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A world-line quantum Monte Carlo method is employed to study the elementary excitations of
S = 1 antiferromagnetic Heisenberg chains with bond alternation described by the Hamiltonian,
H=J3Y,[1-(~1)*4]S; - Sit1. Imaginary-time correlation functions of this system at low enough
temperatures exhibit almost single-exponential decay and thus the lowest excitation spectrum can
be successfully extracted from them. As J increases from 0 to 1, the system encounters a continuous
phase transition at § ~ 0.25, where the energy (E)-momentum (q) relation is fitted well to the form
E(q) = (v?sin2q+ A?)'/? with the effective light velocity v = 2.4640.08 and the energy gap A which
vanishes in the long chain limit. The central charge c at the massless critical point is estimated to
be 1.02 &+ 0.09, which suggests the universality class of the Gaussian model.

I. INTRODUCTION

The one dimensional quantum Heisenberg antiferro-
magnets have been a fascinating subject since the Hal-
dane conjecture.! Haldane predicted that the spin-S an-
tiferromagnetic Heisenberg chain

H=JY Si-Sin (1.1)

is in a massive phase if S is an integer and in a massless
phase if S is a half-odd integer, identifying the model
(1.1) with the O(3) nonlinear 0 model? in the large-S
limit. Affleck® further applied this identity to the bond-
alternating chain

H=JY [1—-(-1)%]S; Sit1, (1.2)

and showed that (1.2) is in the massless critical phase
only in the case where the topological angle of the model,
0 = 27S(1 — §), is equal to (2k + 1)m with an in-
teger k. According to his argument, as § increases
from —1 to 1, the system (1.2) encounters 25 massless
points (here, let us call it the Affleck-Haldane conjec-
ture). The S = 1/2 system, which exhibits a mass-
less excitation spectrum* at the Heisenberg point and is
widely believed to be spontaneously dimerized,’ 2 coin-
cides with the Affleck-Haldane conjecture not only qual-
itatively but also quantitatively. For S = 1, on the other
hand, various numerical approaches, such as exact di-
agonalization methods,'® 1% a sequence transformation
method,*® quantum Monte Carlo methods,’” 2! a quan-
tum transfer-matrix method,?? and a renormalization-
group method,?® have revealed that there exists an en-
ergy gap between the ground state and the first excited
state at the pure Heisenberg point. However, studies on
the dimerized chain (1.2) seem to be still in their ear-
lier stage. With a series expansion technique, Singh and
Gelfand?* detected a continuous phase transition from
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the Haldane phase to the dimer phase for the model (1.2).
They estimated the transition point é. to be 0.25 %+ 0.03,
which, as expected, deviates from the expression in the
large-S limit, . = 1 —1/2S. Their estimate has recently
been reconfirmed by a density-matrix renormalization-
group method?® and a quantum Monte Carlo method.2¢
Kato and Tanaka®® gave a more precise estimate of the
critical point, 6. = 0.25 &+ 0.01, demonstrating that the
system is massless at 6 = é.. On the other hand, the
present author?® visualized the ground-state spin corre-
lation as a function of § and confirmed collapse of the
chain-end states with an § = 1/2 effective moment?27-28
for § > 4..

Now we have a reliable estimate of . itself for § = 1.
Under such circumstances, we take further interest in the
ground-state properties and the excitation spectrum of
the system around the critical point. As for the ground-
state properties, such as the spin correlation, the chain-
end states and the hidden antiferromagnetic order,?®
we present them elsewhere.?%3® We here study the el-
ementary excitations. Low-lying excitations of the the
non-alternating S = 1 chains have already been vig-
orously studied.2%:3173% In particular, Takahashi?® suc-
ceeded with a Monte Carlo technique in obtaining the
lowest energy with arbitrary momentum ¢ and made a
prediction that the low-momentum (g ~ 0) excited state
is a scattering state of two excitations with momenta
near 7. This picture of low-lying excitations was sup-
ported by a quantitative approach3?:33:36 and qualitative
discussions,?34° and is now widely accepted. In the triv-
ial case with perfect dimerization § = 1, on the other
hand, all the excitation bands are dispersionless and no
excited state is a scattering state of the elementary exci-
tations. Thus we calculate the lowest energies as a func-
tion of ¢ in the region 0 < § < 1 including the fascinating
point é = 4.

The criticality at § = 4. is also an interesting sub-
ject. Singh and Gelfand?* found in their series-expansion
study on the bilinear biquadratic Hamiltonian
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H= JZ [1 = (—1)*8] [(Si, Six1)r — B(S:, Sit1)3]

(1.3)
where

(A,B)x = A(A®B® + AYBY) + A*B*, (1.4)
that the transition point § = 4. of the model (1.2) is a
multicritical point in the §-A plane at 8 = 0 of the model
(1.3), where the so-called Haldane, dimer, Ising, and XY
phases meet. Although they discussed in detail the criti-
cality of the phase boundaries, no definite conclusion was
obtained in the vicinity of the multicritical point due to
the ill behavior of the series. A recent numerical study?®
has estimated the conformal anomaly parameter ¢ (the
central charge in the Virasoro algebra?!) at the critical
point to be 1.0 + 0.15. In this article, we independently
give an estimate of ¢ at the critical point with the effec-
tive light velocity directly obtained from the excitation
spectrum.

Here we employ a world-line quantum Monte Carlo
approach®® which has been successfully applied to a
study of the dispersion relation of an § = 1 quantum
spin chain. In Sec. II, this method is explained and its
reliability is confirmed. Results are presented in Sec. III.
Section IV is devoted to summary and discussion.

II. METHOD

We treat the S = 1 bond-alternating Hamiltonian (1.2)
with the periodic boundary condition. Because of the
translational symmetry, there is a translation operator
T satisfying

H,T)=0, TN =1, (2.1)
where Z is the identity operator and N is the length of
the system scaled by that of the unit cell. Therefore ‘H
and 7 have coeigenvectors classified by the momentum

k:

H|L k) = Ey(k) |13 k), (2.2)

Tl k) = e |l; k), (2.3)
where |l; k) and E;(k) are the I-th eigenvector and eigen-
value in the ¥ momentum space and

Ey(k) < Ez(k) < -+,

2wm N N N
k= m———2—+1,———2—+2,...,—2—,

(2.4)

La ’
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where L is the length of the system scaled by the lattice
constant a.

Let us define an imaginary-time correlation function
S(g,7) as

S(g,7) = <eHTOqe_H"O_q>MC , (2.5)
where
1 &
Oy =+ Y 0;e'4 (2.6)
=1

with an arbitrary local operator O; and (- --) prc denotes
a Monte Carlo average of the quantity at a given tempera-
ture T'. We here take for O; an S?-linear operator, which
commutes with the Hamiltonian. In world-line quantum
Monte Carlo simulations,?? the imaginary time 7 takes
a finite set of evenly spaced values between 0 and /2,
where 8 = (kgT)~! with the Boltzmann constant kg.
S(g,T) is evaluated by calculating O4 at two Trotter lay-
ers separated by (n/8)7, where n is the Trotter number
used. The dynamical structure factor S(g,w), which is
related to S(gq,7) via

S(g,r) = / S(gw)e ™ dw,

0

(2.7)

is, in principle, obtained by continuing S(g,7) to real
frequencies. Although the analytic continuation is gen-
erally unfeasible, there is a recent proposition*? to over-
come the difficulty which has been successfully applied
to several quantum systems.*%4% This fascinating ap-
proach, which is a combination of world-line quantum
Monte Carlo and maximum-entropy*® methods, is also
powerful for Haldane systems and in fact gave a fine
explanation?® of a neutron scattering experiment*’ for
Ni(C2HgN3)2NO,Cl10,4.48

However, we here consider another treatment for
S(g,7). We can represent S(g,7) in terms of the com-
plete vector set |I;k) as

Z(l; kle PHeMT0e M7 O_,|1; k)

Z e PER) | (1 k|Og |l k + q)|Pe "By (kta)—Ei (k)]

LUk

Lk
S(q,7) = (2.8)
> (s kle ™I k)
Lk
Noting that
TO, |l k) = ex=D0,|l; k), (2.9)
we obtain the following expression:
(2.10)

S(q,7) =

3 ehEk)

1Lk
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Therefore we expect that S(g, ) is approximately eval-
uated as

S(a,7) = 3 (GS|Og|1; q) e 7B D= Ee],
l

(2.11)

at low enough temperatures, where |GS) = |1;0) and
Egz = E,(0) are the ground state and the ground-
state energy. We here note that the matrix elements
(GS|Oqll; q) do not depend on temperature but are defi-
nitely determined once the model Hamiltonian is given.
Equation (2.11) suggests that the lowest energies as a
function of g can be straightforwardly extracted from the
large-7 S(q,7) data. When the lowest-energy states are
the lower edge of the continuum, S(g,w) for them is gen-
erally expected to take the largest values. However, this
is not the case when the lowest-energy states form an
isolated band separated from the continuum above it, as
is seen in the present S = 1 Haldane system. White and
Huse?? illustrated the spectrum of low-lying states for
the S = 1 chain and proposed that the isolated lowest
magnon band disappears into the two magnon contin-
uum near momentum 0.37. Recently, Takahashi3® has
confirmed this picture by calculating S(g,w) as a series
of é-function peaks. According to his result, any ra-
tio of |(GS|S’;|l;q)|lz>2 to |(GS|S§|l;q>|l2:1 in the region
q 2 0.37 is not larger than 0.015. Thus, with a straight-
forward procedure, we could extract the elementary ex-
citation spectrum from Monte Carlo data of S(g,7) at a
sufficiently low temperature.

We demonstrate in the following our method in the
case that § = 0, where the present result can be com-
pared with the previous ones.2%:3438 Here the operator
Oj; is necessarily defined as S?. The chain length L,
which is equal to IV in this case, and the Trotter num-
ber n are set equal to 32 and 200, respectively. We
have used such a large Trotter number as to guaran-
tee enough acceptance ratio for the Monte Carlo flips
and as to observe the large-7 decay of S(g,7). We have
calculated S(g,7) in the subspace with >, 57 = 0 at
(8J)~! = 0.02 and 0.04, and have confirmed that quan-
titatively almost the same data are obtained at the two
temperatures. Hence we take these temperatures to be
low enough to justify the approximation (2.11). In Fig.
1(a) and Fig. 1(b), we plot S(q,T) versus 7 at various
values of ¢ in natural and logarithmic scales, respectively.
S(q, ) shows, with fine accuracy, single-exponential de-
cay except in the small-7 region where there are small but
non-negligible contributions of the higher-lying states.
Therefore —0In[S(q,7)]/0T evaluated at the tail of de-
cay is expected to give the lowest excitation energy as
a function of ¢, E1(q) — Eg, with good accuracy. We
show in Fig. 2 the elementary excitation spectrum thus
obtained (e) with the previous result?® (o) obtained by
the projector Monte Carlo method, where the lattice con-
stant a which is now equal to the length of the unit cell
is set equal to unity. The present data are in good agree-
ment with the previous result within the numerical er-
rors which mainly come from ambiguity in estimating
the slopes in Fig. 1(b), rather than the inaccuracy of the
Monte Carlo data themselves. In the small-q region, rel-
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FIG. 1. Bare (a) and logarithmic (b) plots of S(q, 7) versus
7 at various values of ¢ for the L = 32 chain, where § = 0,
(B8J)™" = 0.02, and n = 200. Here the values of ga are given
with the corresponding symbols.

evant contributions of the second excited states3® seem
to bring about the small uncertainty in our data.

Now let us consider the § # 0 cases, where L = 2N and
the first Brillouin zone is reduced to the range —7/2a <
k < m/2a. Due to the dimerization of the system, two in-
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FIG. 2. Elementary excitations of the ground state as a
function of ¢ in the subspace with ). S? = 0, where L = 32
and 6 = 0. The present result is indicated by e, while o
represents the previous result obtained by Takahasi with the
projector Monte Carlo method.
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dependent operators can be taken for O;. We here define
them as S3;_;£57;. In both the cases, we have calculated
S(g,7) in the subspace with } .57 = 0 for L = 32 and
64, n = 200, (8J)~! = 0.02, and 0.10 < § < 0.80. The
system with L sites has the smallest energy gaps at the
transition point that vanishes in the L — oo limit with
L~ '-linear dependence.?® Since the gaps at the transition
point for L = 32 and 64 are about 0.19J and 0.09J (Sec.
III), respectively, the present temperature (8J)~! = 0.02
is considered low enough to study the elementary excita-
tions. In order to evaluate S(g,7), we have carried out
6 x 10° Monte Carlo steps at each value of §, where the
first 5 x 10* steps were discarded as the initial transient
stage. S(q,7) was averaged over all the Trotter layers so
that the numerical error is held to a minimum. Due to
the huge Trotter number, the CPU time needed for each
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calculation (in the case that L = 32) at a fixed value of §
amounted to several hours with the supercomputer and
several days with the workstations. The numerical preci-
sion in the final results (the dispersion relations) is about
two digits, where the ambiguity mainly comes from the
estimation of —8In[S(q,7)]/87. The results obtained are
presented in the next section. We set the lattice constant
a equal to unity and use the reduced zone scheme in the
following.

III. RESULTS

We show in Fig. 3 excitation energies as a function
of g of the L = 32 chain obtained from S(g,7)’s with
O; = S3; 1+ S3; (o) and O; = S3;_; — 53; (X) cal-

3.0 T T T T
8=020

(E(q)-Ep) /T
[
<)
ox
ox
e}
ox

—
(=}
T
ox
Il

> (b)

q/7

3.0 T T T T
6=030

X0

2.0

(E(@-Ey)/T

— ()

0.0 0.1 0.2 0.3 0.4 0.5
q/m

4.0 T T T T
5=060

20F x 4

(E(@)-E) /]
o

()

0.0 GS 1 I 1 1

0.0 0.1 0.2 0.3 0.4 0.5
q/r

FIG. 3. Excitation energies as a function of ¢ of the L = 32 chain obtained from S(g,7)’s with O; = S3;_; + S3; (o) and
O; = S3;_1 — S3; (x) calculated in the subspace with 3. S = 0, at § = 0.10 (a), 0.20 (b), 0.25 (c), 0.30 (d), 0.40 (e), and 0.60
(f). Here GS denotes the ground state and the arrow indicates the gap between the ground state and the first excited state
independently obtained by estimating the lowest energies in the subspaces with ). S7 = 0 and 1.
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culated in the subspace with Y. S7 = 0. When dimer-
ization is introduced, the states with wave vectors ¢ and
7w — q are coupled with each other and split into bonding
and antibonding states. We find that for § < 0.25 (the
Haldane phase) the scattering matrices O; = S3;_; +53;
and O; = S3;_; — S5, extract energy eigenvalues of the
bonding and antibonding states, respectively, and vice
versa for 6 > 0.25 (the dimer phase). This fact can be
a consequence of level crossing at the transition point
§ = 0.25. It has in fact been reported®® that the low-
lying level structures for 6 < 0.25 and § > 0.25 are differ-
ent. The first excited state is now located at ¢ = 0 (the
zone center). We have independently calculated the en-
ergy gaps between the ground state and the first excited
state by estimating the lowest energies in the subspaces
with ). S7 = 0 and 1 and have shown them by arrows
in Fig. 3. The two independent estimates coincide well.
In the Haldane-phase region, the overall dispersion curve
almost remains unchanged although it shifts downward
with increase of §. Therefore, even with bond alternation,
the low-lying excitations may be considered the scatter-
.ing states of the domain walls?® in the hidden antiferro-
magnetic ordering?® which exists as long as the system
is in the Haldane phase.3° In the dimer-phase region, on
the other hand, the elementary excitations are roughly
described by a triplet pair in the disordered state com-
posed of local singlet pairs. Since the formation energy
of a localized triplet pair on the strongly coupled bond is
(1+498)J, the triplet pair is stabilized by its delocalization
in the vicinity of the zone center, while it is less stable in
the vicinity of the zone boundaries. The upper bands in
Figs. 3 (d)-3(f) can be attributed to the scattering states
of the two triplet pairs, rather than a quintuplet pair as
the elementary excitation, due to the relatively large for-
mation energy of the quintuplet pair and the symmetry
property of the operator O; = 53;_; + S3;. This simple
picture of low-lying excitations may be valid so long as §
is not so large. In the trivial case with § = 1.0, the ex-
citations are completely dispersionless and their energies
are simply multiples of 2J, where the formation energies
of the triplet and quintuplet pairs are given by 2J and
6J, respectively.

In Fig. 4(a) we show the § dependence of the elemen-
tary excitations as a function of ¢ for L = 32. There
is a momentum around ¢ = 0.37 where the § depen-
dence of the elementary excitations is very weak. For
6 > 0.25, the 6 dependence of the elementary excita-
tions with a fixed momentum is monotonic except in the
vicinity of ¢ = 0.3w. Let us focus our attention on the
energy gap between the ground state and the first ex-
cited state which is found at ¢ = 0. The gap takes a
minimum value at § = 0.25, which is consistent with the
continuous phase transition at § = 0.25.24726 Kato and
Tanaka?® have demonstrated, with excellent numerical
accuracy, that the gap vanishes in the L — oo limit at
the critical point. We have also confirmed that the size
dependences of the gap at § # 0 are fitted well to the
form L~2, while at § = 0.25 the gap goes to zero with
slower convergence, that is, the L~ -linear dependence
which is predicted by the finite-size scaling*®:°? based on
the conformal field theory.5!
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FIG. 4. (a) Elementary excitations of the ground state as
a function of ¢ at various values of § for the L = 32 chain.
(b) Elementary excitations of the ground state as a function
of g at the critical point § = 0.25 for the L = 32 (x) and
L = 64 (o) chains, where the attached error bars are ones for
the L = 64 result.

We show in Fig. 4(b) the elementary excitations as a
function of ¢ at § = 0.25 for L = 32 (x) and L = 64
(o). The overall ¢ dependences of the excitations of
the two chains are quantitatively almost the same ex-
cept for the energy gap at ¢ = 0 and thus can be con-
sidered to describe well the property in the thermody-
namic limit. Both the curves are fitted well to the form
(v2sin®q + A?)1/2) where v is the effective light veloc-
ity of the system and A is the energy gap between the
ground state and the first excited state which goes to zero
in the thermodynamic limit. Here v is estimated to be
2.47+0.06 for L = 32 and 2.46 +0.08 for L = 64. Taking
account of the divergence of the correlation length at the
critical point, we expect A of the finite periodic chain
with L sites to be roughly evaluated by

A= v ~ 2_v .
£ L
This phenomenological relation gives, with the above-
estimated values of v, A = 0.15 for L = 32 and A = 0.08
for L = 64, which are in fairly good agreement with the
numerical observations shown in Fig. 4(b).

Finally in this section, let us evaluate the conformal

anomaly at the critical point. Conformal invariance of

(3.1)
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FIG. 5. Chain-length dependence of the ground-state en-
ergy of the periodic chain at the critical point § = 0.25.

the system gives the finite-size scaling form*%°° of the
ground-state energy of the periodic chain as

Eq ey

T =€~ 12’ (3.2)
where ¢ is the ground-state energy density in the bulk
and c is the central charge, which may be used to label
different universality classes.’>53 Equation (3.2) relates
the finite-size correction to the ground-state energy to
the conformal anomaly parameter. In Fig. 5 we plot
Monte Carlo estimates of the ground-state energies of the
periodic chains versus chain length at the critical point
6 = 0.25. We find that the scaling form (3.2) holds with
good accuracy in Fig. 5. The central charge c is esti-
mated to be 1.02 £ 0.08 for L = 32 and 1.02 £+ 0.09 for
L = 64, which are consistent with the previous result
1.0 £0.15.2%

IV. SUMMARY AND DISCUSSION

We have made clear the elementary excitations of the
S =1 antiferromagnetic Heisenberg chains with bond al-
ternation. The continuous phase transition at § = 0.25
(Refs. 24-26) was reconfirmed, where the energy gap
takes a minimum value. The critical excitation spec-
trum is fitted well to the form (v2sinq + A?)1/2 with
v = 2.46 £+ 0.08 and A which vanishes in the long-chain
limit. In the dimer-phase region § > 0.25, the elemen-
tary excitations monotonically move toward the trivial
flat band with the excitation energy 2J.

The criticality at the transition point is in the uni-
versality class with the central charge ¢ = 1, that is,
in the universality class of the Gaussian fixed line.5* As
mentioned in Sec. I, the transition point which appears
in the present study is a multicritical point?* of the ex-
tended system described by the Hamiltonian (1.3). The
phase diagram in the 6-A plane at 8 = 0 obtained by
Singh and Gelfand?* with a series-expansion method is
shown in Fig. 6, where the point M is the § = 0.25
transition point of the present model. According to their
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FIG. 6. A ground-state phase diagram of the bilinear bi-
quadratic Hamiltonian (1.3) obtained by Singh and Gelfand
with a series-expansion method.

study, the criticality all along the line AM B, except pos-
sibly in the vicinity of the point M, is in the universal-
ity class of the two dimensional Ising model (¢ = 1/2).
They also suggested that the critical line MC is XY -like
(¢ = 1). Unfortunately they gave no definite conclusion
in the vicinity of the point M and along the line M E
due to the ill behavior of the series. Now here is the
complementary and fascinating result that the critical
point M is described in terms of a conformally invariant
field theory with ¢ = 1. All the results we have suggest
a possibility that the critical point M may be equivalent
to the free fermion point®® of the critical Ashkin-Teller
model,3%56:57 where the model degenerates into two un-
coupled copies of the critical Ising model. We hope that
the present study will motivate, from the above point of
view, further studies on the critical exponents along the
line EMC.

The present method may be generally applied to
a wide range of low-dimensional quantum systems al-
though their quantum mechanical properties control nu-
merical accuracy in the final results. It is expected that
the present method with the advantage of applicability
to large systems and the diagonalization method3® which
has successfully been applied to S = 1 quantum spin
chains will cooperatively contribute to understanding of
the low-lying excitation mechanisms of various systems.
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