PHYSICAL REVIEW B

VOLUME 51, NUMBER 22

1 JUNE 1995-11

Anderson-Yuval approach to the multichannel Kondo problem

M. Fabrizio
Institut Laue-Langevin, B.P.156, 38042 Grenoble, Cedez 9, France
and Institut for Advanced Studies, Via Beirut 4, 34014 Trieste, Italy

Alexander O. Gogolin
Institut Laue-Langevin, B.P.156, 38042 Grenoble, Cedex 9, France
and Landau Institute for Theoretical Physics, Kosygina str. 2, Moscow, 117940 Russia

Ph. Noziéres
Institut Laue-Langevin, B.P.156, 38042 Grenoble, Cedex 9, France
(Received 8 December 1994)

We analyze the structure of the perturbation expansion of the general multichannel Kondo
model with channel anisotropic exchange couplings and in the presence of an external magnetic
field, generalizing to this case the Anderson-Yuval technique. For two channels, we are able to map
the Kondo model onto a generalized resonant-level model. Limiting cases in which the equivalent
resonant-level model is solvable are identified. The solution correctly captures the properties of
the two-channel Kondo model, and also allows an analytic description of the crossover from the
non-Fermi-liquid to the Fermi-liquid behavior caused by the channel anisotropy.

I. INTRODUCTION

The single-channel Kondo model has a long history
as the simplest model believed to contain the relevant
physics of magnetic impurities embedded in metals. A
lot of effort has been devoted to study this model and
presently one can safely claim that it has been com-
pletely understood from the theoretical point of view.
Apart from the original perturbative scaling approach,
which already gave the correct qualitative description,®?
there is also an exact solution of this model obtained by
the Bethe-ansatz technique.® The physics underlying the
single-channel Kondo model is the formation of a nonde-
generate singlet state at low temperature. The impurity
spin is screened by the conduction electrons; hence the
magnetic susceptibility, obeying the Curie-Weiss law at
high temperatures, undergoes a Kondo crossover, satu-
rating to a constant upon lowering the temperature.

In an attempt to describe realistic magnetic impuri-
ties (which have orbital structure), different generaliza-
tions of the simple Kondo model have been proposed.*
Among these generalizations, the simplest one is prob-
ably the model describing an impurity spin S coupled
to N channels of conduction electrons (commonly re-
ferred to as the multichannel Kondo model). Surpris-
ingly, it has been realized that, for N > 25, this model
exhibits a behavior qualitatively different from the single-
channel one,® which is due to a nontrivial ground state
J

with a residual degeneracy. This gives rise to divergent
low-temperature susceptibility ximp and specific heat co-
efficient v = Cvimp/T (so-called non-Fermi-liquid be-
havior). It should be said that experiments on dilute
magnetic alloys (the systems for which the Kondo model
was originally proposed) do not give any clear evidence
for such a behavior but rather suggest that the ground
state is always a singlet. A possible explanation would
be that the channel symmetry (which is necessary for
the non-Fermi-liquid behavior to occur) is broken (since
typically no exact symmetry guarantees channel equiv-
alence). If the energy scale of this symmetry breaking
term is small, a slow crossover from non-Fermi-liquid to
Fermi-liquid behavior is expected. However, it might
be difficult to experimentally distinguish it from the
usual Kondo crossover. Consequently, since early 1980s,
interest in the issue declined, even though, in the mean-
while, some exact solutions for the case of equivalent
channels became available.

In recent years, however, interest in the subject grew
again, as other, more promising, realizations of the mul-
tichannel Kondo model have been proposed, for instance,
two-level systems in metals,® heavy fermion compounds,”
and high-T,. superconductors.® While for the two-level
systems there is convincing experimental evidence® of the
non-Fermi-liquid behavior predicted by the theory, the
other proposed realizations have been until now contro-
versial.

The general multichannel Kondo Hamiltonian is given
by

N N
J
= i zg% Zla 1o+, - —oF
Hic = 32 50 ol ¥h) + 3 {Ja"2(0) + 52 [5707.0) + 5702 0]} 1)
0163-1829/95/51(22)/16088(10)/$06.00 51 16 088 ©1995 The American Physical Society



51 ANDERSON-YUVAL APPROACH TO THE MULTICHANNEL . ..

where

Ho($,9") =D ety (2)

k

is the kinetic energy of the conduction electrons q,,
a = 1,...,N being the channel index and o =t,] be-
ing the spin index (we assume a spin-1/2 impurity). No-
tice, however, that in some realizations of this model, the
channel index is the physical spin while the spin index la-
bels an orbital quantum number (see also Sec. IV). The
electron spin densities in Eq. (1) are defined by
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In the single-channel case (N = 1) the exchange cou-
plings J flow to infinity under scaling, if positive. The
spin anisotropy J, # J, disappears at the fixed point.
This is interpreted as the formation of a singlet at the
impurity site. On the contrary for the N > 1 channel
symmetric case, the infinite coupling fixed point is un-
stable as well as the weak coupling one, hence a stable
intermediate coupling fixed point.

Until recently, information on the behavior of the
model around this fixed point could only be extracted
from the Bethe-ansatz solution'® and conformal field
theory.!! In 1992, Emery and Kivelson'? provided a
simple solution for the symmetric two-channel case at
a particular value of the longitudinal exchange cou-
pling. The solution was obtained by means of the
Abelian bosonization technique, generalizing a proce-
dure previously applied to the single-channel Kondo
model by Schlottmann.!® The original Schlottmann ap-
proach was in turn inspired by Toulouse’s mapping of
the single-channel Kondo model onto a resonant-level
model, which he achieved by the analysis of the parti-
tion function,'* borrowing the perturbative treatment of
Yuval and Anderson.!® The two methods, bosonization
and Yuval-Anderson method, are equivalent, in the sense
that they give qualitatively similar results (it has been
checked in the single-channel case). Still, the latter is for-
mally more rigorous (e.g., it does not fully rely on band
linearization) and straightforward (it simply amounts to
comparing the perturbation expansions of two different
models).

In this paper we generalize the Yuval-Anderson
method to the multichannel Kondo model with chan-
nel anisotropic exchange couplings. For the two-channel
case, we are able to show that the perturbation expan-
sion of the Kondo model is equivalent to that of a gen-
eralized resonant-level model. In the channel isotropic
case, the model is of the type found by Emery and Kivel-
son via the bosonization technique. The novel feature
is the channel anisotropy which gives rise to interesting
crossover phenomena. We demonstrate that even in this
case a mapping of the Kondo model (for particular values
of the longitudinal exchange couplings) onto a solvable
resonant-level model does exist. For N > 2 we are un-
able to find any kind of resonant-level model which would
reproduce the perturbation expansion.
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II. GENERALIZATION
OF THE ANDERSON YUVAL APPROACH

In this section, we analyze the structure of the pertur-
bation expansion of the Hamiltonian (1) in the transverse
exchange couplings.

A. Single-channel model

Consider first the single-channel problem. We allow
for an exchange anisotropy (J, = Jy, = J, is different
from J,). We want to calculate the impurity partition
function in time space, using a perturbation expansion
in powers of J,. A term of order 2n involves 2n alter-
nate impurity spin flips. Let ¢; be the times of up flips,
t; those of down flips (n of each). The philosophy is to
calculate that particular term exactly, for a given his-
tory {t;,t.}, and to show that it is identical to the cor-
responding expansion for another problem (a resonant
level), with appropriately chosen parameters. The two
problems are mapped on each other term by term: They
are equivalent. Note that we thus bypass summation of
the perturbation series in J, . For a specific value of J,
(the “Toulouse limit”) the equivalent problem happens to
be trivially solvable: If we can scale through that value,
we have an explicit description of the crossover to low
temperature: the (100 — €)% exact solution of Anderson.
The error stems from the fact that universal scaling is not
just a change of J,. That error is supposed not to change
the qualitative behavior, and anyway it is implicit in the
equivalent bosonization technique (less powerful since it
relies on a Born approximation for phase shifts).

Assume first that J, = 0. Each vertex flips a conduc-
tion electron spin. A t; vertex creates a | electron and an
1 hole; a t; vertex does the reverse. In a typical diagram,
the electron propagators go from any t; to any ¢t} for |
spins, and from any ¢} to any ¢; for 1 spins. Since J, =0,
these propagators are free electron local propagators
Yo

Go(t) = ——————,
o(t) it+£o_lsgnt

where v is the density of states for one spin at the Fermi
level and & is a high-energy cutoff of the order of the
conduction bandwidth. Let D,(t;,t.) be the contribu-
tion of n lines with spin o that join ¢; and t; vertices.
D, has a pole whenever t; = t;- (one propagator is diver-
gent). Moreover crossing symmetry implies a zero when-
ever t; = t; (or t; = t;): Exchanging the extremities
of two propagators changes the sign. Hence the Cauchy
determinant found by Yuval and Anderson (here and in
what follows we omit time-independent prefactors con-
taining the density of states vy and to the short-time
cutoff, restoring them in the final expressions),

H (ti —t;) (¢ — i)
Dy = (—i)™ 22 : (4)

I1-4)

%)

Expression (4) is homogeneous with degree (—n), as ex-
pected for D,. The proof is completed by looking at the
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FIG. 1. Time-dependent potential seen by a spin-up con-
duction electron. The impurity spin flips from | to 1 at times
t; and vice versa at times t;-.

asymptotic behavior. The corresponding contribution to
the impurity propagator is Uy = D4 D, .

We now restore J,. The potential felt by a spin o
electron changes at each impurity flip — hence an edge
singularity that will modify the long-time behavior of U;
see Ref. 16. In Fig. 1 we have drawn the time-dependent
potential felt, e.g., by the up-spin conduction electrons at
the impurity site (the down-spin one is the opposite) The
phase shift is §; (d_) when the electron and impurity
have parallel (antiparallel) spins. What matters is the
discontinuity of phase shifts when a flip occurs, § = 6, —
é_. If we assume electron hole symmetry, then

Hrvod, /4). (5)

The effect of the flip is twofold.

(i) The open lines that contribute to D, can scatter any
number of times on the impurity. That generates once
again the Cauchy determinant (via a Muskhelishvili type
of analysis!?). For each spin D, is replaced by D=2/,
thus the open line contribution acquires an extra factor
Up = D—49/m,

(ii) In addition the underlying Fermi sea reacts to the
flip via closed loops that exponentiate (for a given history
the potential is structureless). The resulting contribution
is Uo = D2/,

Altogether U = UpUUc, and, after inserting back the
prefactors, we obtain

U (JLVOEO c2052(5/2))2n (é)"’ ®)

where 7 is an exponent that depends on J,,

:2(1_3)"’.

(Note that n» = 0 if § = m, which corresponds to the
strong coupling limit 6, = —0_ = w/2.)

Let us now consider a resonant-level model for spinless
electrons, characterized by the Hamiltonian

H = Ho(¥,¥%) + A [\IIT(O)d+ dT\I!(O)]
+12/‘ [¥7(0)¥(0) — ¥(0)¥(0)] (d’rd _ %) 7

6y = —46_ =tan~

(7)

where d is an impurity orbital at the Fermi energy located
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at the origin. ¥ is a free Fermi field, the kinetic energy of
which is the same as in Eq. (1). The interaction potential
V produces a phase shift discontinuity

&' = 2tan~! ("”2"‘/) (8)

between the empty and full d states. We expand in pow-
ers of A which plays the role of J,. The t; and t; vertices
correspond to d and d operators. The structure of the
expansion is the same as for the Kondo case, except that
there is no spin degeneracy. We have one set of open
lines originating from A vertices, which can scatter off
the flipping §’. We also have one set of closed loops —
hence altogether

U" = [Xcos('/2)v/woko) o (2)77’, (9)

&
77 (1 — —6,)

Thus the Kondo problem with coupling ¢ is mapped term
by term onto the resonant level with coupling §’ if the two
propagators (6) and (9) are identical. This implies n = 7’
(that can always be achieved by appropriately choosing
V) and

with

\ = Jy mcosz(é/Z)

cos(d'/2) "

The Toulouse limit corresponds to ¢’ = 0, i.e., a phase
shift § = m(1 — 1/4/2). The resonant-level Hamilto-
nian can then be trivially diagonalized, yielding a low-
temperature Fermi-liquid behavior. The resonant-level
Hamiltonian of the form (7) has been previously derived
by Wiegmann and Finkelstien.®

B. Multichannel model

We now turn to the N-channel case. In a first stage
we assume flavor degeneracy: What does remain of the
previous analysis? In order to answer that question we
proceed in reverse.

(i) The alternation of up and down spins is unchanged.
The flipping potential due to ¢ is the same as before (see
Fig. 1), whatever the flavor involved at each vertex. Edge
singularities are consequently unaffected. The scattering
contribution to open lines is again Uy, = D~%%/™ (flavor
is fixed by extremities). Each closed loop can have an
arbitrary flavor and therefore Ug = D28 /7%

(ii) Paradoxically the difficulties come from the part Uy
(in the absence of J,). Uy still has poles whenever t; =
t’., but one loses crossing symmetry. If the ends of two
lines are interchanged, one usually changes the number
of closed loops C — hence a change in the degeneracy
NC. As aresult Uy cannot be expressed simply in terms
of D.

In order to proceed, we must assign to each vertex its
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flavor index a. The t; and t; then break into N sub-
classes t;, and t’, (a = 1,...,N). For a given diagram
the number of vertices in different subclasses need not
be the same, but spin and flavor conservation implies
an equal number of ¢;, and t;, within a given subclass.
Since flavor is conserved along an open line, Uy is a prod-
uct of independent factors Up,. For each factor crossing
symmetry holds and Uy, is the square of a Cauchy deter-
minant D, as it would be for a single channel. D, is still
given by (4), the products running only over a-type times
tio and t,. In the end we find [again omitting prefactors
proportional to J, vg, &o, and cos(§/2)]

2
U= (D,---Dy)?D-45+2N[3]" wr;l‘)MLDﬂN,
(10)
where
) 5\ 2
ﬂN:l_‘l; + 2N (;) . (11)

Note that D is not the product of individual D,: We
have instead D = D; --- Dy F, in which we have set

TL T 1tia = tiel |tia — t53]

ij a<b

F= .
IT 1T [tia = 5] [tia — 854

ij a<b

[Notice that, having defined D; as in Eq. (4), F =
D/(D; --- Dy) is by construction positive which justifies
the use of the moduli.] The factor F' couples the chan-
nels. For the case of two-level systems, an expression
similar to our Eq. (10) has been derived in Ref. 6.

The Emery-Kivelson solution to the two-channel case,
N = 2, is based on a mapping of the Kondo problem onto
the spinless resonant level Hamiltonian

H = Ho(¥, 0 + Ho(¥,,T})
+A (d - d) [¥1(0) + ¥(0)]

+% [v1(0)¥,(0) — ¥,(0)¥](0)] (dfd _ %) ’
(12)

where d is again a fictitious spinless Fermi operator. No-
tice that we have introduced two Fermi fields ¥ and ¥,,
coupled to the impurity in a different way (the reason
why we have not used the same field will become clear
later). In order to establish the equivalence we first con-
sider the case V = 0. We divide the d and d' flips into two
subclasses, depending on whether a fermion ¥ is emitted
or absorbed. Times t;; and t;; correspond to df flips
with a fermion emitted or absorbed, respectively; ¢}, and
t., are their Hermitian conjugates. A spinless fermion
propagator can go as usual from t;; to t}; (¢, to t;2)
or from t;; to tjz (tl, to t};). The latter possibility is
the new feature. The corresponding impurity propaga-
tor U’ has poles whenever a propagator has a zero time
range, i.e., when t;, = t;a, ti1 = tja, OF tiy = t91- Due to

crossing symmetry it has zeros when t;, = tjq, ti, = t},,
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ti1 = t,, or tj; = t;3. Once again one thereby builds a
Cauchy determinant which happens to be
DD,

U = 7 (13)

Expression (13) has the right poles and zeros. It more-
over has the right overall power of ¢ and asymptotic be-
havior: It is the correct answer. Comparing (13) with
the definition of F' we see that

, _ (D1D2)’?

v D

We now restore the flipping potential V. Since it involves
a different Fermi field, it gives rise only to a closed loop
contribution. Altogether we have

D.D;)? _(s')?
U= E—ID—Q—D(") , (14)
with the same ¢’ as in Eq. (8). Comparing (14) with (10)
we see that the two problems are mapped onto each other
if [see Eq. (11)]

()

which is always possible since both right and left sides
are positive. Notice that for a given § the interaction
potential V in Eq. (12) is, according to (8) and (15),
given by

v-_2 tan(%l)zitan(g—a). (16)

Vo

The problem is directly solvable if V = 0, i.e., when
d = w/2. In the electron-hole symmetric case that im-
plies 64 = —6_ = 7/4, a typical intermediate coupling
as expected for the two-channel overscreened Kondo im-
purity. Indeed from the expression of 3 we see that the
model is symmetric under § — 7 — §. This extends the
result of Ref. 5 that the two-channel Kondo model be-
haves similarly around J, = 0 (i.e., § = 0) and J, = o©
(i.e., § = 7). By symmetry the fixed point should be
exactly at § = 7/2, that is, at the solvable line V = 0.

It should be noted that for both single- and two-
channel models the solvable limits are, strictly speak-
ing, spin anisotropic, since the Yuval-Anderson ap-
proach is only valid for small J,. However, spin
anisotropy is known to be an irrelevant perturbation
around both the strong coupling and the intermediate
coupling fixed points. Therefore it does not influence the
low-temperature behavior of the model.

The argument can be extended to a flavor-dependent
exchange J. Due to anisotropy we must treat separately
the channel dependence of J, and J,. Different J,; and
J12 do not affect the structure of the perturbation ex-
pansion. As we have shown above the mapping works as
follows:
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0,8i1)S™ (1) dt(t:1)¥(0,t:1),

ol (0,t:1)®, —
0, t,-z)S+(t,-2) — dT(tiz)‘Pf(O, tiZ),
L 4
—

N(
Wl (0, t:2) W, (

wl.(0,t,), (0,t,)5™ (t;)
W1 (0,81,) T, (0,t1,) S (thy)

w10, t},)d(t;),
(0, t;5)d(tiz);

(17)

thus we need only modify accordingly the flipping matrix
elements of the equivalent model, which becomes

Ap [dHe(0) + ¥ (0)d] + A, [dTET(0) + ¥(0)d], (18)

where

Jyicos2(6/2)
i = ;CC)S—137/2)V vo&o - (19)

Notice that, if J; = Ji2, (18) reduces to (7) with A =
J11v/v0€o cos?(6/2)/ cos(d'/2).

A difference between J,; and J,, gives rise to different
phase shifts §; and §2. Let us first consider the scattering

correction to the 1 open line Ur;. The Muskhelishvili
propagator for a channel-1 spin-up electron is

Gi(t,t') = ——icosz((sl/Z)tTot,

_é&
XH (t —tia) (t' — tia) "
(t—th,) (¥ — tia) ’

Its contribution to Uy, is obtained by putting ¢ equal
—61/m

to any t;1, t' to any t};, hence a factor [DF] , being
2n; the number of flips which involve the channel 1. We
square it in order to account for spin and we multiply
by the corresponding term for channel 2. The closed line
contribution is straightforward since flavor is conserved
along a loop,

Uo = p2(8i+63)/=*
Altogether the impurity propagator is

U= Df—451/1rD§—462/7rF 2(81 +52)/"D2(62+52) . (20)

(Remember that F = D/D1D,.) If §; = §; = 8, we
recover the previous result (10).
In general let us write
51=6+E, (52:5-—6.
Then (20) reduces to
v = (P02’ pau pa(z) (D2 (21)
D D, ’

The additional factors with respect to (14) can be repro-
duced with an extra potential

114 1
> [Zf(0)¥(0) — T(0)TT(0)] (d*d - 5) .

With the choice
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W/2 av wd

W2 § —

’
til tj2

FIG. 2. Time-dependent local potential felt by an electron
in the effective resonant-level model. While the same anni-
hilation operator V¥ is involved in the two types of flips, the
potentials are opposite. The flips at times ¢;; and ¢;2 are the
Hermitian conjugates.

2 2
W = — tane = — tan
Vo Vo

(232). @
the closed loop contribution generates the factor
D(e/™*  The last factor of (21) comes from the fact
that the phase shift discontinuity is + on the 1 vertices,
—e on the 2 vertices (see Fig. 2). Notice also that, as
a consequence of §; # &2, the correct definition of \; in
Eq. (18) changes to

J1icos%(d;/2)
Ai = 2 cos(8/2) Voo, (23)

so that, even though J,; = J 3, A1 # A2. In that way
one can map any version of the two-channel Kondo im-
purity onto an extended Emery-Kivelson Hamiltonian.

It is interesting to examine to what extent such an
analysis could be pursued if N > 2. We return to the
flavor symmetric case, for which (7) holds. If we manage
to have By = 0, then

Dl"‘DN)2 _D;---Dy

(
U= =
D F

(24)

Hence two questions: (i) Can we achieve 8 = 07 (ii) If
we can, is there a solvable model that gives the same U?
It is clear that no real phase shift § will achieve 3 = 0
if N > 2. That may be a definitive objection since poor
man’s scaling scans the real § axis. Let us ignore it,
hoping that some analytic continuation argument might
help. Then in order to reproduce (24) we must introduce
a coupling
ST (¥ +---+¥y) +He,

in which the ¥, operators are such that the correspond-
ing propagators are

(‘Ila(t)‘yl(tl)> = g(t - t’) (1 - 6ab) ) (25)

(T (t)T, (1)) = g(t —t')dap
[9(t) = 1/t is the free electron propagator]. Then U will
have poles whenever ¢;, = t’;, on the one hand, t;, = tip,
tio, = ti (a # b) on the other. It will have zeros if
tia = tja, ti, = t;a, or t;q = t;b. That just generates
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the combination (24). It remains to be seen what kind
of algebra could produce (25): We do not know of any.

III. MAGNETIC FIELD EFFECTS

Let us consider the effects of a uniform magnetic field
B = (0,0,B) in the framework of the Yuval-Anderson
approach. The magnetic field appears in the Hamiltonian
with a term

N
Hp = —upB I:gisz +gc/dXZUaz(x)] ) (26)
a=1

where the electron spin density is defined in Eq. (3), g;
and g. are the Landé factors of the impurity and the
conduction electrons, respectively, and pup is the Bohr
magneton.

As before we will treat the transverse exchange pertur-
batively. This implies that the reference states |1) and
|[4), which are used for the perturbation expansion, are
the eigenstates of the Hamiltonian with fixed impurity
spin direction in the presence of the magnetic field

N

HT/J, - ZHD aa7¢aa) Z

gilkB
—B
2

—gc,uBBZ / X0z (). (27)

We have to understand how the magnetic field modifies
the perturbation expansion in J,. B gives rise to two
effects.

(i) It shifts the chemical potential for up- and down-
spin electrons (in opposite directions). This causes a
small change in the spin-up and -down phase shifts if
the band has a finite curvature at the Fermi energy. This
effect is negligible at low temperature.

(ii) It causes a difference AE = E; — E| in the ground
state energies of (27) for the two impurity spin directions,
which appears in the Muskhelishvili propagators.

By standard phase shift arguments, based on Friedel’s
sum rule for the displaced charge, we find

€F+-g—c—,i,iB~B

de b, (¢), (28)

1N
E=—pgg;B+ -
uBY +W;/€

where ep is the Fermi energy. For small magnetic field
(28) reduces to

F—“;‘EB

2

Hyg = ZZHO(%,,,%, + Z {JzaSz Z0)+ =2

a=1 o =1
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N
_ . gdcHB
AE = —upg;B + —W—BZJG. (29)

a=1

The above energy difference enters in the impurity prop-
agator (10) via the phase factor

exp |:—iAE Zn:(tl - t:):| . (30)

The conduction electron part of AE actually represents
the leading term of closed loop diagrams, that one which
grows linearly with (¢; — t}) instead of logarithmically.

Which term has to be added to the resonant-level
model in order to reproduce (30)? It is easy to realize
that the corresponding term is simply

AES, — AE (d*d - %) . (31)
Notice that at the Emery-Kivelson line for the two-

channel case
E 00 =T,

a=1,2

so that if g; = g., then AE = 0 (at first order in B).
Consequently the impurity magnetic susceptibility van-
ishes, in agreement with conformal field theory!! and
bosonization approaches.!® This in turns means that at
the Emery-Kivelson line the reference states are such as
to perfectly screen the impurity spin. When the depar-
ture away from the Emery-Kivelson line is treated as a
perturbation,'® both the specific heat and susceptibility
acquire logarithmic singularities, leading to the universal
Wilson ration Ry = 8/3.

As to the N > 2 channel symmetric case, confor-
mal field theory!! and Abelian bosonization approaches
(which until now exist only for N = 4; see Ref. 20) again
predict the impurity susceptibility to vanish at the fixed
point. From Eq. (29), we see that AE =0 for § = 7/N,
and therefore the impurity susceptibility is rigorously
zero. If this is the true property of the fixed point, as
follows from the analysis of Ref. 11, then § = w/N is
the fixed point. Such a conclusion would also agree with
renormalization group (RG) arguments of Ref. 6.

IV. SOLUTION
OF THE TWO-CHANNEL ANISOTROPIC
MODEL

In this section we discuss the two-channel Kondo
model in more detail, focusing on the effects of channel
anisotropy. The starting Hamiltonian is

JL“ [Sto, (0) + S~ oF(0)] } (32)

If the exchange couplings are channel symmetric J,; = J,2 and J;; = J,,, it is known® that the Hamiltonian
(32) flows towards a nontrivial fixed point. At this fixed point the model exhibits non-Fermi-liquid behavior; namely,
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the impurity susceptibility ximp and the specific heat over temperature, Cv,imp/T, diverge at low temperatures as
In(1/T), and the zero-temperature entropy is finite and equal to In(2)/2, as if half of the impurity spin degrees of
freedom were decoupled from the conduction electrons. Physically this occurs because two (and more) channels tend
to overscreen the impurity spin, so that the complete screening characteristic of the single-channel Kondo model
cannot take place, thus leaving a ground state degeneracy. In the case of a finite channel anisotropy, the system
will always choose the channel with the strongest exchange to screen the impurity spin, and the usual Fermi-liquid
behavior of the single-channel model will finally take place at zero temperature. The corresponding RG flow diagram

is sketched in Fig. 3.

As we have shown in the previous sections, the Hamiltonian (32) can be mapped onto the resonant-level Hamiltonian

Hgy, = Ho(¥, ") + Ho(¥,,¥) + A, [dTT(0) + TT(0)d] + Xz [dTTT(0) + ¥(0)d] + % [Tt(0)¥(0)

— ¥(0)w'(0)] (d*d - %) + 3 [91(0)2,(0) - ,(0)%}(0)] (d*d - %) +AE (d"d - %) , (33)

where the interaction potentials are related to the longi-
tudinal exchange couplings via [see Egs. (5), (16), (22),
and (23)]
— l le — JzZ
214 7202J,1J,2/16"
8 1—7m2vgJnJ,2/16

V= , 35
ﬂ'ng le +J22 ( )

AT rs 1 / 1
Ai = 2 vobo 1+ (mvodei/4)2 Y 1+ (meV/2)2° (36)

and (assuming equal impurity and conduction electron
Landé factors g; = g. = g)

\%4
AE = —g%ruﬁtan_1 (7”/20 ) = —gupA(V)B.

(34)

In the case of symmetric exchange couplings, the
resonant-level model (33) reduces to the Hamiltonian
(12) originally considered by Emery and Kivelson. Then
the combination df + d is decoupled from the conduc-
tion electrons (hence the ground state degeneracy and the
non-Fermi-liquid behavior). A finite channel anisotropic
transverse exchange couples this combination to conduc-
tion electrons and moves the system away from the non-
Fermi-liquid fixed point towards the Fermi-liquid single-

0 Jl oo

FIG. 3. Qualitative (J1,J2) RG flow diagram for the
anisotropic two-channel Kondo model.

[
channel fixed point.2! The smaller the anisotropy, the
lower the crossover temperature. In what follows we
analytically study this crossover in the solvable limit
V=W=0.

Since the total number of fermions is not conserved by
the Hamiltonian, there are anomalous Green functions.
In the Nambu representation

b= (1),

the impurity Green function
Ga(t) = —i(T [D()D'(0)])

is a 2 X 2 matrix. Its Fourier transform can easily be
evaluated. For w much smaller than the bandwidth, we
find

To + Tz
2 w+ iysgnw

To — Tx 1

Galw) = ; (37)

w + i'sgnw
where the resonance widths are defined by

F = 7!'1/0()\1 —+ /\2)2,
Y= 7”/0(>\1 - /\2)2,

7; being the Pauli matrices and 7y the unit matrix. The
impurity spectral function is

r +1
w24+T2 2

2 1
Aw) = 5 (70— 72) (Fo + 72) a3 »
and it is therefore equally shared by two Lorentzians with
different widths I" and . In the channel isotropic case
v — 0, one of the two Lorentzians tends to §(w), repre-
senting the impurity degree of freedom which is decou-
pled from the conduction band in this particular limit.!2
The impurity contribution to the free energy can be
calculated in a standard way by integration over the cou-
pling constant. The result is

F(T) :Fo(T)+/;l—:f(w) [tan—l (g) +tan? (%)] ,
(38)
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where Fo(T') is the free energy in the absence of coupling
between the impurity and conduction electrons, f(w) is
the Fermi distribution function, and the integral should
be limited to the conduction bandwidth. The entropy
can be calculated by S(T) = —8F(T)/8T. By defining

the function

S(T)

—1In(2) + § (%) + 3 (g—) -
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= 1 1 1 1
S(Z)——z—al:'!/l( +'2—7r—z')—1:| lnr‘( +-2‘;l_‘;>
+§ln7r , (39)

where 9(z) is the psi function and I'(z) is the gamma
function, the entropy turns out to be

LA T <
6 I\ ’y k) ’y,
Inv2, vy T<KT, (40)
I'+~y
2= 50T r>T,

the last equality being valid for v < I". S(T) is shown in Fig. 4. We see that S(0) = 0, as expected since no degeneracy

is left, but there is a region of temperatures (the wider the smaller v

symmetric two-channel model.

is) where the entropy is close to that of the

Another quantity of physical interest is the longitudinal impurity susceptibility. As we know from the above analysis,
exactly on the Emery-Kivelson line, x{7, = 0, and one has to consider deviations from this line (i.e., V' # 0) in order

to account for a finite impurity susceptibility.'® The resulting susceptibility is

B
Xz = lgusAV)? [ dr(T(5*(1)S(0))) = lgnsA(V) —=— [ (3 +
0 (T —7) 2

In the case v <« I the susceptibility shows the same kind
of cross-over behavior as the entropy:

1 r
1 m(z), T<n,
7r(Fl— ) Y K

Xz, =lgusAV)? — 2 (=), v<T<T,
7r1(I‘ —-9) T
ﬁ , T>T.

(41)

As expected the magnetic susceptibility saturates at low
temperature, although at intermediate temperatures it
shows the logarithmic behavior of the two-channel Kondo
model.

It follows from (40) and (41) that the Wilson ratio Ry
is not universal: It depends on the amount of anisotropy
~/T. Such a conclusion is obvious in the limit of small
anisotropy, when the energy scales are well separated.
Then the residual entropy In+/2 must be quenched in a

.8
In(2)-
6 —
E 4
N
.2
oV lii iy
0 1 2

T/T

FIG. 4. Entropy S(T') for various values of the anisotropy
A% = 4/T: from the top A = 0,0.1,0.5, 1.

)~ (37 301) |

temperature range ~ -, implying Cy,imp ~ T/, while
the susceptibility Ximp just rounds off the logarithmic
singularity, Ximp ~ In(I'/v): The Wilson ratio is very
small. Such a lack of universality is also apparent in
the phenomenological, Fermi-liquid description of the
low-temperature limit, 77 < 7. Then the impurity is
quenched into a singlet, and the residual conduction elec-
tron phase shift in the channel (m, o) may be expanded
as

mo‘(e) = 0mo + me + "/’m‘snm,—a + Z ¢m o' Mg

m'#m

where 87,15+ is the change in the occupation measured
from the ground state. Universality implies that 6,4 (€) is
invariant (i) if the chemical potential of the other channel
is changed (there is no channel flip) and (ii) if € and the
chemical potential are changed by the same amount (the
Kondo singularity is attached to the Fermi level).

Hence in our two-channel case

6”1—0

010 =010+ 1 [6 - ] + 0100 6n201,

8

Nn2—o

820 = 020 + Q2 [E = ] + 020’0"6”161

Vg
(the cross terms 64, 6, are equal in the electron-hole sym-
metric case d10 = 820 = 7/2). v, is the one-channel
density of s states at the Fermi level. It is then straight-

forward to extend the analysis of Ref. 5: The resulting
impurity corrections are

CV,imp ot o 2((!1 + az) + 0, + 62

Ximp _
Cy TV X TV 2w

Due to the channel interaction 8 the Wilson ratio Rw =
Cv Ximp/XCV,imp departs from the single-channel value
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2. Put another way, one has a line of fixed points rather
than a unique one. If channel 1 is the dominant screening
channel, J; goes to infinity while J; may evolve towards
any arbitrary value: Once the spin S is screened, Jz no
longer scales. This arbitrariness is reflected in the Wilson
ratio.

To our knowledge, the two-channel Kondo model
is most convincingly realized by two-level systems in
metal alloys.® This has recently been experimentally
confirmed thanks to the development of point contact
spectroscopy.® In these systems, the role of the spin is
played by some orbital degree of freedom, while the phys-
ical spin plays the role of the channel index. Thus the
model is by construction channel isotropic. However, an
external magnetic field breaks the channel symmetry and
generates an effective channel anisotropy proportional to
the curvature of the conduction electron band times the
magnetic field B. In this case, the coupling to the mag-
netic field is described by the following term in the Hamil-
tonian:

Hp = g"BB/d wla

- wzc,(x)«/;za(x)] ,

X)Y1,(x)

where o is now the pseudospin index, and the chan-
nel indices 1 and 2 correspond to the physical spin up
and down, respectively. The magnetic field shifts the
Fermi level of channel 1 with respect to that of chan-
nel 2. Electron-hole symmetry is thereby broken within
each channel. It follows that the magnetic field induces
a phase shift anisotropy §; — 8> o< B, reflected into a fi-
nite W o« B and in different A\; and A2. Such a correction
comes both from the correction to the Fermi level density
of states,
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!
vy — v = gupvyB ,

and from the Zeeman shift of band edges. The modi-
fied pseudospin flip amplitudes in the equivalent resonant

level model are
© Jycos?(8;/2) 31
c SLOS \%/4) g °%o B
Az ZCOS (5’/2 Vz£0 ( + 4 gMB )

Correspondingly this reflects onto a finite -,

97 vh)?
7= T (onnye 2L 2 (42)
Thus, B causes the crossover to a Fermi-liquid behav-
ior at low temperature as observed in Ref. 9. As to
the physical magnetic susceptibility, it is related to the
first derivative of the free energy (38) with respect to
. The low-temperature (low-magnetic-field) behavior of

the susceptibility is given by

(3gmB1)? 11
imp T 1 .
Ximp 160 &J2 In |min T B2

(One can show that finite W o« B does not contribute to
the logarithmic-divergent part of the susceptibility.)

Very recently, the channel anisotropic (but spin
isotropic) Kondo model has been solved using Bethe-
ansatz methods by Andrei and Jerez.?? Their conclusions
are qualitatively similar to ours.
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