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Magnetic susceptibility in the spin-Peierls system CuGeO3
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We study numerically, using a one-dimensional Heisenberg model coupled to the lattice in the adi-
abatic approximation, the spin-Peierls transition in the linear Cu?t spin-% chains in the inorganic
compound CuGeOs, which has been recently observed experimentally. We suggest that the magnetic
susceptibility, the temperature dependence of the spin gap, and the spin-Peierls transition temper-
ature of this material can be reasonably described by including nearest- and next-nearest-neighbor
antiferromagnetic interactions along the chain. We estimate that the nearest-neighbor exchange

parameter J is approximately 160 K, and that the next-nearest-neighbor exchange parameter is

approximately 0.36J.

The purpose of the present study is to describe the
spin-Peierls transition in the linear Cu%* spin—% chains
in the inorganic compound CuGeOgs which has been re-
cently observed.’™ The transition temperature 7. ~ 14
K has been inferred from the rapid drop of the mag-
netic susceptibility towards zero, indicating the opening
of an energy gap for singlet-triplet spin excitations.®¢
The existence of this transition was also confirmed by
measurements of the heat capacity,” which exhibits a
sharp anomaly at 7. corresponding to a second-order
phase transition. The effect of a magnetic field on the
transition temperature has also been measured,* and the
experimental results were compared with the theoretical
predictions obtained by Cross and Fisher,® confirming
the spin-Peierls nature of the observed transition.

We adopt a simple model Hamiltonian consisting of
antiferromagnetic Heisenberg interactions along a chain.
Since a one-dimensional (1D) spin system has no phase
transition at finite temperature because of fluctuations,
it is necessary to take into account interchain couplings
in order to describe the spin-Peierls transition. These in-
terchain couplings are usually taken to be the coupling
to the three-dimensional phonons, in a mean-field sense.
The effect of interchain interactions was studied by In-
agaki and Fukuyama.® We consider the spin-lattice cou-
pling in the adiabatic approximation. The study was
performed by exact diagonalization on finite chains. We
suggest that in order to obtain a reasonable fit of the
magnetic susceptibility a next-nearest-neighbor antifer-
romagnetic interaction along a chain should be included
in the model. If the predictions resulting from our model
are confirmed by additional experimental work, the CuO,
chains in this compound would be one of the few experi-
mental realizations of a 1D spin-1/2 Heisenberg antiferro-
magnet with competing interactions.!® The present study
should also be considered as part of a current theoretical
effort to understand magnetic properties, in particular
the singlet-triplet spin gap, in low-dimensional spin sys-
tems such as SroCuyOg and (VO)2P207.11

Analytical studies of spin-Peierls transitions in spin-
1/2 antiferromagnetic chains, based on the transforma-
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tion of Pauli spin operators to spinless fermion opera-
tors, have shown that the homogeneous magnetic chain
is unstable with respect to dimerization as the temper-
ature decreases and a spin gap appears as a result of
such dimerization.'?71* There has been also an intensive
work, both analytical and numerical, on the half-filled
one-dimensional Hubbard-Peierls model, which reduces
to the antiferromagnetic Heisenberg model in the large-U
limit.'® The Hubbard-Peierls model has been widely used
to model conducting polymers and other 1D electron-
phonon systems.

The 1D microscopic Hamiltonian for the spin degrees
of freedom that we consider is

H, =J1ZS%—1 ‘SZi+JzzS2i'szi+1 ) (1)

where the index ¢ runs over the lattice cells (i =
1,...,N/2, N: number of sites) with periodic boundary
conditions. We assume linear dependence of the exchange
integrals on the atomic displacements u, so that

Ji=J1+~u), Jo=J(1—~u), (2)

where v is a constant. It is convenient to introduce the
dimensionless quantity § = vyu.

The spin-lattice interaction enters in this model only
through J; and J2. The underlying physical picture is
the following. The spin chains in CuGeOgs are oriented
along the c direction (see, for example, Fig. 1 in Ref. 3).
According to experimental results? the relevant lattice
distortions are observed along the b axis, perpendicular
to the chain direction. In this situation, the variables u
in Eq. (2) correspond to oxygen displacements below the
spin-Peierls transition temperature.? It has been recently
reported? that there is a comparable shift of the Cu ions
along the c direction. The exchange constants J; and
Jo, calculated following the path Cu-O-Cu, have in prin-
ciple a complicated dependence on the displacement u.
Then, the expressions for J; and J, given above should
be considered as a first-order approximation in u (or §)
of this complicated function. Besides, the application
of Hamiltonian (1) to this material implies that we are
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neglecting the two-dimensional (2D) interchain exchange
interactions which have a magnitude of approximately
10% of the intrachain coupling.®

The main difference between the Hamiltonian given
by Egs. (1) and (2), and the one corresponding to the
dimerized or alternating bond chain,'® is that in the
former both J; and J, are temperature dependent be-
cause 6 = §(T). We calculate the temperature depen-
dence of these couplings by minimizing at each tem-
perature the free energy F of the total Hamiltonian
H = H, + Hy,, with respect to § (adiabatic approxima-
tion). Then Fumin(T) = F(8eq(T)). The elastic term of
the Hamiltonian is
1NK

1 2
th = 'Z'NKU = 2 72

82, (3)
where K is the elastic constant. It is also customary to in-
troduce the dimensionless spin-lattice coupling constant
A = Jy2K~'. This method of calculation was devised
by Beni and Pincus!? for their study of the spin-Peierls
transition in a spin chain with XY interactions. For a
finite chain, and for a given set of parameters J and ),
once we have determined the equilibrium displacement
Jeq at each temperature, any thermodynamical quantity
can be computed in the dimerized region.

The first stage of our study consisted in estimating the
parameters J and g by fitting the experimental data for
the susceptibility! with the theoretical curve in the uni-
form or nondimerized (J; = J; = J), region. We com-
puted the susceptibility by generating all energy levels
E; and their multiplicities d; in each sector of fixed total
S, using a Householder algorithm. The susceptibility
was then obtained through its relation to the expected
squared magnetization, summed over energy levels and

total S, sectors;
S5 Y e

T = 2 2 S. i
x(T) = g°upB S 4 P
S, i
This approach has the advantage that explicit eigenvec-
tors are not required.

The observed average g factor is approximately 2.14
with a slight anisotropy along the a, b, and ¢ axis. The
experimental data have a broad maximum near 56 K (see
Fig. 1). A fitting of these data using the uniform Heisen-
berg model reproduces the position of this maximum of
the susceptibility if the exchange constant J is chosen to
be 88 K.! However, as it can be seen in this reference the
overall fitting is quite poor. A somewhat better fitting
can be achieved by choosing J = 170 K.'® However, for
T < 150 K the fitting is still quite poor. We have seen
numerically that there is no satisfactory fitting of the ex-
perimental data in the region T' > Thax = 56 K using a
nearest-neighbor Heisenberg model. One of the simplest
extensions of this model is to include in the spin part
of the Hamiltonian a next-nearest-neighbor interactions
term:

Hyn=J'Y S;-Sji2, (5)
J

(4)
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where the index j runs over the lattice sites (j = 1, ..., N).
The possibility of an antiferromagnetic (J’ > 0) second-
neighbor coupling through the Cu-O-O-Cu exchange
path was suggested in Ref. 2. Another possibility is to
consider the interchain coupling which would lead to a
2D model. Taking into account the underlying physical
picture discussed above, it is reasonable to assume that
J’ is independent of u at least in first-order approxima-
tion.

We determined J by imposing that the maximum in
the susceptibility is at 56 K as indicated in Ref. 1. Then,
we determined the ratio as = J’/J in order to fit the
maximum of the susceptibility Xmax = X(Timax). For this
fitting we chose the susceptibility measured in a polycrys-
tal sample'® shown in Fig. 1. In this figure we also re-
produce the magnetic susceptibility measured on a single
crystal! along the a, b, and ¢ axis. Taking into account
this dispersion of the data, we conclude that a reasonable
fit is obtained with the following set of parameters:
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FIG. 1. The magnetic susceptibility of CuGeOs. Experi-
mental curves labeled a, b, and ¢, obtained on a single crystal,
are from Ref. 1. The experimental curve with a dashed line
corresponds to measurements on a polycrystal (Ref. 18). The
solid curve is a theoretical one corresponding to the Heisen-
berg mcde] with nearest- and next-nearest-neighbor interac-
tions, with az = 0.36, obtained numerically on a chain with
16 sites. In the inset, the theoretical susceptibility obtained
for lattices with even and odd number of spins for T' < 30K
are shown.
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J=160K, a,=0.36.

To simplify the calculations, we have taken g equal to
2.00. This value of g, which is somewhat smaller than
the experimental value, should be considered as an ef-
fective value since we are neglecting the interchain cou-
plings. Notice that the temperature region where we
are fitting the available experimental data is still far
from the asymptotic regime described by the Curie law.
The effect of the neglected interchain coupling on the
fitting parameters has been discussed in the literature
(see, e.g., Refs. 16 and 9). The results for the calcu-
lated susceptibility and the experimental data are shown
in Fig. 1. In both theoretical and experimental data
a contribution from the orbital part of the susceptibil-
ity, x°™ = 1.510"* emu/mole has been added. In this
temperature region, T > Tiay, the finite size effects are
negligible and already for N = 12 the results do not
vary by taking larger clusters. For temperatures smaller
than T,,.. but in the uniform region, i.e., above the spin-
Peierls transition temperature, there are strong finite size
effects. The magnitude of these finite size effects can be
seen in the inset of Fig. 1 where we show the suscep-
tibility below 30 K for N = 8, 10, 12, 14, and 16, and
N =9, 11, 13, and 15.

A possible unwanted feature of the Heisenberg model
with nearest- and next-nearest-neighbor interactions is
the presence of a temperature-independent spin gap, i.e.,
in the absence of dimerization. This spin gap can be in-
ferred from an exact solution at zero temperature found
by Majumdar and Ghosh'® and was confirmed by sub-
sequent numerical work. Recent studies on this problem
indicate that for a; > 0.25 there is a finite singlet-triplet
gap.2® For a; = 0.36, we have calculated the spin gap
at zero temperature on finite lattices with NV < 24 spins.
To extrapolate to the bulk limit we adopted the form
predicted by spin-wave theory,?! or alternatively, the es-
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sentially equivalent law,
c

A(N) = Boo + 75 -

(6)

The resulting extrapolated value of the spin gap is ap-
proximately equal to 0.015 + 0.005 in units of J, or
2.4 + 0.8 K, much smaller than the smallest measured
value for the CuGeO3.%

The second stage in the calculation was the estimation
of the coupling constant A. In order to do this estima-
tion, we chose another piece of experimental data, the
singlet-triplet spin gap at zero temperature. The fitting
of these data is very convenient from the numerical point
of view since at T' = 0 we can diagonalize larger lattices
using the Lanczos algorithm. Using the spin part of the
Hamiltonian given by Egs. (1) and (5), we first deter-
mined the value of § that reproduces the experimental
singlet-triplet spin gap, which is &~ 2.15meV (from Ref.
4) or 0.153 in units of J = 160 K. Results for the spin
gap for several values of § and for several sizes are shown
in Fig. 2(a). The extrapolation of the spin gap to the
bulk limit for each value of § was also done using Eq. (6).
The extrapolated spin gaps as a function of § are shown
in Fig. 2(b). A quadratic interpolation gives the final
result: deq(7 = 0) = 0.014 + 0.001.

Then, for each lattice size N = 8,10,...,22 and for

= 0.014, we computed the inverse of the coupling con-
stant A(V)~! that minimizes the ground-state energy of
the total Hamiltonian, H, + Haz, + Hpp. The results are
shown in Fig. 2(c). Finally, by extrapolating A(N)™! to
the bulk limit we obtain A= = 21.3 + 0.5 or A =~ 0.05.

Now, all the parameters of the Hamiltonian have been
determined and we like to check the validity of this model
by reproducing other experimental results or predicting
the value of properties still not experimentally measured.
Alternatively, the values of J = 160 K and A\ =~ 0.05 could
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be determined independently by other experiments.

The first and most obvious check of the consistency of
this model is the calculation of the spin-Peierls transi-
tion temperature 7T,.. Experimentally, T. ~ 14 K. To es-
timate T, we computed the free energies for each lattice
size IV, and then, we minimized the free energy to deter-
mine (T, N) as explained above. T,(/V) is the value of
the temperature at which the dimerization begins. For
each lattice size, we used A(N)~! calculated previously.
Results for the calculation of d¢q(T, N) for N = 12, 14,
and 16 are shown in Fig. 3(a). These curves have some
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FIG. 4.

resemblance with the experimental data for the lattice
contraction A, as shown in Fig. 4 of Ref. 4. In fact, A,
is related to the atomic displacements u of Eq. (2) and
hence to 6.q. The spin-Peierls transition temperature,
calculated for N = 16, is approximately 10.5 K, which is
reasonably close to the experimental value of 14 K. We
have not yet attempted an extrapolation of 6¢q(7, N) and
T.(N) to the bulk limit.??

As stated above, once 6¢q(T, N) has been computed,
any thermodynamical quantity can be calculated in the
dimerized region. In the first place, we estimated the
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(a) Magnetic susceptibility, in arbitrary units, near the spin-Peierls transition for N= 12, 14, and 16 as a function

of the temperature. The solid (dashed) curves correspond to the nondimerized (dimerized) Heisenberg chains. (b) Comparison
of the theoretical susceptibility obtained for the 16-site chain with experimental data from Ref. 1 obtained with a magnetic

field parallel to the ¢ axis.
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spin gap as a function of 7' for N = 12, 16, and 20. To
simplify this calculation we adopted for the three lattices
8eq(T, N) corresponding to N = 16. At each tempera-
ture, we computed the spin gap as the zero-temperature
singlet-triplet gap of the model with § = 8¢q(T, N). The
results are shown in Fig. 3(b) together with the experi-
mental data from Ref. 4. Although there are strong finite
size effects there is a reasonable tendency of the theoret-
ical data towards the experimental ones.

Finally, we have computed the magnetic susceptibility
near the spin-Peierls transition, for N=12, 14, and 16.
The results are shown in Fig. 4(a,b). In Fig. 4(a), it can
be seen that the susceptibility for each lattice size decays
as T goes to zero more rapidly for the dimerized Heisen-
berg model than for the uniform one, which is consistent
with a larger spin gap in the dimerized case. Notice that
for a finite chain there is always a finite gap even in the
absence of dimerization and for J' = 0. As the lattice
size is increased, the spin gap in the dimerized model
remains finite while the spin gap of the uniform model
drops to a small value (due to the presence of J'). This
behavior explains the fact that the difference between the
dimerized and the uniform curves is larger as the lattice
size is increased, as can be seen in this figure.

In Fig. 4(b), we compare the theoretical susceptibil-
ity obtained for the 16-site chain with experimental data
from Ref. 1 obtained with a small magnetic field paral-
lel to the ¢ axis. The spin-Peierls transition tempera-
ture calculated previously, is shown with an arrow. The
agreement between theoretical and experimental results
is quite good taking into account the approximations in-
volved and the strong finite size effects expected in this
low-temperature region.
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In summary, we described the magnetic susceptibil-
ity, the temperature dependence of the spin gap, and
the spin-Peierls transition temperature of the CuGeOg
using a one-dimensional antiferromagnetic Heisenberg
model with nearest- and next-nearest-neighbor interac-
tions coupled to the lattice in the adiabatic approxima-
tion. We obtained a quite satisfactory overall agreement
with experimental results with only three free parame-
ters. This agreement gives in turn support to the inter-
pretation of the observed features as a spin-Peierls tran-
sition. The nearest-neighbor exchange is approximately
equal to 160 K, and the ratio of next-nearest- to nearest-
neighbor exchange constants is approximately 0.36. This
value of the parameter oy would imply a spin gap of the
order of 2.4 K, even in the absence of dimerization. If this
spin gap is not detected experimentally, it is quite appar-
ent that one should necessarily adopt a two-dimensional
model. In fact, some small discrepancies between our
model and experiment should be attributable to weak
interchain coupling as well to a slight spin anisotropy. In
particular, the calculated transition temperature could
be even lower if fluctuation effects are included in our
treatment of the lattice distortion. However, we do not
think that it is relevant to include these effects before
confirmation of the main consequences derived from the
present model. Details of the calculations and a system-
atic study of finite size effects are discussed in an enlarged
version of this paper.??
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