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Quantum Auctuations of solitons in two-dimensional anisotropic cr models
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We study quantum Auctuations about static soliton solutions for the two-dimensional anisotropic cr

models. Particularly, for the XY-like anisotropy, we find that quantum corrections induce an internal
degree of freedom and lower the soliton's classical energy. For Ising-like anisotropy, quantum correc-
tions raise the classical energy of the soliton. In both cases, the corrections are proportional to the an-

isotropy parameter and depend on the size of the soliton.

I. INTRODUCTION

It is well known that the nonlinear o. model in two di-
mensions is, in many respects, similar to a four-
dimensional non-Abelian gauge theory. In particular,
both theories are scale invariant and asymptotically free.
Both contain pseudoparticle solutions of the field equa-
tions. Hence, this model seems to be an ideal testing
ground for speculations about the eAects of pseudoparti-
cles in four-dimensional gauge theories. '

Besides, it should be pointed out that the isotropic cr

model is also a useful model in solid-state physics. It is of
interest to condensed-matter theorists, not only as a mod-
el of a classical two-dimensional ferromagnet, but also as
the large-s limit of a spin-s antiferromagnetic quantum
chain. The topological nature of this model was studied
in reference to classical Heisenberg magnets by Belavin
and Poliakov, " who obtained nontrivial metastable states
producing local energy minima. Thus, considering that
these metastable states have finite energy, a finite density
of them will be excited at any temperature, however
small. This is the reason why finite-energy static solu-
tions become particularly relevant in the statistical
mechanics of condensed-rnatter systems. Even though
there is a small density of them at low temperature, each
pseudoparticle can have an arbitrarily large size, thanks
to the scale invariance of the model. Consequently, they
can occupy all of space and each pseudoparticle has the
spin pointing in all di8'erent directions. Thus, Belavin
and Poliakov argue, long-range order is destroyed at any
temperature, however small, for this system.

Our purpose in this paper is to study quantum Auctua-
tions of solitons in two-dimensional anisotropic o. mod-
els. As was shown by Watanabe and Otsu, anisotropic 0.
models also contain static and topologically nontrivial
classical minima. This theory in one time and two space
dimensions is defined by the Lagrangian

L =
—,
' JI [(Bos) —(B„S) —A,(B„S ) jd x (1)

and the nonlinear constraint

II. PSKUDOPARTICLKS IN TWO-DIMENSIONAL
ANISOTROPIC o MODELS

In this section we shall consider soliton solutions to the
equations of motion. To this end, first, we will consider
the static part of the Lagrangian density. Using con-
straint (2), we can rewrite this Lagrangian density as

T

2 2

i =1 j=1
P

1 —g S,S;
(3)

/

since (1) could be considered as the Lagrangian for the
continuum limit of an antiferromagnetic system coupled
by anisotropic nearest-neighbor exchange interactions
without mass term. In this case, J is the exchange cou-
pling constant, A, an anisotropy, and c is the velocity of
the long-wavelength spin waves. Depending on the an-
isotropy parameter, the Lagrangian (1) reproduces the
following models: for A, =0 we have the isotropic magnet;—1 ~A, (0 leads to XY'-like behavior and A, )0 leads to
Ising-like behavior. Recently, the isotropic case (A, =O)
has been successfully used to explain the low-temperature
behavior of the correlation length in the antiferromagnet
La2Cu04. Topological excitations in two-dimensional
(2D) antiferromagnets and their relation to high-
temperature superconductivity have also recently been
discussed in Refs. 7 and 8.

The plan of this paper is as follows. In Sec. II we
present the pseudoparticle solutions for the anisotropic o.

models. In Sec. III we compute the first quantum correc-
tion due to these configurations. A discussion of the re-
sults is given in Sec. IV.

3

S, =l, (2)
a=1

where p=1, 2; Bo=(1/c)B/Bt; S denotes the spin field
From Eq. (3), it is clear that soliton solutions, i.e., those
with nonzero but finite energy, must satisfy
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lim S(r)~const .
f~QO

(4) (3+A, ) .
3

(12)

J gg 1( W)a„W;a„WJ (i,j =1,2),, 1

l,j
where the metric g;J( W) is given by

g„=4(1+lwl') '[I+4k, w, (1+Iwl') '],
g =4(1+

I wl ) [I+41W (1+
I wl ) ],

gi2=g~i =16~wi W2(1+
I
wl') '.

We see that the anisotropy A, deforms the usual metric
on a sphere (isotropic case' )

g;, ( w) =4&;,(I+ I
wl') ' (~=0) .

Considering that W = W, +i W2, we can rewrite (3) as

=1 4m[ w(a„w)+ w(a, w)]'
'

X=—J'
2 (1+

I
wl')'

4la„wl' +
(1+

I

wl')'

and Eq. (1) can be written in the form

Ia, wl'
L=2JJ dx

(1+
I

wl')'

d2x
la wl' 2

1+ 8 1+ 8'

[w'(a, w)(a, w)+(W)'(a, w)(a, w)]—8M X
(1+ I

wl')"

(10)

where we have used a, = 1/2(a„i a, ), a, =—I x
2(a +i a ); likewise, z =x +iy, z =x iy In Eq. (1—0), Q.

is the topological number of the configuration given by

[(a, w)(a w) —(a, w)(a, w)]
(1+

I

wl')'

2xl wl'
(1+ I

wl')'

and measures the number of times the "internal"
spheroid of area 2 is traversed in the mapping. This area
is

Then, it is convenient to introduce the new field vari-
able '

S)+iS2
1+S3

obtained from the field (S„S2,S3), taking values on the
unit sphere S by stereographic projection. We can write
8'= 8'&+i 8'2, where 8', and 8'2 describe the plane in
"internal space" on which S has been projected stereo-
graphically.

In terms of these variables, the Lagrangian density (3)
reads

We are interested, first of all, in finding static, finite-
energy solutions (solitons) to the resulting field equations.
From Eq. (10), we see therefore that the minimal value of
the energy of the fields having topological number Q )0
is equal to

E, =QAJ . (13)

This value is achieved for fields satisfying 0 8' =0.
Hence the field

W, (z) =P()(z) /P, (z), (14)

where Po(z), P, (z) are polynomials, is a soliton; the topo-
logical number Q of the soliton (14) assumes only integer
values and is equal to the maximal degree of Po(z), P, (z).
It is convenient to write the general Q-soliton solution
(i.e., soliton having topological number Q) in the form

W, (z)= + Z ZI
m.

i

5n
j j

Z Z ]
W (z)=

C
(16)

The complex parameters 5 and z, refer to the size and lo-
cation of the soliton solution. The magnitude of 6 gives

where 5, z;, and zj are complex parameters.
From Eq. (13), we see that the classical energy of these

static soliton configurations, within a given k, depend
only upon the total topological number Q. Thus, at the
classical level, the pseudoparticles do not interact. This
is a consequence of the fact that the multiple soliton
configuration is an exact solution of the equations of
motion and E~ =RE, =%AJ.

Stereographic coordinates allow one to generalize the
static solutions: in other coordinate systems, such a gen-
eralization would be a difficult task. Notice that, al-
though the classical soliton energy depends on the anisot-
ropy parameter, its configuration (14) in stereographic
coordinates does not depend on A, . In other coordinate
systems, these solutions are not so simple. In general,
pseudoparticles have the spin pointing in all different
directions as r varies, and this configuration depends on
A, . The spin field of these solutions has been found in Ref.
5 by Watanabe and Otsu for both XY-like anisotropy and
Ising-like ones. It was found by specifying how the con-
formal mapping function W depends on 8(r) and P(r),
the two scalar fields in which S can be parametrized:
S (r) = (sin8 cosP, sin8 sing, cos8). Qualitatively, for the
cases of XY-like magnets, each metastable state classified
by the topological number Q carries Q vortices and Q an-
tivortices. The Qth inhomogeneous metastable for Ising-
like magnets, contains Q locally ordered regions in which
Q core spins are antiparallel to the direction of those on
the boundary.

Using the maximal degree gm, )gn =Q, we consider.
now the simplest nontrivial case of topological number
one, that is, m

&

= 1, m,. =0, i ) 1, n =0. We have
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(18)

j

j

FIG. 1. Spin configuration representing a soliton (Q = 1) for
the XYmodel (k=- —1). The vortex is located at (0,—4) and the
antivortex at (0,4). The lengths of the arrows are proportional
to the spin projection into the XY plane: then, small arrows
mean a large out-of-plane spin component [see Eq. (17)].

the extension of the soliton, while the phase of 5 gives the
rotational orientation of the soliton configuration. As an
example, A, = —1 (XY'-like), the spin field with unit topo-
logical number 1s g1ven by

P(r) =tan ——tany +
I &I

X X

g( )
—i 2y

[lyl [x'+(lyl+ I|il)']] '" '

where we have chosen z, =0 for the position of the soli-
ton and ir/2 for its phase. The soliton configuration (17)
looks like a vortex-antivortex pair with the vortex at
(0, —I5I ) and antivortex at (0, I5 ) (see Fig. 1). The dis-
tance between vortex-antivortex centers is R =2I6I, but
the energy of this configuration is simply

III. SMALL OSCILLATIONS ABOUT SOLITON
CONFIGURATION

We will examine in this section the time-dependent
equation for small disturbances, g(r, t), which propagate
on the classical background 8'„with topological number

Q =1. To this end, we write

(19)

where the deviation from the classical minimum,
represents the spin-wave mode.

By minimizing the action corresponding to Lagrangian
(10) to second order in g, we find

where

BI2

, 0= &it+ I'zk
c Bt

(20)

so classically the vortex and antivortex do not interact in
this model. The fact that the solution exists for arbitrary
5 and z„and the fact that neither Q nor E, depend on
these constants are a consequence of scale and transla-
tional invariance of Lagrangian (1). Then, each pseu-
doparticle can have arbitrarily large size, due to the scale
in variance.

The multiple soliton (and antisolitons, obtained by in-
terchanging z~z) configurations discussed above are ex-
act finite-energy solutions of the equations of motion and
our attention will be focused on them. We have seen that
solitons in systems with —1 ~ A, & 0 can be thought as be-
ing made up of a meron-antimeron pair (vortex-
antivortex). Isolated merons in related anisotropic mod-
els have been discussed elsewhere. " ' In contrast to the
soliton (17), these merons have long-range Coulomb in-
teraction.

8xw, (a, w', )

' a-, —(1+
I w, [')'

4A, W, (a, w, )

V, =8a, in( I+
I W, I') a- a, + a+(I+

I w, l') ' (I+
I w, l')' ' (I+

I w, ')'

8A, (a, w, )(a, w, ) 8A, W, (a, w, )

(I+
I w, I')' (I+ I w, I')' ' (1+ I w, I')' (21)

16XR, 8A w, (a, w, ) 2A w,
V2 = [a,ln(1+

I W, I
)a +a ln(1+ I

W', )a, ]
—

2 2
a —

2 2
V

(1+Iw, l')' ' ' ' ' (i+ w, ')' ' (i+ w, ')' (22)

Equation (20) is valid for all possible values of the an-
isotropy, which appear as a parameter in the potential
terms. The two potential operators have a Anite range.
This implies that the usual continuum states, with energy
given by the frequency m of small oscillations, exist.
Writing g(r, t) =i)'j~„(r)e'"', we obtain, in the limit r ~ ac,
two spin-wave solutions to Eq. (20) with frequencies
co(q)=cq. Thus, the solution of Eq. (20) in the limit
r ~~ results in a superposition of an incoming cylindri-
cal wave and an outgoing phase-shifted cylindrical wave

it q„(r)„=—~ H
1 „I(qr)exp(in y)=1

2

+ g exp[ —2ib, „(q)]

XXXI„I(qr)exp(imq~) ', (23)
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where we have used cylindrical coordinates (r, y). Here,
b,„(q) is the phase-shift matrix which couples the
different angular momentum channels n, m.

It is our purpose to calculate the quantum correction
to the classical soliton energy, given by the zero-point en-
ergy of the small fluctuations measured with respect to
the vacuum. This quantum correction energy depends
only upon the diagonal elements of h„(q) and is ob-
tained by generalizing the arguments used in the semi-
classical quantization of solitons in 1+1 dimensions. '"'
It is given by '

E=E —E (24)

where

Eo =—f trb, „(q)dq,
0 Bq

(25)

and we have introduced a cutoff for the integration, as-
suming a Debye model for the small oscillations excita-
tions. The value I/a was introduced considering that
solid-state systems have a natural length, the lattice con-

stant a, which provides a natural cutoff rendering the
theory finite. '

Now, consider one-pseudoparticle classical solution
(Q = 1) given by Eq. (16). Due to the fact that a transla-
tion of the origin in Eq. (23) simply transforms the phase
shift by unitary transformation b,(q)~U'6(q)U, under
which trb, (q) is invariant, the quantum corrections do not
depend on z, and then it is sufhcient to consider the prob-
lem corresponding to the simpler configuration
W, (z)=z/5. Substituting this soliton configuration into
Eqs. (21) and (22), we note that the potential operator V&

has cylindrical symmetry while the other potential opera-
tor, V2, does not.

In order to obtain Eo we have to calculate the sum of
the diagonal elements of the phase shift. The correspond-
ing phase shifts depend in a highly nontrivial way on the
potential. Due to the complicated form of interaction
(20), we are not able to solve exactly this problem. We
can, however, find the phase shift using the Born approxi-
mation. The first-order Born terms for the diagonal and
nondiagonal elements are given, respectively, in this case,
by

h„(q)= ——f (Jl„l(qr)exp( —in')V&exp(in')Jl„l(qr)) rdr, (26)

b,„(q)= ——f i' "'(J (qr)exp(imps) V2exp( in@)—J„(qr) ) r dr, (27)

where ( ) denotes an angular average.
First, we will consider —1 & A, & 0 (XY'-like anisotropy). In this case, we will use R =2~5~ representing the separation

of a vortex pair. In order to calculate trh„, we use 8' =z/5 to obtain V&. Thus,

(q)= X f ( l.l(qr)exp( in')V~exp(in') I.l(qr
n = —oo

After some straightforward but lengthy work, we obtain

(28)

trb, „(q)= —2n Al+ g , n IC„, I„
n=1

qR qR
n 2 n+1 (29)

The nondiagonal terms given by Eq. (27) correspond to
transitions between the n, n+2 angular momentum chan-
nels for V2 given by Eq. (22) and W, =z/5. All other
transitions are not possible.

In Sec. II, we have seen that the energy of the vortex-
antivortex pair configuration (soliton in the XY-like mag-
net) does not depend on the separation R between them
and the vortices classically do not interact.

However, at the quantum level the phase shifts of small
oscillations about this configuration are dependent on the
distance R between vortices, and in fact by solving Eq.
(25) in the limiting case R ~0 (small separation) we shall
explicitly demonstrate how interaction between a vortex
and an antivortex arises due to quantum effects in the
nonlinear o. model with XY-like anisotropy.

In the limit R ~0, we can approximate (29) by
2

trA (q) = —2m.i, 1— qR qR
nm 2

ln
2

(30)

Inserting Eq. (30) into Eq. (24), we obtain
2

4m
(3 &) 2Ac& 1 R

1
R

3 a 3 2a 2a

( —1&A, &0) . (31)

We see that, since —1+1,&0, semiclassical quantum
corrections lower the classical soliton energy in the XY-
like anisotropy and induce an effective interaction poten-
tial between vortices in a pair. Then, small fluctuations
about the static soliton configuration of the 2D nonlinear
o. model with XY-like anisotropy induce an internal de-
gree of freedom for each soliton. Quantization of these
solitons breaks the static scale invariance and gives a pre-
ferred soliton size, that is, a preferred distance Ro be-
tween the vortices in a soliton. It is obtained using
dE/dR =0, which leads to Ro-a. Hence, this effective
interaction potential is repulsive at very short range
(R &Ro) and attractive for R )Ro.
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Equation (31) is also valid for the Ising-like anisotropy.
In this case, we must substitute R/2 by ~5~, where 5~

gives the soliton s size. Thus, for the Ising-like anisotro-
py, the quantum correction to the classical soliton energy
1s

4' 3+& &
2A'c& 1 151

1
15I

Then, semiclassical quantum corrections raise the classi-
cal soliton energy in the Ising-like anisotropy. We re-
mark that Eq. (32) has the same functional dependence
with ~5~ as the soliton energy calculated by Kosevich' in
easy-axis two-dimensional ferromagnets, i.e., the energy
increases, as soliton size increases, as

~
5

~
in

~
5 ~.

IV. MSCUSSIGN

We have shown how linearized small oscillations about
the static soliton in the 2D anisotropic o. model modify
the energy of these configurations. Two types of anisot-
ropy have been studied: Ising-like and XY-like. Particu-
larly, in XY-like magnets, such contributions lower the
classical energy of the pseudoparticles and induce an
effective interaction between the vortices in a soliton,
whose form, in the limit of small separations, is given by

V(R) ———A, ln ( —1&A, &0) .
2 Ac R R

R~0

This potential is attractive for R &Rp and the depen-
dence in R reflects the structure of the soliton (see Fig. 1),
since lnR is due to in-plane spin components' and R is
the modification induced in the logarithmic interaction
due to out-of-plane spin components. Solitons of size
R p —a are energetically favorable, and two vortices in a
soliton separated by Rp represent a configuration of
stable equilibrium. Considering the motion of the vor-

tices separated by R, with R =R o + r where
~
r

~

&&R 0, we
can approximate the force between the vortices in a pair

(34)

leading to a simple harmonic motion.
Since a Q-soliton configuration can be thought of as be-

ing made up of Q vortices and Q antivortices, we can ex-
pect from results obtained here that quantum Auctuations
also induce effective interactions between solitons. For
the isotropic case, some authors ' have extracted the in-
teractions between pseudoparticles due to quantum Auc-
tuations.

For Ising-like magnets, we find that quantum correc-
tions raise the classical energy of the soliton. In particu-
lar, the energy increases as soliton size increases.

Of course, our discussion of the quantization of soli-
tons in the anisotropic o. models has been far from
rigorous. We have used the Born approximation, valid at
long wavelengths for small solitons. In this regime, mul-
tiple scattering effects are not so important, but these
effects must be investigated in the large-soliton regime in
order to see if our calculations remain valid. Neverthe-
less our discussion has been at least "suggestive" and we
hope that the calculation presented in this paper may be
useful not only for the quantization procedures investi-
gated here but also for use in perturbation theories ' in-
volving soliton response to external perturbations or
forces, as well as statistical mechanics. As has been
shown by Currie et al. ,

' the phase-shift interaction be-
tween small oscillations and solitons provides the sharing
mechanism of energy and degrees of freedom among the
nonlinear excitations of the system and therefore is im-
portant in the study of the statistical mechanics of the
model.
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