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Nuclear magnetic relaxation and electron-spin Auctuation
in a triangular-lattice Heisenberg antiferromagnet CsNiBr3
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The spin-lattice relaxation time Tl of '"Cs in CsNiBr3 has been measured to study the spin fluctuation
in the triangular-lattice Heisenberg antiferromagnet with a small easy-axis anisotropy. This compound
shows the successive phase transitions at Tz& =14.06 K and T»= 11.51 K. The relaxation rate Tl ' in
the paramagnetic phase is governed by the paramagnetic modulation of the exchange interaction. It is
well explained by using the observed static susceptibility down to T». The relaxation rate changes
drastically at T», and below this temperature the rates at inequivalent Cs sites become dift'erent from
each other. The relaxation rate in the low-temperature phase below T» has a strong temperature
dependence, while it has no field dependence. This relaxation rate is well explained by the two-magnon
(Raman) process due to the swinging fluctuation of the triangular spin structure in the zx plane.

I. INTRODUCTION

The magnetic properties of antiferromagnets on the tri-
angular lattice have been attracting considerable atten-
tion because of the interest in the frustration efFect. In
these systems the antiferromagnetic interactions on the
triangular lattice compete with each other and conse-
quently give rise to phenomena such as successive mag-
netic phase transitions, a noncollinear ordered phase, and
peculiar fluctuations.

The hexagonal ABX3-type compound CsNiBr3 is one
of the typical Heisenberg antiferromagnets with a small
easy-axis anisotropy on the triangular lattice. CsNiBr3
belongs to the space group P63/mmc with lattice param-
eters of a =7.60 A and c =6.50 A. ' The Ni + ions align
along the hexagonal c axis and these chains form the tri-
angular structure in the basal c plane. The interactions
along the chain and in the plane are both antiferromag-
netic, but the former interaction Jp is much larger than
the latter J&. The electron-spin system is described by
the Hamiltonian

intra inter

H, =2Jo g S; S +2J, g S; Sk Dg (S ), —(1)
(ij& (ik) g

where S=1, Jp=17.0 K, and J& =0.31 K. The easy-
axis anisotropy D is estimated to be 0.65 K from the rela-
tion D =(gpltHsp ) /16JpS using the experimental
values of the spin-Aop field Hsp=9. 0 T, and g =2.20.
The Cs+ ion is located at the center of a unit prism sur-
rounded by six Ni + ions. The antiferromagnetic inter-
chain interaction and the small easy-axis anisotropy lead
to characteristic ordered phases at low temperature. In
previous work we have revealed the magnetic structures
of the successively ordered phases by means of the NMR
spectrum of ' Cs. The results are summarized as fol-
lows. The antiferromagnet CsNiBr3 undergoes two mag-
netic phase transitions at T&& =14.06 K and T&2=11.51
K. In the intermediate phase between T» and T&2 the
component of the magnetic moments parallel to the c axis
orders and the moments form a collinear structure of
cosine mode. In the low-temperature phase below T&2

the component perpendicular to the c axis also orders
and the moments form a triangular structure in a plane
including the c axis, in which the moments in one-third of
the chains are parallel to the c axis and those in the
remaining two-thirds cant from the c axis at +39' The
ratio D/J& was obtained to be 2.1. The isomorphic crys-
tal CsNiC13 belongs to the same family with the Hamil-
tonian described by Eq. (1) and shows similar properties,
but has a smaller D /J, .

In the present work we have measured the spin-lattice
relaxation time TI of ' Cs in CsNiBr3 to study the dy-
namic behavior in the frustrated antiferromagnetic on the
triangular lattice.

II. EXPERIMENTAL PROCEDURE

Single crystals of CsNiBr3 grown by the Bridgrnan
method were used. The coherent pulsed NMR method
was utilized with the operating frequencies of 2.0, 4.0,
and 7.0 MHz. The spin-lattice relaxation times were ob-
tained by measuring the spin-echo intensity as a function
of the time interval between the saturation comb pulses
and the two searching pulses. The measurements were
performed in the temperature range between 1.5 and 77
K. The recoveries of the spin-echo intensity were single
exponential as a function of time in the whole tempera-
ture range.

III. EXPERIMENTAL RESULTS

At each measurement of T, the NMR spectrum of the
Cs nuclei was observed in advance by recording the

spin-echo intensity as a function of the external field at a
fixed frequency. In the paramagnetic phase above T»
the NMR spectrum has a single peak at the resonance
field of a free ' Cs nucleus. In the intermediate phase
the NMR spectrum splits into plural peaks for Hplc axis,
while only one peak remains to be observed for Ho~~c axis.
For Hole axis, three sharp peaks are observed for Ho~~a
axis and four sharp peaks are observed for Hpla and c
axes. In the low-temperature phase the features of the
NMR spectrum do not change for Hplc axis, while the
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NMR spectrum spreads out and has a powder pattern for
Ho~~c axis in spite of the single crystal. The plural NMR
peaks in the ordered phases correspond to the existence
of six magnetically inequivalent Cs sites with different
internal magnetic fields. The temperature and angular
dependences of the resonance fields give information on
the magnetic structure in each phase, and the results
have been reported previously. In the present work we
have measured the relaxation times T, at each peak.

Figure 1 shows the temperature dependence of the re-
laxation rates T, ' at the resonance frequency of 4.0
MHz between 1.5 and 77 K. In the paramagnetic phase
T, ' decreases slowly with decreasing temperature and
there is no remarkable difference between the relaxation
rates for H&&J.c axis and Ho~~c axis. As the temperature is
decreased across T» =14.06 K, the NMR peak begins to
split and T&

' changes abruptly at each peak. We desig-
nate three peaks as a „a2, and a3 for Ho~~a axis and four
peaks as b „bz, b3, and b4 for Hola and c axes in order of
the magnitude of the resonance field. The central posi-
tion of the peak for Ho~~c axis is designated by c. The re-
laxation rates at these peaks are shown in Fig. 1. The
temperature dependence of T

$

' below T~) is stronger
than that in the paramagnetic phase. At T&2 the relaxa-

X.
x.%.st

.X+
~% +

Q+

10

tion rates change continuously, but T&
' at b, and c

shows small bends of the temperature dependence, while
that at az peak shows a small cusp. The ratio of T, ' at
b

&
and at a2 is about 8 in the intermediate phase, while it

is about 1.5 in the low-temperature phase except for the
transient temperature region near T~2.

The peak dependence of the relaxation rates for Hole
axis at 13.0 K in the intermediate phase and at 4.2 K in
the low-temperature phase is shown in Fig. 2. The
difference of the NMR peaks corresponds to that of the
angle P between the external field in the c plane and the
internal dipolar fields at the Cs sites. In the intermediate
phase the Ni + moments are directed parallel to the c
axis and so the dipolar fields at the Cs sites lie in the c
plane, while in the low-temperature phase the noncol-
linear spin structure causes dipolar fields that have both
parallel and perpendicular components to the e axis. The
relaxation rates at the a2 and b, peaks correspond to the
rates at which the external field is perpendicular and
parallel, respectively, to the component of the dipolar
field in the c plane. As is found in Fig. 2 T& is sym-
metric around /=90' in both phases. In the intermedi-
ate phase the P dependence of T, ' shows one minimum
at P =90 (a 2 peak).

The spin-lattice relaxation rate is controlled by the
transverse Auctuation of the local field at the nuclear site
with respect to the external field. In the intermediate
phase the site dependence is easily explained as follows.
When we designate the intensity of the fluctuation com-
ponent parallel to the static internal field in the c plane as
h „that of the component parallel to the c axis as h3 and
that of the component perpendicular to both the internal
field and the e axis as h z, the relaxation rate for Hole axis
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FIG. 1. Temperature variation of the relaxation rates T&
' at

4.0 MHz. +: the relaxation rate at the central position of the c
peak for Ho~~c axis. X: the rate in the paramagnetic phase for
Hole axis. : the rate at the b, peak of the lowest resonance
field among four peaks for Hole and a axes in the ordered
phases. 0: the rate at the central a2 peak among three peaks
for Ho(~a axis. The broken curve indicates the calculated tem-
perature dependence of the rate in the paramagnetic phase. The
solid curve indicates the temperature dependence of the rate in
the low-temperature phase calculated from Eq. (24).
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I I I t I
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FIG. 2. Peak dependence of the relaxation rate for Hole axis
at 13.0 K in the intermediate phase and at 4.2 K in the low-
temperature phase. The peaks correspond to the angle P be-
tween the external field in the c plane and the internal dipolar
field at each ' Cs site. The solid curve shows the calculated
curve of Eq. (2).
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is expressed as

1 =h2F, sin p+h2F2 sin (90 p—)+h 3F3
1

and the rate for Ho~~c axis as

1 =h F +h F
1

(2)

(3)

IV. ANALYSIS

A. Paramagnetic phase

The nuclear spin-lattice relaxation rate is calculated
from the transition probability between the nuclear spin
states by means of first-order perturbation theory. It is
generally expressed by the Fourier transform of the
time-correlation function of the transverse component
6H* of the fluctuating local field at the nuclear site with
respect to the Larmor frequency co„as

where F; is the Fourier transform of the normalized
correlation function of the Auctuating internal field. The
solid curve in Fig. 2 shows the calculated values of Eq. (2)
by taking h,F, = 18 sec ', h 2F2 = 174 sec ', and
h 3F3 =6 sec

We measured T& also at 2.0 and 7.0 MHz to know the
field dependence of the relaxation rate. The central reso-
nance fields at 2.0, 4.0, and 7.0 MHz are 3.6, 7.1, and 12.4
kOe, respectively. The internal field at the Cs sites
changed little for the di6'erent frequencies. This fact indi-
cates that the spin structure does not deform so much in
this Geld range. The relaxation rates at these frequencies
had the same value at each temperature within the exper-
imental error. The relaxation rate at a much higher fre-
quency of 26 MHz whose central resonance field is 46
kOe has been reported previously. Comparing the re-
sults, we can conclude that T

&

' is independent of the fre-
quency between 2.0 and 26 MHz or the external field be-
tween 3.6 and 46 kOe in all phases.

f dt ( I 5H (t)6H+(0) I )exp( ice„—t ), (4)—oo

where y„ is the gyromagnetic ratio of the nuclear spin,

t ABI denotes the symmetrized product —,'(AB+BA),
and ( A ) means the statistical average.

In the paramagnetic phase of this compound the Auc-
tuation of the Ni + spins due to the exchange interaction
causes a fluctuating local field at ' Cs sites through the
dipolar interaction

(I R;)(R; S, )H'=y, y„fi g 3
I S; —3

7

= —y„fiI 68
where y, is the gryomagnetic ratio of the electron spin
and R, is the position vector of the ith electron spin S,.
referring to the origin at the nucleus. Then the relaxa-
tion rate is given as '

(&y, y„)' f dq f dt cos(co„t)[—,'A+(q)( IS+(t)S:~(0)I)+ A'(q)( IS'(t)S' q(0)I )],4'

where the geometrical coefficients A+(q) and A'(q) are
the Fourier transforms of the products of two dipolar in-
teraction tensors, q is a wave vector in the first Brillouin
zone, the z axis is along the local field at the nucleus and
now parallel to the external field, and

dependent of the field, two cases are considered for Eq.
(8). One is that only the second term in the integral is
dominant. The other case is that the first term is dom-
inant under the condition of co, ((I +. In any case the
temperature dependence of the relaxation rate is given as

S~ =X ' gS; exp(iq. R;) .

+ A '(q)g'(q) 2
I' (8)

Here we assume that the quantities in Eq. (8) are q in-
dependent. Since the measured relaxation rate is in-

The spin-correlation function is related to the static sus-
ceptibility g (q) and the relaxation function f (t) owing
to the fluctuation-dissipation theorem. ' By assuming the
relaxation function to be an exponential type and taking
the high-temperature approximation, we get

2 2I +
kT f dq —,

' A+(q)y+(q) +2
7T 7T coe+I q

1 ~Ty (0) .
T]

The static susceptibility of CsNiBr3 has been reported
by Brener et al. , and it has the characteristic tempera-
ture dependence of a one-dimensional antiferromagnet
with a broad maximum around 40 K and is slightly aniso-
tropic below about 30 K. Using the susceptibility data
for Hole axis, we calculated the temperature dependence
of the relaxation rate by Eq. (9). The calculated values
are normalized to be fitted with the data at high tempera-
tures and are shown by a broken curve in Fig. 1. The ex-
perimental results and the calculated values agree quite
well in the paramagnetic phase.

Generally the critical fluctuation of the q=~ mode
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comes to be dominant near the Neel temperature. This
behavior has been clearly demonstrated in a nonfrustrat-
ed one-dimensional antiferromagnet (CH3)~NMnC13
(TMMC). '" In CsNiBr3 the experimental data are well
explained by the static susceptibility of the q =0 mode
down to T». The same behavior has also been observed
in CsNiC13 (Ref. 12) and RbNiC13 (Ref. 13), which are
similar frustrated antiferromagnets on a triangular lat-
tice. This fact may suggest that the critical fluctuation
would not develop well due to the frustration effect.

Electron
Spin Plane

C „z
ik

Electron

Si

8. Ordered phases

Next we consider the relaxation time in the low-
temperature phase. The strong temperature dependence
of the observed relaxation time suggests that the two-
magnon (Raman) process is dominant in this phase. The
theory of the relaxation time due to the two-magnon pro-
cess in an antiferromagnet with two magnetic sublattices
has been developed by Moriya. ' For the present case of
the triangular-lattice antiferrornagnet, the spins form the
triangular structure and there are six magnetic sublattices
in the low-temperature phase. %'e extend his theory to
the case of the triangular spin structure.

In the ordered phase the fluctuation of the electron
sp1n 1S

H = Ho+ Hd

Nu o, P, }}
Nuclear

antization Axis

yr(n2, $2, }z}
FIG. 3. Coordinate systems for electron spins and nuclear

spin in the low-temperature phase. The external magnetic field
and static dipolar field at the nuclear site are shown by Ho and
Hd, respectively.

5S, =S, —(S, ), (10)

and then S; in the perturbation of Eq. (5) is replaced by
5S;. Since the spins lie in a common plane in the ordered
phases, we take this plane as the zx plane with the z axis
parallel to the c axis. Next we choose the direction of the
local magnetic field at the nucleus as the zl axis and
define the (xl,yt, zl) coordinate system. The direction
cosines of these axes are denoted by (a&,P&, y&),
(az, P2, y2), and (a,P, y ), and that of the electron-spin po-
sition vector R; by (a;,P;,y;). The coordinate systems
are illustrated in Fig. 3. Then the relaxation rate is writ-
ten from Eq. (4) as

1 2 2 2 1 1

1 J ~ J

X X;+tK 0 e

where

*(t)=a~5S,„(.t)+P+5S;,(t)+ y 5—S;,(t)—
—3(a*a, +P~P;+y y;)

X {a,.5S,„(t)+P,5S,,(t)+y, 5S,,(t)},

a+i a2 P+iP2 + y &+i y 2

(12)

(13)

+(ICJ (t)K;+(0))e " }dt,
In the present case, as the nucleus is surrounded by six
electron spins with equal distance, the correlations be-
tween different spins cannot be neglected. Calculating
the correlation of K;*, we get from Eq. (11)

FJ(a,13,y )f dt coscoot(5S;, (t)5S,(0) )

+ ,F~(a,p, y) f dt —coscoot[(5S; (t)5S. (0))+(5S, (t)5S,+(0)) j.

where

FJ(a,g, y )=(1—3y, —3y. )(1—y )+9y;y (a,a +P,P +y, y —a,.a.a2 —P,.P.P2 —y,.y.y2)

+3Pr {IB;y;+&,r, 3r;r, (P;r, +P—,r; ) }+3ya{r;a;+r,a, 3r; r, (r;a, —+r, a; ) }

9y;a aP(a;P)+aJP—;)

(14)
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and F,'J(a, p, y ) is also the function of the direction cosines.
As the electron spins form a triangular structure in the low-temperature phase, we assume that the spin system takes

a helical arrangement with wave vector Q. ' ' We introduce new rotating coordinate axes g;, q, , and g, for each spin,
as illustrated in Fig. 3. The g,. axis is taken in the direction parallel to the spin S;. The g,. axis is perpendicular to the g,
axis and in the zx plane. Then the spin correlations in the (x,y, z) system in Eq. (14) are expressed by the components
5$,&, 5$;~, and 5S,.

&
in the (g;, rj, , g; ) system. The longitudinal correlation is rewritten as

(5$;,(t)5S~,(0)) =
—,'sing R; sing R

X I(5S,+(t)5$+(0))+(5$+(t)5$ (0))+(5S, (r)5$,+(0))+(5S, (r)5$, (0))I
+ —,'sing R; cosg R I (5S;+(t)5S.&(0) )+(5S; (t)5SJ&(0)) I

+ —,'cosQ. R; sing RJ I (5S;&(t)5S~+(0)) + (5S;&(t)5$J (0) ) I

+cosQ R; cosg-R~ (5$;&(t)5S~&(0)),

where

5S; =5S ~+i 5S;„.
The transverse correlation in Eq. (14) is also written by
the sum of spin correlations of 5S;I, etc. By using the
Holstein-Primakoff transform and the Fourier transform,
the spin correlations are expressed by the spin-wave an-
nihilation a and creation a operators. The time evolu-
tions of these operators are given by

iH t/A —iH t/A —ice t
a (t)=e ' a e ' =e 'a

iH t/A' ~
—iH t/A ice t

aq*(t)=e '
a& e ' =e ~ a* .

So the correlation function (5$,&(t)5S &(0) ) has a fre-
quency component corresponding to the frequency
difference between two magnons. On the other hand, the
other correlation functions contain the same frequency
components as the magnon frequency, and therefore con-
tribute to the relaxation due to the direct process. In our
case the magnon energy is so large compared to the nu-
clear Zeeman energy that these correlations do not con-
tribute to the nuclear relaxation. Then the dominant
terms of the correlation function for T, are only

(5$;,(t)5SJ.,(0) ) =cosQ.R; cosg R~. (5$;&(t)5$J&(0)),

=—y, y„A' g G; J '1+

Ace/kT

( e ficolkT 1 )2
(21)

where 6; is the geometrical factor of the dipolar interac-
tion and is related to F; (a,p, y) a.nd F~(a,p, y), co is
the maximum frequency, and N(co) is the state density of
magnons. Since the nuclear spin of ' Cs is located at the
center of the unit prism with equal distance from the
Ni spins, not only the autocorrelation but also the
correlation between the different spins must be con-
sidered. Here we consider only the temperature depen-
dence of the relaxation time for simplicity.

When the single-ion anisotropy D is zero or negative so
that the spins lie in the c plane, the Hamiltonian given by
Eq. (1) can be diagonalized within linear spin-wave
theory and the magnon excitation energy can be obtained
analytically. ' ' For the present case of a triangular spin
structure with the easy-axis anisotropy D )0, however,
the dispersion relation has not been obtained analytically.
The relation has been calculated numerically for the
analysis of an inelastic-neutron-scattering experiment,
which observed the higher-energy part of the dispersion
curve. ' The nuclear magnetic relaxation is governed by
low-energy excitations and thus the dispersion relation at
small energy is required to calculate the relaxation time.

Here we apply the long-wave approximation and as-
sume the dispersion relation as

(5$,+(r)5$, (0))+(5$, (r)5$,+(0))
=

—,'sinQ R,. sing R~(5S,&(t)5S &(0)) . (20)
co= 2 I 1+B/ +C(h +k ) I

' (22)

This implies that the fluctuation of the triangular spin
structure in the zx plane contributes to the nuclear spin
relaxation, because the fluctuation 5S;& comes from the
fluctuations 5S, and 5S;,.

Then we will consider the temperature dependence of
the relaxation time. This comes from the temperature
dependence of the correlation (5S,&(t)5S.&(0)) through
the number of magnons. The relaxation rate for the
two-magnon process is expressed by'

3coQ co coo

(CO COO)

(23)

Then from Eq. (21) the relaxation rate becomes

where A, 8, and C are constants depending on Jo, JI,
and D, and h, k, and l are the wave numbers. The state
density is calculated from this relation as
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2 YeYn ~ ij k (T2 T2)3
1 E,J m 0

Tpmx f, „x'— 'X + m

T

2

eX
X 2dx(e"—l)

(24)

where T =A'co Ik and To=ficoolk. We took T to be
30 K from the dispersion relation observed by the neu-
tron experiment' and chose the value of Tp as 2.5 K to
fit the experimental results in the lower-temperature re-
gion. The calculated temperature dependence of T&

' is
shown by the solid curve in Fig. 1. As seen in Fig. 1, the
temperature dependence of the theoretical curve agrees
fairly well with the experimental results below about 6 K.

There are three kinds of low-energy excitations in the
ordered triangular spin structure. ' ' The lowest excita-
tion mode corresponds to the rotational Auctuation
around the c axis, which is the Goldstone mode. This
fluctuation is illustrated in Fig. 4(a). The energy of this
mode depends on the magnetic field as

E'( —gPg Hp

3/2
2 S Dc2= —S 1 —— Jpa 1+V'3 2 J, 8JO

1/2

(26)

Using the values of S=1, Jp=17.0 K, J, =0.31 K, and
D =0.65 K for CsNiBr3, c.2 is estimated to be 2.9 K. On

"c-axis

0

(b) (c)
FIG. 4. Spin fluctuations of the triangular spin structure in

the low-temperature phase. (a) Rotational fluctuation around
the c axis. (b) Swinging fluctuation in the zx plane. (c) Vertical
deviation from the zx plane.

The second excitation mode corresponds to the swinging
Quctuation of the triangular spin structure in the zx plane
and is shown in Fig. 4(b). The excitation energy of this
mode is independent of the field for Hplc axis and is near-
ly independent for Ho~~c axis. ' The third excitation
mode corresponds to the fluctuation vertical to the zx
plane, as shown in Fig. 4(c), and the excitation energy de-
pends on the field.

According to the calculation by Zaliznyak, Prozorova,
and Chukukov, the gap energy of the second mode is
given as

the other hand, Suzuki and Natsume have calculated the
energy gap of the swinging fluctuation in the two-
dimensional triangular-lattice antiferromagnet with
easy-axis anisotropy. ' Their theory gives c2 to be 2.2 K
for CsNiBr3. Thus the value Tp of 2.5 K that is obtained
from our experiment agrees fairly well with the gap ener-

gy given by these theories. ' '

The energy gaps c,
&

of the Goldstone mode in the pres-
ence of the magnetic field are estimated to be 0.5, 1.0, and
1.75 K for Hp=3. 6, 7.1, and 12.5 kOe, respectively, in
our experiments. Though the energy gap e& is lower than
the energy gap e2 of the swinging motion, the field-
independent relaxation time observed in the low-
temperature phase indicates that the Goldstone mode
does not contribute to the nuclear relaxation. This fact is
consistent with the theoretical calculation mentioned
above that the swinging fluctuation in the zx plane con-
tributes to the nuclear relaxation. We conclude that the
nuclear spin-lattice relaxation in the low-temperature
phase is governed by the two-magnon process related to
the swinging fluctuation of the triangular spin structure
in the zx plane.

V. DISCUSSION

The experimental results of T] above about 6 K in
the low-temperature phase deviate to larger values from
the theoretical curve. This deviation may come from the
temperature dependence of the dispersion curve. The
spins form a triangular configuration in the plane con-
taining the c axis with the fan-out angle of 39 at low
enough temperature in the low-temperature phase. As
the temperature is raised, the fan-out angle decreases and
the transverse component of the magnetic moment be-
comes smaller. Finally, the fan-out angle and the trans-
verse moment become zero at T&2. This is equivalent to
the decrease of the effective exchange interaction J&.

Thus the energy gap and the energy at the zone boundary
would decrease and the slope of the dispersion curve
would also decrease, on increasing the temperature. A
change of the energy gap has little effect on the tempera-
ture dependence of T

&

' in the high-temperature part of
the low-temperature phase, as the energy gap 2.5 K is
small enough compared to the temperature range con-
cerned. On the other hand, a change of the energy at the
zone boundary T has a sensitive effect on the tempera-
ture dependence of Tj ' in this temperature range. The
experimental results of T, ' can be well fitted by Eq. (24)
with the gradual decrease of T from T =30 K below 6
K to T =17 K at T&2. It is worth noting that the tern-
perature above which the observed T, ' deviates from the
calculated curve is nearly equal to the temperature above
which the transverse moment begins to shrink.

We could consider another reason for the deviation.
As the temperature is raised, the fluctuation of the
higher-energy mode would be excited. The next-higher-
energy fluctuation is related to the vertical deviation from
the zx plane. The energy gap of this mode has been es-
timated to be about 10 K.' ' Thus this fluctuation
would be excited around 10 K.
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In the intermediate phase the spins form a collinear
structure, where the longitudinal component of the mo-
ments is ordered but the transverse component is
paramagnetic. The observed relaxation rate in this phase
has a stronger dependence on both temperature and site
than that in the lower-temperature phase. Some excita-
tion modes would contribute to the relaxation rate and
the components of the fIjuctuation at the nuclear sites
should be considered. The analysis of the relaxation rate
in this partially disordered phase is a problem for the fu-
ture.

The isomorphic compound CsNiC13 has been studied
by neutron-scattering experiments because of interest in
the Haldane gap system, since the compound is a quasi-
one-dimensional antiferromagnet with S= 1. ' These
reports claim that the observed spin-wave dispersion
shows even in the ordered phase the characteristic
behavior that must be attributed to the Haldane effect.
One of the purposes of the present experiment was to
detect phenomena concerned with the Haldane gap, but
no experimental results that should be attributed to the
Haldane gap were found.

dissipation theorem. The temperature dependence of the
relaxation rate is well fitted by using the observed static
susceptibility down to T». This suggests that the critical
fluctuation does not become effective down to T». This
would be one of the characteristic properties due to the
frustration effect in a triangular-lattice antiferromagnet.
In the low-temperature phase we found that the two-
magnon (Raman) process due to the swinging fluctuation
of the triangular spin configuration in the zx plane gives
the dominant contribution to the relaxation rate and that
this mode has the energy gap of 2.5 K independent of the
field. The temperature dependence of the observed relax-
ation rates below about 6 K is well explained by this
model. The observed rates above about 6 K in the low-
temperature phase deviate from the calculated curve.
This deviation coincides with the decrease of the trans-
verse moment. It might be attributed to the gradual de-
crease of the slope of the dispersion curve and to the con-
tribution of the excitation modes with higher energy.
The relaxation mechanism in the intermediate phase
remains as a future problem.
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