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Striped phases in two-dimensional dipolar ferromagnets

A. B. MacIsaac and J. P. Whitehead
Department of Physics, Memorial University, St. John' s, ¹wfoundland, Canada A1BSX7

M. C. Robinson and K. De'Bell
Department of Physics, Trent University, Peterborough, Ontario, Canada XgJ 7BB

(Received 22 July 1994; revised manuscript received 10 November 1994)

A uniaxial spin system on the square lattice, where the spins are oriented perpendicular to the
lattice and are coupled by both a dipole-dipole interaction and an exchange interaction, is studied.
The subtle interplay of the exchange and dipolar interaction in two dimensions destabilizes the
ferromagnetic ground state of the nearest-neighbor Ising model and gives rise to a sequence of
striped phases. An analytic expression for the leading terms in an asymptotic expansion of the
ground-state energy for the striped phase is derived for the discrete lattice. Comparison with the
corresponding results for a previously proposed checkerboard state show that the striped phase is
the ground state. The results are shown to be in excellent agreement with earlier numerical results.
The finite-temperature phase diagram is obtained for a finite lattice using Monte Carlo simulation
techniques and the corresponding structure-factor patterns discussed.

I. INTRODUCTION

The interplay between a long-range dipolar interaction
and a short-range exchange interaction can give rise to
a variety of interesting and unusual magnetic phenom-
ena. Recently Taylor and GyKory and, independently,
the present authors have noted that in the case of two
dimensional magnetic systems in which the magnetic mo-
ments associated with the spins are aligned out of plane,
this interplay could result in the appearance of striped
phases. Taylor and GyfFory considered these systems as
part of a study of magnetic ordering in metal-on-metal
overlayers. The motivation for the present authors was
the large number of experimental studies of magnetic or-
dering in the rare-earth subsystems of the high-T, super-
conductors and related layered compounds. These stud-
ies were based on ground-state calculations for finite-size
Ising systems. Previous work based on phenomenological
theories and continuum models of ultrathin films ' had
concluded that such phases would be stable with respect
to the ferromagnetic state for all values of the exchange
parameter. However, Taylor and GyKory note the possi-
bility that a finite value of the exchange parameter exists
for the Ising system at which the ferromagnetic phase be-
comes stable. A previous study of an Ising system con-
cluded that the ground state in the presence of a dipolar
interaction and large ferromagnetic exchange interaction
is a checkerboard phase. We show that a full treatment
of the discrete nature of the lattice clearly demonstrates
that it is the striped phase which has the lowest energy.

In these striped phases the spins along a particular axis
form a ferromagnetic chain, with spins on adjacent chains
aligned to form ferromagnetic stripes of width ah, where
a denotes the lattice constant. The magnetic moments
in adjacent stripes are aligned in opposite directions to
form an antiferromagnetic superlattice with modulation
length A = 2ah. A striped phase corresponding to h = 4
is shown schematically in Fig. 1.

In this paper we examine in more detail the phase be-
havior of such systems as a function of both the exchange
coupling strength and temperature. In particular we ob-
tain an analytic expression for the ground-state energy of
the striped phases in the limit of large h. From this result
we are able to show that the dipolar interaction will al-
ways destabilize the ferromagnetic ground state, against
the formation of an antiferromagnetic striped phase, con-
trary to the phase diagram shown in Fig. 2 of Ref. 1. We
also show that the width of the stripes increases expo-
nentially with the strength of the exchange coupling. In
addition to the results obtained for T = 0, we present the
results of simulation studies carried out on a 16 x 16 lat-
tice from which we obtain some i~sight into the character
of the finite-temperature phase diagram.

The outline of the paper is as follows. In Sec. II we
present the Hamiltonian describing the energetics of the
system of interest. In Sec. III we present numerical re-
sults for the energy per spin of the striped phase for finite
h in the range 1 & h & 400, and discuss its stability with

FIG. 1. The AF4 phase (h = 4).
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respect to the ferromagnetic phase. In Sec. IV we present
an analytic expression for the ground-state energy in the
limit of large h. It is shown that the resultant phase
behavior agrees well with that obtained in the previous
section, suggesting that corrections to the limiting form
of the ground. -state energy are small even for the lowest
values of h. An explicit expression for the dependence of
the equilibrium width of the stripes on the magnitude of
the exchange coupling is given. The results of a similar
analysis for the checkerboard phase is presented and it is
shown that the striped phase has the lower energy for all
values of coupling constant J. In Sec. V we present the
finite-temperature phase diagram obtained from numer-
ical simulations on a 16 x 16 lattice. In the next section
we present and discuss the difFraction patterns obtained
from these simulations. Finally, in Sec. VII, we discuss
what conclusions can be drawn from this work.

II. HAMILTONIAN

We consider a two-dimensional system of uniaxial mag-
netic ions on a square lattice. The state of the magnetic
ion, associated with the ith lattice site, is specified by
the variable o; = +1. Both the spin and the magnetic
moment of the ions are assumed to be aligned perpen-
dicular to the plane and are given by S; = o,S,g and
p, = o;p,g, respectively, where S,~ and p,g denote the
efFective spin and magnetic moments, respectively.

The magnetic ions are assumed to interact via a long-
range dipole-dipole interaction and. a short-range ex-
change interaction. The Hamiltonian may therefore be
written as

R Ap~ + +dip )

where Q,„contains terms involving the exchange inter-
action, and may be written as

2

(Pefr )
For later use, we define the dipolar and exchange contri-
butions as

respectively.

III. GROUND STATE

In the absence of the exchange interaction the ground
state is simply an antiferromagnetic state with nearest-
neighbor spins aligned in opposite directions. Introduc-
ing an antiferromagnetic exchange interaction (J ( 0)
does not therefore change the ground-state spin configu-
ration but simply serves to enhance the transition tem-
perature. More interesting is the situation J ) 0, since
here one has competition between a long-range dipo-
lar interaction favoring antiferromagnetic ordering and
a short-range ferromagnetic interaction. In such a situa-
tion one might reasonably suppose that the ferromagnetic
ground state would be stabilized for a sufFiciently large
value of J, leading to a phase diagram bounded by the
antiferromagnetic phase at negative J and the ferromag-
netic phase at large positive J, qualitatively similar to
that obtained for the case in which the spins are aligned
in the plane. However, as shown by Refs. 1 and 2 this is
not necessarily the case. Instead, for J & 0.85 (in units
of p,&/2a ) we see the appearance of striped phases, sim-
ilar to that shown schematically in Fig. 1 with the width
of the stripes increasing with increasing J.

The exchange energy of the striped phase spin config-
uration may be readily calculated from the Hamiltonian
given by Eq. (9) as

where the summation over (ij) denotes a sum over all
nearest-neighbor pairs. The dipolar interaction 'Rd;p,
may be written as

1 g~ pzp)
~diP —

2 3 )r-.
ig2 u

where r;~ denotes the distance between the lattice sites
i and j and the sum is a double sum where terms with
i = j are excluded. Thus we have

where E((a,j) denotes the energy in dimensionless form,
defined as

(5)

where

(I0)

The contribution from the d.ipole-dipole interaction
Eg;~(h, ), given by Eq. (8), is somewhat more diKcult to
evaluate due to the long-range character of the interac-
tion. However, by virtue of the periodic nature of the
striped phase spin configuration, it is nevertheless possi-
ble to map the dipolar energy for the entire lattice to a
sum within a single stripe. The resultant expression is
given in Appendix A.

In Fig. 2 we graph the difFerence in the ground-state
energy between the ferromagnetic state and the striped
phase as a function of the exchange coupling J, for sev-
eral values of h, , together with the difFerence in energy
between the ferromagnetic state and the antiferromag-
netic state. From this we see that the ground state for
J ( 0.85 is the antiferromagnetic state. At J = 0.85, the
ground state changes from the antiferromagnetic to the
striped phase, with 6 = 1. As the coupling constant J is
increased further, we see that the ground state changes
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The presence of the linear term in I'(Q) leads to a loga-
rithmic contribution in the leading asymptotic correction
to the dipolar energy of the striped phase, given by

lim Es;p(h) = Ed; ——(&+&»&) + &
~ h2 ~,0 1 (11

h, (h2)
(15)

where E&; denotes the dipolar energy of the ferromag-
netic ground. state and the parameters A and B are both
positive constants. The detailed derivation of Eq. (15)
is given in Appendix B, together with the explicit form
of the coeKcients A and B. B is evaluated exactly in
Appendix B and A may be evaluated to give

FIG. 2. The energy of the striped phases with h = 2, 4, 8,
16, 32, 64, and 128 relative to the ferromagnetic energy as a
function of J. Also shown is the energy of the antiferromag-
netic phase (dotted line).

A = 9.105

to a striped phase with increasingly larger width h. We
also find that, for the range of values displayed in Fig. 2,
the striped phase always exhibits a lower energy than the
ferromagnetic phase.

On the basis of these numerical results, it is certainly
plausible that extending the above calculation to higher
order in 6 would reveal that the ferromagnetic phase does
not stabilize for any 6nite value of J. The validity of such
a conjecture cannot, however, be determined simply by
extending the above calculations to higher and higher
values of h, , since the computational resources required
for such a calculation rapidly become prohibitive. In-
stead an expression for the asymptotic form of Eg;~(h)
must be derived. Such an expression is presented in the
following section.

[The value of A. quoted here was obtained by fitting the
asymptotic form to the data for large (h & 50) but finite
stripes described in the previous section. ]

The above result implies that in the limit h, —+ oo a
plot of h[E&, —Es;~(h)] versus ln h should be linear with
slope A and y intercept B. Figure 3 shows such a plot
calculated from the expression given by Eq. (A20) in Ap-
pendix A for selected values of h in the range h = 2—400,
together with the result given by Eq. (15). It is seen that
the above asymptotic approximation to the ground-state
energy, given by Eq. (15), agrees well with the numerical
results over a wide range of h.

Combining Eqs. (10) and (15), the ground-state energy
of a striped phase of thickness h may be written as

lim E(h) = Eg;p(h) + E,„(h)

IV. ANALYSIS OF THE STRIPED PHASE
FOR LANCE A

1= Ep ——(A —2J + B ln h) + 0
~

—
~6 h')

(18)
To calculate the dipolar contribution to the ground-

state energy of the striped phase in the limit A = 2ah —+

oo, from Eq. (8), we express the dipolar energy as

E = d cr o — I'

where E~ = E&,. —2J denotes the ground-state energy
of the ferromagnetic state.

The equilibrium thickness of the striped phase for a
given value of J may be found by diKerentiating Eq. (18)

where o (Q) denotes the Fourier transform of the spin
configuration o (R),

cr(Q) = ) e'~ ~cr(R),

60

50

40

and we have defined I (Q) as 30

20

The long-range character of the dipolar interaction man-
ifests itself in the long-wavelength behavior of 1 (Q), giv-
ing rise to a nonanalytic term proportional to Q,

10

I'(Q) = I'p —2~Q+ I'(Q) . (14)
&n(h[Es;~ —Rs;~h]) versus inh for the striped

phase.
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B = A —2J+ Blnh*, (19)

with respect to h. Referring to this equilibrium value as
6* one arrives at

with the corresponding results for the striped phase.
The exchange energy for the checkerboard phase may

be calculated from the Hamiltonian given by Eq. (9) as

which leads to E,„(h) = —2J
i

1 ——
i

t' 2b

h) (22)

6* = exp 1+
J= ho exp

In the above ho = exp(1 —&) = 0.871. Substituting the
result for h" back into Eq. (18) gives

B (1i
lim E(h) = EF ——+ 0

Ih-+co h A = 2.819 (23)

The dipolar contribution to the checkerboard phase may
be evaluated numerically for a particular value of 6 from
the expression given by Eq. (A26). Noting that the
asymptotic form for the dipolar energy of the checker-
board configuration is that given in Eq. (15) above, ~ s

where h denotes the size of the squares, we plot h[E&;
Eg;~(h)j versus lnh in Fig. 4. The coefBcients A and B
may be evaluated to give

This implies that the ferromagnetic phase is unstable in
the thermodynamic limit for a two-dimensional spin sys-
tem with a dipole-dipole and exchange interaction, since
the phase with 6 = h* will always have a lower energy.
The origin of the instability is a direct consequence of
logarithmic contribution in the asymptotic expansion of
the dipolar energy of the striped phase, and. hence may
be attributed. to the long-range character of the dipolar
interaction in two dimensions.

The stability of the striped phase relative to the fer-
romagnetic phase and the exponential dependence of
the stripe thickness h given by Eq. (20) are consistent
with earlier work of Garel and Doniach, using a phe-
nomenological Ginzburg-Landau expression for the free
energy, and the continuum model studied by Yafet and
Gyorgy. On the other hand Czech and Villain have ar-
gued that for a uniaxial model the checkerboard phase
has a lower energy than the striped phase. Kaplan and
Gehring have compared the energy of both the checker-
board phase and the striped phase within the framework
of a continuum model of a uniaxial spin system and con-
clude that the striped phase has a lower free energy than
the checkerboard phase. They attribute the discrepancy
between their result and that of Czech and Villain to
certain approximations introduced in their analysis.

The uncertainty surrounding the precise nature of the
ground. state arises from the fact that the energy of the
checkerboard phase exhibits the same functional depen-
dence on the characteristic dimension h, characterizing
the size of the squares, as given by Eq. (15) for the striped
phase. In particular the logarithmic contribution to the
dipolar energy is independent of the particular phase and
depends only on the the number of domain walls. As
a consequence the difference in energy between the two
phases is determined by the nonlogarithmic contributions
to the dipolar energy, which are contained, to leading or-
der, in the value of the coeKcient B. Since these nonloga-
rithmic contributions depend sensitively on the structure
and intersection of the domain walls, the precise value of
the coefFicient B depends on the model used and the ap-
proximations introduced in the subsequent analysis. In
light of these considerations it is therefore worthwhile to
extend the present analysis to the checkerboard phase
described in Ref. 7 and to compare the results obtained

70
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20

10
0.5 1.5

ln h

FIG. 4. 1n(h[E's; —Eg;~h]} versus 1nh for the checker-
board phase.

where the coefIicient A was obtained by fitting the
asymptotic form given by Eq. (15) to numerical results
obtained from Eq. (A26) for large h. The resultant
asymptotic form is shown by the solid line in Fig. 4. Min-
imizing the resultant form for the energy we obtain an
equilibrium value of 6 = 6* identical to that given by
Eq. (20), but with ho ——exp(l —&+) = 2.28.

The energies of the striped and checkerboard phases
are compared in Fig. 5 and show that for a given value
of J the striped phase has the lower energy. In the limit
of large J, our analysis shows that the relevant quantity
for determining the lower energy is not the value of B, as
found in Ref. 7, but is instead the ratio B/ho as shown
in Ref. 6. This difference arises as a consequence of the
fact that the second term contained in the expression of
the dipolar energy given by Eq. (15) was omitted in the
analysis given in Ref. 7. Since B/ho 7.0 for the checker-
board phase and B/ho = 9.2 for the striped phase, we
can conclude that the striped phase will always have the
lower free energy. Thus, while our analysis of a micro-
scopic model of a single layer of uniaxial spins on a square
lattice differs somewhat from the continuum model of a
thin film considered by Kaplan and Gehring and, as a
consequence, yields a different value for the coefBcient A
for both the striped phase and the checkerboard phase
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V. PHASE DIAGRAM

—15

—20
0

FIG. 5. Comparison of the energies of the striped and
checkerboard phases. The solid line shows the asymptotic ex-
pression for the striped phase with the coefBcients given in the
text. The dashed line is the corresponding expression for the
checkerboard phase. Crosses represent the points at which
the width of the stripes change from h to h+ 1 (i.e. , crossing
points of the lowest energy lines in Fig. 3). Diamonds are the
corresponding points for the checkerboard phases. For refer-
ence, the dot-dashed line and dotted line show the energies of
the ferromagnetic and antiferromagnetic phases, respectively.

[in our analysis A = 47rb for the striped phase and 47rb'

for the corresponding checkerboard phase, where b and b'

are defined in Eqs. (13) and (16) of Ref. 6], we neverthe-
less arrive at the same conclusion regarding their relative
energies.

In order to get some feel for the size of the domains
that might exist in a realistic system let us define the
temperature T„

k~T = 2.269 QS,g

=2.269 J~
2Q

which corresponds to the critical temperature of our two-
dimensional spin system in the absence of the dipolar
interaction. We therefore obtain the following expression
for the exponent J/B, which appears in Eq. (20):

The phase diagram for a temperature and exchange pa-
rameter phase space (T, J) was constructed using Monte
Carlo simulations for a N = 16x 16 system. The spin sys-
tem was assumed to satisfy a periodic condition and the
long-range nature of the dipolar interaction was treated
using the Ewald summation technique. 9 A typical simu-
lation included 10 Monte Carlo steps per spin to allow
the system to reach equilibrium. This was followed by up
to 10 more Monte Carlo steps per site, with data taken
from every 10th configuration, except near the transition
temperature where every 20th configuration was used.
Temperatures are given in unit of p,,&/2a k~.

The phase boundaries between the striped phase and
the disordered phase shown in Fig. 6 were determined
from the peak in the calculation of the specific heat. In
the calculation of the specific heat it was found that for
small values of the exchange parameter, if one starts at a
high temperature in a random state and then very slowly
cools the system, domain walls form at high tempera-
tures which persist for long times at lower temperatures.
The long life of these domain walls may be attributed to
the ground-state energies of the striped phase being only
slightly larger than that of the antiferromagnetic ground
state. While the presence and the motion of these do-
main walls will involve little cost in energy, they nev-
ertheless cause large fluctuations in the order parame-
ter and hence an unusually large susceptibility. Domain
wall formation can, therefore, make results from Monte
Carlo simulations of uniaxial dipolar systems very diFi-
cult to decipher. For this reason simulations were either
started from the expected ground state or from the final
state from a previous simulation at a lower temperature.
The resultant phase boundaries are shown as diamonds
ln Fig. 6.

The phase boundaries separating the various striped
phases were also determined from Monte Carlo simu-
lations by considering the system at constant T ( T
and varying the strength of the exchange coupling. The
transformation of the system from one striped phase to

15.0

T-
T*'

I

where we have defined T* as

(27)

10.0

2
T* =9076 "~

2k' a3

A more useful form of Eq. (28) is given by

2
T* = 2.83 K,

Q3

(28)

(29)

5.0

AA

AF4

FF

where T* is expressed in kelvin, the effective moment p,g
is expressed in Bohr magnetons, and the lattice constant
a in A. . If we consider by way of an example Dy +, with a
ground-state doublet

~

+ 15/2), with p,,8 = 10.63y~ and
a = 3.5 A. , then we obtain a value of T* —7.5 K.

0.0
-5.0 0.0 5;0

,o .?
10.0 15.0

FIG. 6. Phase diagram for a 2V = 16 x 16 system from
Monte Carlo simulations.
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FIG. 9. Magnitude of the principal structure factor peaks
[K = (0, + —)] of Fig. 8.

other values of the exchange parameter to help in deter-
mining both the ground state and the Neel temperature.

VII. CONCLUSION

We have obtained an analytic expression for the
ground-state energy for the striped phase of a two-
dimensional uniaxial dipolar spin system in the limit
h —+ oo. The resultant expression is found to be in ex-
cellent agreement with earlier numerical results ' and
provides an excellent approximation to the exact expres-
sion, even for relatively small values of the modulation
length (6 8). Based on this result we have shown that
the dipolar interaction will always destabilize the ferro-
magnetic state regardless of the strength of the exchange
coupling, and that the ground state will instead consist of
an antiferromagnetic superlattice similar to that shown
schematically in Fig. 1, with a modulation length that
depends exponentially on the strength of the exchange
coupling according to Eq. (20). The analysis shows that
the appearance of the modulated spin phase may be at-
tributed to the nonanalytic nature of the dipolar interac-
tion in the long-wavelength limit. Specifically it is due to
the term proportional to the magnitude of the wave Dum-
ber Q in Eq. (14), which arises as a consequence of the
long-range nature of the dipolar interaction. Earlier work
on continuum models, ' that deals with a somewhat dif-
ferent limit of the thin magnetic films also concludes that
striped phases will always be stable with respect to the
ferromagnetic state.

We have also shown that while the striped phase has a
lower energy than the corresponding checkerboard phase
for a given value of J, the values are very close. This
arises as a consequence of the fact that for a given number
of domain walls the difference in energy between the two
phases is determined by the corrections to the logarithmic
contributions to the dipolar energy. This result, together
with the fact that these corrections depend sensitively
on the structure and intersection of the domain walls,

accounts for the quantitative differences between the re-
sults obtained in the lattice and continuum models. (For
further discussion of the relationship between the con-
tinuum approximation, experimental systems, and the
present work see Ref. 14.) It is interesting to note, how-
ever, that despite these differences, the ground state, in
both cases, is the striped phase.

We have also extended the results to finite temperature
by means of Monte Carlo simulations and obtained the
phase diagram for a finite 16x 16 lattice. This provides at
least a qualitative description of the infinite-size system.
However, the extension of the results on the finite lattice
to an infinite system is complicated by the fact that cer-
tain phases, not commensurate with the dimensions of
the lattice, are not observed due to finite-size effects.

The magnetic phases discussed in the present analysis
pose a number of intriguing problems. The most obvi-
ous questions concern the extension of these results to
finite temperature. Our finite-temperature Monte Carlo
calculations are consistent with the ground-state energy
calculations in that the ordered phases are striped phases
and the checkerboard phases are not observed. At finite
temperature domain wall roughening should begin to
play an important role and one might expect the domain
walls to acquire a finite curvature particularly for large
values of modulation length A. Recently Kashuba and
Pokrovsky have considered domain wall formation at
a finite temperature based on a continuum model of a
two-dimensional dipolar system. One might also won-
der about the effect of defects on the properties of the
striped phase. Finally the distinct character of the dipo-
lar interaction in two and three dimensions suggests that
the generalization of these studies to systems composed
of several layers would provide an interesting and impor-
tant extension of this work.

ACKNOWLEDC MENTS

This work was supported in part by the Natural Sci-
ences and Engineering Council of Canada (NSERC). One
of the authors (A.B.M.I.) would like to thank Dr. Hans
Herrmann and the HLRZ, Julich, Germany for the hospi-
tality during his stay. Some of the Monte Carlo work was
carried out on the Fujitsu VPX240 at the High Perfor-
mance Computing Centre (HPCC) in Calgary, Canada.

APPENDIX A

In this appendix we will calculate the energy of a
striped phase of thickness h as given in Eq. (8). The
energy of such a phase is given by

E —) R

where B is defined in Eq. (6). The striped phases are
translationally invariant along the y direction and are
periodic with modulation length A = 2h, a in the x di-
rection. A schematic representation of the striped phase
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h

~=) ).). (A2)

with h, = 4 is given in Fig. 1. Given the symmetry of the
striped phases we may replace the sum over all spins n
by a sum over the spins in a single strip of width 6 and a
sum over all superlattice vectors G of the striped phase: OO

dp p', -I"=-+al'P' =
E1 g r „+G

3
r n+G

where Ei(x) is given by

The second integral appearing in Eq. (A8) may be readily
evaluated as

where the vector r = (m —n, 0) and is confined to a
single strip. The prime on the sum over m reminds us
that we exclude the case when m and n refer to the same
spin (when m = n and IGI = 0). Given the periodicity of
the square lattice, as well as the symmetry of the striped
phases we have de6.ned, ).(—1)"~

OO

2 —
I
=.+aI'p'

1 2 vr
Ei(x) = —xe + erfc(x),

2 4

to yield a rapidly convergent series

(A10)

G = (gib, g2),
Om = —Om+h, )

(A3)
(A4)

with o.1
—= 1.

Our system will
where ¹isthe total
tion (A2) may then

be made up of
& equivalent sites,

number of spins in the system. Equa-
be written as

h h

E= —„):)
=1 =1

n+g1 &m

Ir" „+GIs
(A5)

Equation (A5) naturally breaks into two parts. The first
part contains the interaction between spins which oc-
cupy equivalent positions in the y direction in equivalent
stripes. The second part contains all other interactions.
Therefore we may write

4 ) 1gi
G

F1 g r „+G
3

r „+G
(A11)

).(—1)"~
2

dp p"-I -+aI '

4+sr ~.e

Q

"p p'IgI'y4-
p2

The first sum appearing in Eq. (A8) may also be made
rapidly convergent by converting the sum over superlat-
tice vectors to a sum over the corresponding reciprocal
lattice vectors to give

E= — h (—1)g'

Ii

(-1)"
+ ).).'). I„m=1 n=l G mn +

(A6)

4W -~
h 2 (2vy)

Q

where we have defined E2(x) as

(A12)

where the prime means that the term m = n is excluded
from the sum.

The evaluation of the terms appearing in the above
expression is complicated by the long-range character of
the dipolar interaction and is best accomplished by a
variation of the Ewald summation technique described
in earlier work. ' This allows us to express the above
summation in terms of a combination of rapidly conver-
gent series.

I et us consider the second of the two terms that appear
in Eq. (A6). In order to evaluate this sum we use the
integral representation

E2(x) =
2

e
—x

—~~er fc (x) (A13)

and we have defined the vector (Q) as

(ti —1/2q=2~I
h

(A14)

where li and l2 are integers.
The first term appearing in Eq. (A6) may be evaluated

in a similar manner,

2 —Rdpp e (A7)
. (-1)g

IGI.
—)-(-')

GQO GQO

dp p2e —IGI'&'

and write the sum in two parts as

( 1) g ( )gq
4

- I&-+GI'
OO „+aI'p'

dpp e (A8)

77 "2 2=) (—1)
G

=).(—1)"
GQO

n 2 2

dp p2e —lGI &

dpp e (A15)

where, as in the previous case, we have divided the inte-
gral into two parts to improve the convergence properties
of the summation.
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The second term in Eq. (A15) may be readily evaluated
to give

) - (—1)"4 2 —~c~'p'dpp e
7r

GQO

)-(,)„+i(~IGI) (A, 6)

where the reciprocal lattice vector Q is given by

« , —1/2Q=2~l, t,
I

.

This integral may be readily evaluated to give

(A18)

where the function I"i(x) was defined earlier by
Eq. (A10). The first term in Eq. (A15) may be evalu-
ated by transforming the sum over lattice vectors to one
over reciprocal lattice vectors to give

Ggo
dp p2e —IGI'~'

).(—1)"~
GQO

dpp e I
I' 4 ~ - IQI~ ~IQI~

~7r h 2 ( 2rI ) 3
Q

(A19)

4 vr )~ dp 2~q~~g4

~7r h i p' 3
Q 77

(A17)
Thus combining terms we have that

h h
4 )-( )g +~(nlGI) 1)-)- ) -I( )g +1(el~:-+ GI)

4~ . Iql t'lql) f 1 ". ", , - ~ 4„
h 2 (2r)) ( h )

We may carry out a similar calculation for the checker-
board phases. We begin equivalently with Eq. (Al), with
B defined as before. The system now possesses peri-
odicity in both the x and y directions with a modulation
length A = 2ha. We may therefore replace the sum over
all spins n by a sum over all spins in a single square of
size 6 x 6 and a sum over all superlattice vectors G:

The system is now made up of h, equivalent sites and
we may write Eq. (A21) as

N ).) ., ).o(r„+G)o(r~)
lr:-+ GI'

which, using Eq. (A23), may be written as
0'(7 ~ + G)rT('p~)

I& .+GI'
{A21)

Here the vector r is confined to lie in the single square
of spins. For the checkerboard phases the superlattice
vector G is defined as

~ l&h2)- (—1)"+"

( 1)g4+g2 )) ~ ) ~ ) {A25)

G = (gih, g2h)

and the symmetry of the system is such that

o(r) = (—1) .'+ 'o(r+ G)

(A22)

(A23)
I

where the prime means that the term m = n is excluded
from the sum. The calculation proceeds exactly as for
the striped phases and hence we quote here only the con-
clusion:

E 4 ),„+„+,(~IGI) 1 )-)-)-, „+„I"i(el~=-+Gl)~

4~~
~

(Q~( (Q~( 1 4
y y

., ;t4, „- „1 4'
h2 - 2 ( 2q ) (

h2 - -
) 3~sr

(A26)
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In this result we have retained the definitions of the func-
tions Eq and E2 from the striped phase calculation, but
have redefined the vectors G, as given in Eq. (A22) and

as

where K and F (K ) are defined as

2~ fK = —/m+ —
/h 2) (as)

t'Ii —1/2 l2 —1/2 ) (A27) F(x) = 2e ™

APPENDIX B
respectively. Substituting this into our expression for the
dipolar energy, we obtain

In this appendix we present the derivation of dipolar
energy of the striped phase in the limit A = 2ah ~ oo
given by Eq. (15). The initial part of the analysis is
similar in many respects to that presented in Appendix
A. We begin with the expression for the dipolar energy
given by Eq. (8),

E= dQi
ng

& (Q 1 ' Rl +Q 2 ' +2 )

18 2

(a1o)

(») which, after some algebra, reduces to

where R;~ is defined by Eq. (6) and denotes the distance
between the lattice sites i and j in units of the lattice
constant. We express the lattice vector A in terms of the
x and y coordinates m and n as

E = d o. cr — I'

where we have defined F(Q) as

(B11)

R=(m, n) . (B12)

In the striped phase the spin configuration o. B, is

translationally invariant along the y direction (n direc-
tion) and is periodic with modulation length A = 2ha in
the 2: direction (m direction). A schematic representa-
tion of the striped. phase for h = 4 is shown in Fig. 1.
The symmetry of the striped phase means that we can
write the spin at lattice vector B as

(h —1)
2

IF(K-) I' F(K-) . (»3)

Substituting the explicit form for o given by

Eq. (B7), we obtain

where 0 is defined such that

Om = Om+h )

(B3)

(B4)

It may be readily shown that

IF(K-) I'= . , (~ )
.

2

(a14)

with ai ——l.
We define the Fourier transform of the spin configura-

tion o (B) as

'g a
(o)

where O~ denotes the first Brillouin zone. We have there-
fore

Thus

E 1
N2 h2

2
h2

(h —1)

1(K )

... '"'(".-)
(h —1)

-' l:-' (-+ l) I
(B15)

0 = e " e gm
n m

= —S(Qy) ) F (K ) h(Q —K ), (B7)

The Fourier transformation of the spin configuration,
o(Q), may be calculated explicitly as

As in the calculation presented in Appendix A, the
calculation of I'(K ) is comphcated by the long-range
character of the dipolar interaction, and is best accom-
plished by a variation of the Ewald summation technique
described in earlier work. ' This not only provides an
efficient basis for the numerical evaluation of I'(Q) but
also allows us to extract an analytical expression for the
long-wavelength behavior, which, we will show, deter-
mines the dominant contribution to the dipolar energy
of the striped phase for large h. We begin by noting that
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(~) =&-';.
2 —R ' R) d 2 —R p aQR

7r
Rgo

(816)

{817)

We have defined the function I"i(x) in Eq. (A10).
The form of Bq allows us to write

B3 ——B3 0 +B& (820)

We then separate the integral over p in terms of an inte-
gral from 0 to g and from g to oo to give

2 —Rp iQR

where B3 is defined such that in the long-wavelength

limit

2 —R i R2 —Rp ~JR {818)
lim B3 =D3 +-

Q —+0
(821)

Bs(q, il) = )
RQO

2dpc R p ciQ-R

~i Q.R
= ) z, (&lÃl)

RQO

Denoting the first term by Bs(q, rI), we obtain

(819)

For the second term in Eq. (818), we find it convenient
to convert the expression to a summation in reciprocal
lattice space. Defining the reciprocal lattice vector G as

G = 27r (gi, g2), gi ) g2 = 0, +1,+2, . . .

we obtain after some algebra

42 —RpQR4) dppe 'e' '

RQO

rl IVI
p'dp+4~vr dpe " +4~sr )

G'QO

l+ I'
dp e 4p'

4 &' Iql & Iql & - Iq+ &I Iq+ GI &

with Pq(x) defined by Eq. (A12).
We separate out the nonanalytic part of long-

wavelength behavior of this contribution by writing the
function qI'2(IqI/2rI) as

3

2
I 27) ) 2

= ~n —
I
V

I
+ &o (q),

with Bo defined such that

r (K ) =
I

Bs (0) ——+ ~9+ ai (o) I

l( ~3

3

—2~K

x a, (K )+a, (K )+a, (K )

= r, —2~K+r(K ),
with I o and I (K ) defined as

(828)

(829)

llm Bo ~ Do + ''
QmO

Similarly we may write

(825) 4 (r, = a, (o) + a, (o) + ~q
I

1 ——
I

~sr 3n)
(830)

~ ) IQ+ Gl&* = » (o) + &i (Q),
&lq+ all

O'QO

(826)

f (K ) = Bo(K )+B](K )+B (Ks)

(831)

where B~ is defined such that

lim Bg —Di
Q —+0

Combining terms we obtain

(827)

respectively. We note that I'(K ) is defined such that

lim I (K ) =DK
K —+0

(832)

Substituting the result for I' (K ) into the expres-
sion for the dipolar energy of the striped phase given
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¹

h —1

21 p
'. 1

; sin' —„(n+ —,') '

h —1

Z, 8~' '. (n+-,')

by Eq. (B13), we obtain that

E Ep Eg E3
N2 N2 N2 N2

where we have defined

(B34)

(B35)

N2

h —1

8ir' '. (n+ -', )

(B39)

h —1

I)2) „„=„(+-,') —~
h —1 h —1

8 ' 1 16 ' f 1) 1=--) ——) I

+- I) +- (n+-') hs - i 2) -»
lnh 1 7r'

r—8 + —
I
&+»2+ —I+.

h h q 24)
where we have used the result that

h —1

N' h'
p

sin' [—„(n+ —,')] (B36)

h —1

2Fp
' 1

h' );sin' —„(n+ —,')
h —1

21p 1

—„(n+ —,') —ark

h —1

2I'p )'. 1"-=. (-+l)'

h —1

4Fp '. 1
+h )-)-k ~ +

~=p IC=1

Let us evaluate the first term in the limit 6 —+ oo,

) i = p+ 2 ln (2) + vt)
I

—+ 1
I

1 fh
YL +

r'h
= p + 2ln (2) + ln

I

—+ 1 ——+i2 ) h

(B40)

(B41)

h —1

2 '- & —'(-+l)]

1 I' (K)
sin (K/2)

The remaining term may be easily evaluated in the limit
of large h by means of the Euler-MacLaurin summation
formula

I'p (4
(B37)

with

(B42)

h —1
2 1.=p (n+ —.')). , (h= ——O'

I

—+1
I2 (2

2 + ~ ~ ~

h,

where we have used the result that

(B38)

C= — dK
I' (K)

sin (K/2)

Combining the various terms together we obtain

E ln (h) n=r, —8 + — + 0 0 ~

N2 h h

where

(B44)

The contribution from the second term that arises as
a consequence of the nonanalytic contribution to I'(Q)
may be evaluated in an analogous fashion:

r, 1'2 CI+ 7+ln2+
4 (~2 6) 24 4

(B45)
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