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Spin dynamics in the amorphous antiferromagnet Si:P
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Heavily doped Si:P may be regarded as a disordered antiferromagnet. The spin dynamics have previ-
ously been investigated at low temperatures by means of Si NMR relaxation-time measurements. Us-

ing detailed relaxation-time expressions, which take into account spin diffusion, the spectral functions
extracted from the T& data, obtained as a function of applied Geld at different temperatures, are found to
have the form J(co)-co, with a (1 for T~ 1 K and += 1 for T &(1 K. The spectral function form at
the higher temperatures is explained by means of a model, involving localized moments, linked to the
Bhatt-Lee scaling theory for the spin susceptibility. The model requires adaptation to account for the
very low temperature results.

I. INTRODUCTION

Following extensive studies of the magnetic properties
of metal-insulator (MI) systems, in particular Si:P, it is
generally accepted that the magnetic susceptibility
behavior on the insulating side of the transition can be
understood in terms of localized moment models such as
the Bhatt-Lee' (BL) model, in which a number of the lo-
calized electron spins are "frozen" in a singlet pair state
and do not contribute to y at low temperatures. The to-
tal number of spins is replaced by a smaller efFective num-
ber of spins, obtained using numerical calculations which
involve renormalization procedures.

On the just-metallic side of the transition, the situation
is more complicated and no complete theoretical explana-
tion is available at present. A phenomenological two-
Auid model, involving localized and delocalized spins,
has, however, had some success in this region.

The dynamics of MI systems have been probed on both
the insulating ' and just-metallic sides of the transition
at low temperatures using nuclear magnetic resonance
methods. Information on the spectral density, suggesting
a 1/co frequency dependence, has been obtained. It is of
interest to establish whether this dependence can be un-
derstood within the general framework of the BL local-
ized moment model. The results of calculations which
bear on this point are presented below and may prove
useful for other systems classi6ed as amorphous antifer-
romag nets.

given the following general expression for the nuclear re-
laxation rate in such systems:

1/T, = nPDf (5),

where n is the concentration of impurities, D is the nu-
clear spin difFusion coefficient,

P—
( C/D )1/4

with

(2)

C= ', ysytfi S(—S+1)J(co) (3)

5=P /2b (4)

The quantity b, the difFusion barrier radius, plays an im-
portant role in analyzing results using Eq. (1).

The function,

5))1: f(5)=1 (diffusion-limited regime),

5«1: f(5)=2 /5 / (rapid diffusion regime) .

Correspondingly, we obtain

f(5)=I3/4(5)/I 3/4(5)

where the I are modified Bessel functions, takes the fol-
lowing limiting values:

II. THEORY: SPIN FLUCTUATIONS
AND THE SPECTRAL DENSITY FUNCTION

5»1: 1/T, =8m/3nC' 'D' '-,

5«1: 1/T, =4~/3nb 'C .

(6a)

(6b)

Hoch and Holcomb have suggested that localized
electron-spin fluctuations are responsible for nuclear re-
laxation at low temperatures in Si:P and Si:(P,B). It is
likely that below 4 K the spectral density of these spin
fluctuations originates in the exchange coupling.

For very dilute paramagnetic systems, relaxation of the
nuclear spins surrounding a paramagnetic ion is pro-
duced by a well-known mechanism. Rorschach has

The spin diftusion coefFicient D can be obtained from the
relationship D =a (M2)'/~/30, with a the internuclear
spacing and M2 the nuclear dipolar second moment.

The spectral function J(co) in Eq. (3) can, in principle,
be studied by making nuclear relaxation-time measure-
ments as a function of frequency. From a theoretical
point of view, J(co) may be obtained from the spin corre-
lation function G(t). For very dilute systems, in which
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interactions between the paramagnetic ions are negligibly
weak, an exponential form is usually chosen for G (t) and
the Fourier transform gives the Debye form for
J(co). G(t) is related to the imaginary part of the
dynamical magnetic susceptibility g" by the Auctuation-
dissipation theorem.

For systems containing interacting paramagnetic ions,
it is necessary to allow for electron spin fluctuations due
to spin-spin interactions within the exchange-coupled
reservoir. The total Hamiltonian for the system may be
written as

&,=&tz+&Dt+&sz+&g+%,', +&,",', (7)

is the nonsecular term in the dipolar coupling between I
and S and is responsible for I-spin relaxation.

In Eq. (8),

sinO, .„cosO,„, tres&

where r,„is the vector joining the ith S spin to the pth I
spin and O,„ is the angle this vector makes with the ap-
plied magnetic field. We neglect the small dipolar Hamil-
tonian &t in comparison to &t. &t is important, how-
ever, in maintaining a spin temperature in the I spin sys-
tem through spin diffusion. We also neglect the hyperfine
coupling &ts for the nuclear spins of interest, which are
at some distance from the S spin. This interaction is dis-
cussed in detail later in connection with the quantity b in
Eq. (4).

With the above assumptions, using the master equation
for the density matrix, we obtain the following expres-
sion for the transition rate for I spins:

Tr t((~ts )'l
W= J G(t)cos(catt)dt, (10)

TrjIz2j

w coI y IB0

Tr l&tsexp( i&st )~—tsexp(i %st ) lG(t)= (1 1)
Tr[(~ts)'l

Evaluating the traces gives, for the transition rate,

W= —+8;„(r;„,8;„)S(S+1)J(cot ),=2 (12)

where

J(cot)= J G(t)coscoit dt (13)

is the cosine transform of the correlation function G (t).
Doped semiconductors may be regarded as dilute

amorphous anitferromagnets. The form of G(t) for these
systems is not known. If both spin-lattice and spin-spin
interactions are important, assuming that the competing

where &t and &s are the I-spin and S-spin Zeeman
Hamiltonians, respectively, &t is the nuclear dipolar
Hamiltonian, and &s=g, & J; S, S is the S-spin ex-
change Hamiltonian, and

~ts =XBi„SizI„*

mechanisms are independent, we can write the correla-
tion function as a product,

G(t)=Gss(t)GsL. (t) ~ (14)

where Gss(t) is the spin-spin correlation function and
GsL(t) is the spin-lattice correlation function. We shall
focus on Gss(t) and assume that the temperature is
sufficiently low that GsL (t) makes an unimportant contri-
bution to G(t) Generalization to the case where this is
not so is straightforward.

Goldman, Cox, and Bouffard and Melikeya' have
suggested that the spectral function for F center spins in
LiF may be represented by a truncated Lorentzian curve.
This corresponds to a modified exponential correlation
function. In cross relaxation between rare and abundant
nuclear spin species in CaF2, McArthur, Hahn, and Wal-
stedt" have found that a Lorentzian correlation function
provides a good description of the dipolar Auctuation
spectrum for the ' F spins. Lorentzian correlation func-
tions have subsequently been shown to be important in
cross relaxation in a number of other systems. ' Demco,
Tegenfeldt, and Waugh, ' in work on cross relaxation in
systems containing two nuclear spin species, have provid-
ed further theoretical and experimental support for the
Lorentzian form for the rotating-frame adiabatic demag-
netization case. They obtain a Gaussian form for the
spin-locked case. For exponential, Gaussian, and
Lorentzian correlation functions, we find

d G
dt2 t=0

where a is a constant of order unity.
Using Eq. (11) together with the result in Eq. (15) gives

Trt~ts ~E}
Treats j

Evaluating the traces yields

g J,~J(8; —8 )

=—', I(I + 1) +82

(16)

(17)

This expression may be interpreted as follows: a pair of'

electrons i and j wi11 spin exchange at a rate given by
J; lfi. The factor (8; BJ. ) gives —a measure of the impor-
tance of spins i and j in producing relaxation effects at
the 1attice site p„where a nucleus is situated. For a sym-
metric situation, with B;=B, no relaxation is produced
by the exchange process. Such a situation is highly un-
likely for most of the nuclear spins in the system. It is
probable that, for a given nucleus p, a single S spin i will
dominate, with r,„(r„,for all j Wi In this c.ase, Eq. (17)
may be simplified to give, for I=—,',

a J
2'

If we integrate over a volume V=1/n„where n, is the
number of S spins per unit volume, and put 1/T& =28'
we obtain Eq. (6b), corresponding to the direct relaxa-
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tion or diffusion-limited regime. Equation (6a) can be ob-
tained for the rapid diffusion case. J(co) is given by Eq.
(13), with the correlation time obtained from Eq. (18).

For the exchange-coupled disordered system of elec-
tron spins, there is a distributio~ of J values for spin
pairs. In the BL model for magnetic susceptibilities, the
form P(J) o- J is assumed to hold over a range of J
values sufBcient for the calculations. The exponent a
takes values in the range 0.8 —0.6, decreasing as n, tends
toward n, . Tightly coupled spin pairs, with J)k~ T/4,
are regarded as "frozen" in the singlet state. Corre-
spondingly, their contribution to the spectral function
will be limited to rather high frequencies ( —10' Hz) for
T-1 K.

Experiments have probed the low-frequency part of the
spectrum where, in general, co « kz T /fi. Figure 1

schematically illustrates the form of the J distribution
and the various frequencies of interest.

In order to proceed, we assume an exponential form
for the pair correlation function G(t). This has the ad-
vantage of simplicity, and calculations have shown that
the ensemble average spectral density for all pairs is in-
sensitive to the form chosen for G(t) when integration is
carried out over a distribution of ~ values. If we convert
the J distribution into a correlation time distribution us-
ing r-fi/J and P (J)—J, as mentioned above, in con-
nection with the BL model, we obtain

8(r)„b—2n—/y T2-b,B„, (22)

where b.B„ is the natural (dipolar) nuclear linewidth.
Abragam and Goldman' have pointed out that a better
estimate of b may be obtained using

a [8(r)], b
—bB„—,Br

(23)

where a is the nuclear spin spacing. The dipolar (Bd;~)
and hyperfine (Bhf) fields may be estimated using the fol-
lowing expressions:

(p, )
Bd; (r)=

r
(24a)

and

(r) (+ ) ~y ~2e 2rlb—
(24b)

Pe+
(p, ) =p, tanh

J(co) may be deduced from the NMR relaxation rate
measurements using Eq. (1), with D calculated using the
expression quoted in Sec. II. The parameter that gives
rise to the greatest uncertainty in determining J(co) is b,
which is a function of the applied magnetic field B. b
may be estimated using the relationship

P(r)dr= (19)

for r&r;„-A'/kiiT. 3 is a constant. Integrating over
the ~ distribution leads to the following expression for the
ensemble average spectral function:

J(co)= dr .
Alk~ T (1+~2')rl —a (20)

For +=1,we obtain

J(~)=~/2~ A/k~T . — (21)

an P(~)

This agrees with the result, given previously, ' ' which is
based on the adhoc assumption P(r) ~ 1/r. For a&1, the
integral in Eq. (20) must be evaluated numerically. This
has been done for a number of values of a. The results
are presented below.

and

=2.4X 10 [8/T]'~ cm (25)

bhr- 7.5X10 In[—7.2X10 tanh(6. 72X10 8/T)] .

(26)

At T= 1.3 K, bhf )bd;„ for all 8 values of interest.
It should be noted that, in the diffusion-limited region

(5 »1) for which Eq. (6b) applies,

J(co) ~ nD
3 1

8m Tf
(27)

The impurity wave function parameters are
$0~ =4.2X10 cm and b*=15 A for Si:P. We ob-

tain
1/3

gg QIQT2p

2k~ T

en
pairs

In the rapid diffusion regime (5 « 1),

J(co) o-
4&n T]

L

(28)

an(8 I&)

FIG. 1. Schematic illustration of the form of the J distribu-
tion P(J)—J . The cutoK value of J=k& TjA separates
"frozen" spin pairs and "unfrozen" pairs.

For both expressions, n should be replaced by n,z, as dis-
cussed by Hoch and Holcomb. This has the effect of
scaling the spectral function, but does not change the
form of the frequency dependence. In the crossover re-
gion 5-1, no simple expression for J(co) can be obtained
and the full expression of Eq. (1) must be used to obtain
J(co) from the measured Ti values. The modified Bessel
functions are obtained from standard tables.



51 SPIN DYNAMICS IN THE AMORPHOUS ANTIFERROMAGNET Si:P 16 019

III. DISCUSSION

Figure 2 shows a plot of the high-field spin-lattice re-
laxation rate at 1.6 K (Ref. 14) as a function of concentra-
tion for 0. 1(n jn, (100. Plotted on the same figure is
the low-field magnetic susceptibility at 1.1 K.' The simi-
larity in the shape of the curves is striking. This suggests
a relationship between g and 1/TI. Using arguments
based on the fluctuation-dissipation theorem, the spectral
function may be written as

J(ni) ~g (ai) ~y, f(ro),
where y"(ro) is the imaginary part of the magnetic sus-
ceptibility, y, is the static susceptibility, and f(co) is a
shape function. From Eq. (6b), we note that
1/TI ~ J(co), provided 5))1, which is appropriate in the
high-field case. Figure 2 therefore provides support for
the present analysis of the relaxation-time data, based on
the BL model ideas, which have been developed to ac-
count for the magnetic susceptibility data for n/n, 81.
A quantitative analysis of the relationship between 1/T&
and g, on the insulating and metallic sides of the transi-
tion has not been attempted.

It is interesting to note that antiferromagnetic spin
correlations are believed to be important in nuclear relax-
ation in the high-T, cuprate superconductors. ' ' For
these systems, the spin-lattice relaxation rate may be ex-
pressed in terms of the dynamic susceptibility y"(q, co).

J(co) has been extracted from the available relaxation-
time measurements, made as a function of frequency, us-
ing Eqs. (27) and (28) and the expressions quoted for b
and D. The greatest uncertainty in this procedure is asso-
ciated with the magnitude of b. Figure 3 shows a plot of
b versus B for 1.3 K and 13.5 mK based on Eqs. (25) and
(26). Both bd; and bh& are plotted, and it can be seen
that bhf is of dominant importance at both temperatures.
At 13.5 mK, bhf reaches a plateau value of 6.7 nm at
fields of a few hundred gauss. The 1.3 K behavior for bhf
shows a gradual increase to around 6 nm at 1 T. These
values are comparatively large, being close to the
nearest-neighbor mean separation (rNN ) (6.5 nm) of im-
purity atoms for n =n, . It is therefore possible that the
procedure for obtaining J(co) from the relaxation-rate
data will become unreliable at the higher field values
where bhr= ~rNN ~

6.0
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4.0
E
C

~ 3.0

2.0

1.0

0.0 I I I I

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Diffusion barrier radius predictions at 1.3 K and 13.5
IK corresponding to dipolar and hyperfine couplings between
S and I spins.

Figure 4(a) shows J(co), as a function of frequency, ob-
tained from the Si relaxation-time measurements ' at
1.3 K for Si:P samples, with the n jn, values shown in the
caption. The n,z values used are consistent with the BL
model. Figure 4(b) shows similar plots for data obtained
at 13.5 mK for two samples. "

While caution must be exercised in interpreting the
spectral function curves because of uncertainties in the
quantity b, particularly at the highest fields used, some
general conclusions can be stated. At 1.3 K, the spectral
function appears to have the form J(co) ~ai, with
a-0.7, for the n ln, values shown, over much of the
range of co which has been explored. Departures from
this form at the high- and low-frequency ends are prob-
ably connected to the uncertainties in b mentioned above.
At this temperature it may be concluded that the dynam-
ics of the system are consistent with the ideas of Sec. II,
based on the BL model and the J distribution P(J)—J
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FIG. 2. Measured Si:P spin susceptibility y, at 1.1 K (Ref.
15) vs n, plotted together with the measured relaxation rate for

Si at 1.6 K {Ref. 16).

F1G. 4. Spectral functions f (co) obtained from Si relaxation
data at (a) 1.3 K [HH (Ref. 5), JRW (Ref. 19)] and (b) 13.5 mK
[PRT (Ref. 4)j.
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At 13.5 mK the spectral curve appears to have a value
of a close to unity, so that J(co) ~ co '. It has previously
been pointed out that at 13.5 mK the electron-spin sys-
tem is highly polarized. The relaxation mechanism may
involve electron dynamics quite different from the spin
exchange Aip-Qop processes which are important at
higher temperatures. Comparison of Figs. 4(a) and 4(b)
suggests that this may be so.

Relaxation processes in many amorphous systems have
been found to be governed by a correlation function with

—(~/T, )~
a stretched exponential form G(t) =e ' . We have
generated the corresponding spectral functions by means
of Fourier transformation, but have not been able to fit
the spectral curves in a satisfactory way for any choice of
the parameter P.

It appears that at T—1 K the spectral function
describing the spin dynamics of the exchange-coupled
reservoir is consistent with the ideas of Sec. III, based on
the BL model and the distribution of J values. In partic-
ular, "frozen" spin pairs do not contribute to the spectral
function at the frequencies used in the NMR experi-
ments. Alternatively stated, it is the low-q modes which
play a dominant role in relaxation. At temperatures
much lower than 1 K, it is likely that the theory given in
Sec. III cannot be applied and that the relaxation pro-
cesses require a more elaborate description than is
presented there. A probable reason for this is that the
electron spins become highly polarized in the millikelvin
temperature region.

IV. CONCLUSION

The spectral functions J (co), describing exchange
reservoir dynamics in the amorphous antiferromagnet
Si:P system close to the MI transition, have been extract-
ed from nuclear relaxation data obtained at two tempera-
tures. Making use of Bhatt-Lee model ideas and integrat-
ing over a distribution of correlation times lead to the
form J(co) cc co, with a ( 1, which fits the experimental-
ly derived curves quite well at 1.3 K. The strongly cou-
pled "frozen" spin pairs do not contribute to the spectral
function at frequencies probed in the nuclear relaxation
experiments. The less strongly coupled spins play a dom-
inant role in relaxation.

At temperatures much below 1 K, the J(co) curves ob-
tained from the relaxation data appear to have the form
J(co) ~co '. It seems likely that, for the strongly polar-
ized spin systems, the dynamics are more complicated
than at higher temperatures. Further work is required to
determine the nature of the relaxation processes in the
millikelvin range.
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