparticle weight for J, not
too large, and an incoherent part which is rather sim-
ilar to the J = G one. For larger J, the incoherent
part moves quite fast to higher energies, leaving proba-
bly more than one 6-function contribution to the spec-
tral weight. We then conclude that the inclusion of
closed-loop paths does not suppress the first quasiparticle
weight, but completely washes out all the quasiparticle
excitations at higher energies. Even the few peaks that
appear in the incoherent part cannot be associated to
"string state" resonances, as suggested by Refs. 15 and
30, but are rather similar to the J = 0 ones, where lo-
calized string states cannot exist. We thus confirm the
conclusions of Poilblanc.

As far as the energy spectrum E(p) is concerned we
obviously found that the lowest energy state has a fi.—

nite quasiparticle weight and has momentum p = (0, 0),
instead of ( —,—) as commonly accepted for the tJ-
model. ' This is because in the t-J model the spin
fiuctuations are neglected, while they play an important
role for the energy dispersion E(p)

Finally for the quasiparticle weight as a function of J
we can apply the same argument at the end of the previ-
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FIG. 10. The spectral function at J = 0.3t and k = (vr, 0)
and J = 2t and k = (0, 0). Zq and Z2 are the quasiparticle
weights for the lowest two eigenstates. The small value of Z2
compared to Zz indicates that only the lowest weight remains
finite for n ~ oo, i.e. contributing to the spectral weight with
a true 8 function.

FIC. 11. The 2C wave function of the single hole in the
Lanczos basis for J = 2t, p = (0, 0) and J, = 0.3t, p = (z', 0).
The solid line denotes the ground state, the dotted one the
first excited state, and the dashed one the second excited
state.
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FIG. 12. Calculated quasiparticle weight Z as a function
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Zoc J / e ~ for2C,

Zoc J / g +/ for/) 1
—d 6 —a Z"/'

(53)

As in the string picture, where we could not detect the
correct Z oc J behavior for reasonably small values of
J, (see Fig. 3), we expect that these kind of singularities
are important only at a value of J 10 . For larger
values of J one obtains a crossover to a J behavior2/3

surprisingly valid for a quite large range of J both in the
string picture and in the realistic cases shown in Figs. 3
and 12. In the latter picture it is also evident that at some
small value of J, the Z factor should vanish much faster
than J,otherwise we should get an unplausible critical
value of J„where the quasiparticle weight vanishes. This
at least supports the behavior for Z shown in Eq. (53).

C. Ground state properties for small J

ous section by assuming that Z is basically the overlap of
an S, = 0 polaron state of size (, where ( may be roughly
identified as the correlation length within the string pic-
ture ( oc J, . We should get essential singularities like

FIG. 13. The ground state energy as a function of J
The data points refer to n = 26 (2C) and n = 14 (2D). The
solid lines are a 6t E = a+6J +cJ of the data. The dotted
line is the energy of the "phase separated polaron" described
in the text.

with the lowest-energy state in a uniform antiferromag-
netic phase, there should be a critical value J where the
"phase separated" state, discussed at the beginning of
this section, becomes lower in energy for J ( J .
This is essentially the scenario proposed by Emery et al.
for the doped t-J model. We will show in the following
a clear numerical evidence that the above scenario is not
confirmed in the t J, model f-or a single hole, at least in
the 2C case.

Contrary to the string picture or the infinite dimension
limit we see in Fig. 13 that the asymptotic value for the
energy is clearly given by the Nagaoka energy, although
the leading corrections to the energy seem quite well fit-
ted by the string picture exponent J / . In fact the di-
agonal elements of the Hamiltonian in the Lanczos basis
describe approximately a linear potential (Fig. 14) as in
the string picture. This is obviously important for the
small J, correction to the energy. Moreover in Fig. 13 it
is shown that the "phase separated" state is well above
the estimated energies even for very small J„ leaving
a possible transition at an unphysically small value of

The accurate determination of the ground state energy
in the small J region is important to detect a possi-
ble transition between a uniform antiferromagnetic state
and a state where the hole fully polarizes the spins in a
finite region of space with size (, the region being some-
how phase separated from the remaining antiferromag-
netic region. The latter variational state has an energy
approaching the Nagaoka energy for ( ~ oo. At finite
J„by optimizing the size ( of the ferromagnetic region,
corrections to the asymptotic Nagaoka energy scale like
J2/(d+2) 27

z
Support for a possible transition comes &om the infi-

nite dimension limit. In fact the exact evaluation of the
Green s function, possible in infinite dimension, implies
that the lowest-energy state contributing to the spectral
weight is analytically connected at small J, not to the
Nagaoka energy oc —d but to the much higher Brinkman-
Rice energy oc —~d. If the latter state is identified
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FIG. 14. The diagonal matrix elements of the Hamiltonian
in the Lanczos basis. The solid line refers to the two-chain
lattice and the dashed line to the corresponding Bethe lattice
with z = 3.
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J 10 for the 2C case. For the 2D case however we
do not have enough accuracy as shown in Fig. 8 and we
cannot exclude a transition at J 10 2t. 0.2

I f f
I

I I I

I

I I I

I

I I I

I

I I I

D. Spin arrangement in the ground state

Although we have found evidence that the Nagaoka
energy is the ground state energy of the t-J, model for
J ~ 0 it is not clear what spin background is favored in
this limit. For instance we could have that the Nagaoka
state is degenerate in the thermodynamic limit with an
antiferromagnetic state.

In order to solve this issue, we have calculated the
hole-spin-spin correlation function, by measuring the one
involving the spins in the z direction:

c."(R') = &(&ulh.'~A, ~It.+.„I& )
= (~~ I~A, ~A, +.„I ~o)

and its spin rotation invariant version

C"(R') = ~(&~lh.'SR, SR,+-.I&u)
= (cols„,sR.+;Iso),

(54)

0.2

0. 1

—0, 1

10

FIG. 15. The hole-spin-spin correlation function C~(R)
and C~(R) with v„= (1,0). For large J, C(R) is purely
antiferromagnetic. However for vanishing (or small) J, the
ferromagnetic component in the x-y plane is important.

where h, ~ is the hole creation operator at origin. These
correlation functions measure how the spin background
is perturbed by the hole.

The symmetrized correlation function C~(R;) has been
introduced since, for J ~ 0, the total spin is a well-
defined quantum number and the isotropic hole-spin-spin
correlation does not depend. on the polarization of the to-
tal spin. Thus even in the S, = 0 sector a polaron solu-
tion with maximum spin leads to a maximum C(R, ) = 4,
whereas C~(R) = 0 for this polarized state since the con-
tribution of the parallel spins are exactly cancelled by the
ones of the antiparallel spins (all these contributions have
the same weight in the polaron solution ). In this way,
we can unambiguously distinguish the ferromagnetic re-
gion with C"(R;) ) 0 from the antiferromagnetic one
with C"(R, ) ( 0. As shown in Fig. 15, we have found
that for large J all the spins are antiferromagnetically
correlated in the z direction since the two previous cor-

—0.2

0.02 0.04 0.06 0.08
1/n

0. 1

FIG. 16. The extrapolation n —+ oo of C"(R) and C"(R)
for the three lattice sites closest to the hole at J = 0. The
horizontal line is the value of C~(R) for the fully polarized
Nagaoka state.

relation functions are almost identical. There is clear
evidence of an antiferromagnetic correlation which ap-
proaches the asymptotic value C(R) -+ —1/4 with a cor-
relation length consistent with the one shown in Fig. 11.

For small J„as expected, the finite n corrections are
important and tend erroneously to enhance the antifer-
romagnetism (see Fig. 16). Instead, by studying the be-
havior of C(R) and C, (R) as a function of I/n it is quite
clear that the spins are strongly correlated in the x-y
plane and for n ~ oo and J = 0, the hole-spin-spin
correlations seem to approach the fully polarized values
C(R) = 1/4 and C, (R) = 0, presumably at any finite
distance &om the hole.

VI. CONCLUSION

In conclusion, the physical picture of the one hole
ground state in the t-J model seems clear. As we de-
crease J„we approach the Nagaoka state with maximum
spin and with total S, = 0 (which is by the way a con-
served quantity) due to the proliferation of closed-loop
paths that strongly enhance the ferromagnetic correla-
tions around the hole in the x-y plane. Thus there exists
a ferromagnetic polaron with a length which diverges for
J, ~ 0, but that is continuously connected to the antifer-
romagnetic length obtained at finite large J, . In this way
the polaron state is somehow similar to the phase sepa-
rated variational state, but we have to emphasize that
in our approach the localized polaron conserves the trans-
lational symmetry because it is defined after the Galileo
transformation (7) and consequently it is not "phase sep-
arated. " Moreover, the total spin projection on the z axis
vanishes, as it is conserved locally by the efFective Hamil-
tonian (13). The energy of this state is much smaller than
the "phase separated" variational state and represents a
more accurate picture of the single hole ground state in
the t-J model.

We have presented here a successful attempt to go be-
yond the retraceable path approximation and the string
picture for the hole dynamics in an antiferromagnetic
spin background. A new Lanczos type of analysis of the
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Hamiltonian enabled us to get very accurate results for
the 2C problem and qualitatively similar ones for the 2D
case. At J = 0, a clear dispersion of the main inco-
herent peak of A(k, u) both for the 2C and the 2D case
was found. Contrary to the prediction of the large spa-
tial dimension we found, at least for the 2C model, that
the bottom of the incoherent band is dispersionless and
coincides with the Nagaoka energy e~, i.e., the minimum
possible energy by the Nagaoka theorem. This resolves a
controversy recently proposed by Muller-Hartmann and
Ventura. In fact, based on the Lanczos spectra decod-
ing method, we have given an argument implying that
A(~) oc ((d —e~) ~ e ~~ '~& and if for instance
4 oc (eBR —e~), we can easily understand why the infi-
nite dimension limit gets no weight for w ( eBR. As the
dimensionality is increased the tail of the spectral weight
below the Brinkman-Rice energy vanishes exponentially,
though remaining always finite up to the Nagaoka energy
in any finite d.

For finite J, contrary to the string picture, we found
only one coherent quasiparticle weight and an incoherent
broad spectrum at higher energy. A second quasiparticle
peak may appear in the spectral function but always has
a very small weight. The possibility of a phase transition
as a function of J is not compatible with our numer-
ical results for the ground state energy, unless for very
small coupling constant, and consequently, the Emery's
argument about the phase separation for small J is found
unlikely in the t-J model.

The spin-charge decoupling for a single hole is surely
not evident for short distance propagations. However,
it still remains open whether the spin-charge decoupling
happens asymptotically at large distance, although for
the 2C case we have ruled out this possibility up to a
distance of about 10 lattice spacings.

tively calculated by means of the overlap of the ground
state ~ajar„) of one hole with momentum p and the state
c~ ~H), where ~H) is the translation invariant ground
state without holes:

Z„= l(Hlct. I@„)l' = l(HISo)l (AS)

where we have explicitly used that n o~So) = ~So). For
t & 0, i.e., positive time, the Green s function is defined
as

G(p, t) = —2z(H~c e 'l ' ' 'c„, ~H),

So = h.,olH). (A3)

Due to the correspondence of eigenstates between H'
p

and H, we can expand
~
So) in terms of eigenstates of H„'

and easily check that the propagation of
~
So) with the ef-

Hef~t
fective Hamiltonian, ~So)q ——e' ~ ~So), corresponds ex-
actly to the propagation of @~ with the exact t J, Ham-il-

tonian and

G(»t) = —&(So le ' "ISo).
Using that

~
Sg) = ~2n; ~ ~H), that the commuta-

tor [H„',n o vanishes, and that G does not de-
pend on 0, we get, after Fourier transform G(p, w)

Jo dt G(p, t) e' ',

G(p, ~) = (0 Ef). (A5)

where Eo is the corresponding energy of the state ~H).
Here the factor 2 comes &om the requirement that
G(p, t -+ 0+) = —2(H~nz ~H) = i —Th. e normalized
state ~g„) = ~2c„~H) is of the form (7), if we choose
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2p= xeog~g-cR cR+ +Hc
Rcr

(A6)

APPENDIX: QUASIPARTICLE WEIGHT,
GREEN'S FUNCTION, AND CURRENT

OP ERATORS
(&,
'

l&~ I+,') = (S'Ij,' IS). (A7)

where eo is the electron charge. The matrix elements of
the current operator between two one-hole states with
given momentum p define an effective current operator

acting on spin states only:

An important quantity to characterize the dynamics
of the single hole is the so-called quasiparticle weight ap-
pearing as the residue of a simple pole in the one-hole
dynamical Green's function. This residue can be alterna- j' = [

—ieote'" "yo „T + H.c.j. (As)

Analogously to the calculation shown in Sec. II, the ef-
fective current operator can be written as
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