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The relaxation behavior of an assembly of noninteracting single-domain ferromagnetic particles in the

presence of a constant magnetic field is studied by solving the corresponding Fokker-Planck equation.

The analysis is performed by first converting that equation into a hierarchy of differential-recurrence re-

lations by expanding the solution in Legendre polynomials. The spectrum of eigenvalues and their asso-

ciated amplitudes is then determined by matrix methods where all the desired physical quantities such as

the magnetization correlation time and complex magnetic susceptibility may be computed numerically.

In order to ensure the accuracy of the results obtained this solution is compared with an exact solution

derived in terms of matrix continued fractions. It is shown that the conventional assumption in the

theory of superparamagnetism, that except in the very early stages of relaxation to equilibrium the only

appreciable time constant is the one associated with the smallest nonvanishing eigenvalue, is no longer

true when an applied constant magnetic Geld exceeds a certain critical value. The'breakdown of this as-

sumption manifests itself in {a) a dramatically large deviation of the magnetization correlation time (area

under the curve of the decay of the magnetization) from the inverse of the lowest eigenvalue, and (b) in

the presence of relatively strong high-frequency modes superimposed on the Neel one usually assigned

to the lowest eigenvalue. The results are compared with available experimental data.

I. INTRODUCTION

A single-domain ferromagnetic particle with uniaxial
anisotropy is characterized by an internal magnetic po-
tential which has two stable stationary points with a po-
tential barrier between them. If the particle is suKciently
fine, the direction of the magnetization may undergo a
rotation due to thermal agitation, surmounting the bar-
rier, as described by Neel. '

The calculation of the relaxation behavior of an assem-

bly of such particles is usually accomplished' by as-

suming that the relaxation of the magnetization is dom-
inated by a single relaxation mode, namely that associat-
ed with the time of reversal of the magnetization over the
energy barrier between two stable orientational states.
This means that in the set of eigenvalues I A, k I and corre-
sponding amplitudes I Akj of the Sturm-Liouville equa-

tion (to which the Fokker-Planck equation underlying the
process may be converted), A, , ((A,i„k)2, and A, ))Ak

since then the decay functions Ak exp( A, t lr~), k 2— ,

are small compared to A, exp( A, , t lr~ ) except in—the

very early stages of the approach to equilibrium. The
di6'usional relaxation time w& is defined as

+gM,v 1

2qkT y2

where y is the gyromagnetic ratio, M, is the saturation
magnetization, k is the Bolzmann constant, T is the abso-
lute temperature, v is the volume of the particle, and g is
the damping constant from Gilbert's equation, namely

M=yMX[Hr —gM] .

In Eq. (2) M denotes the magnetization and

H, =h —aV7aM,

(2)

where h is the random white-noise field arising from
thermal agitation and V is the barrier potential including
that of the internal crystalline anisotropy and the applied
external field H.

In view of the above considerations the early studies
of the relaxation process were confined to the calculation
of the smallest nonvanishing eigenvalue of the Sturm-
Liouville equation making the assumption that the pro-
cess is dominated by a single relaxation mode with the
time constant
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attendant mathematical simplifications we shall suppose
as in Refs. 1 —4 that the field is applied along the polar
axis so that the potential Vis of the form

Very recently, the relaxation behavior has been reexam-
ined by Co6'ey et al. for the simple uniaxial potential of
the crystalline anisotropy

V(8) =K sin 8 .

vV(8)
kT

=o sin 8—gcos8=cr(sin 8 —2h cos6),

where the barrier height parameter

(10)

m NAH
kT k

Here N is the number of particles per unit volume,

m =M, v

(6)

is the magnetic moment of a particle. According to
linear-response theory the decay function f, (t) from Eq.
(6) is connected with the equilibrium longitudinal auto-
correlation function of the magnetization C, (t) as fol-
lows:

f, (t) (cos8(0)cosB(t))o—(cos8(0))0
=C, (t)=

f~(0) ' (cos 8(0))o—(cosd)0

where the symbol ( )0 means the equilibrium ensemble
average, so that the magnetization correlation time T~~

according to Eq. (6) is given by

It should be noted that in our notation kk diff'ers by a fac-
tor of 2 from that used in Refs. 2 —4. CoA'ey et al. de-
rived an exact analytic equation for the correlation time

T~~. Also, by calculating successive A.k and Ak CoKey
et al. were readily able to show (cf. their Table I) that
the relaxation process under the inhuence of the potential
of Eq. (5) is accurately represented by the first decay
mode. Thus, Eq. (4) holds accurately in this case (Table
II of Ref. 5).

The second type of uniaxial potential which is of in-
terest in the study of superparamagnetism is when a con-
stant field H of arbitrary strength is superimposed on the
anisotropy potential. ' " In general such a field can only
be applied at some angle to the easy axis of magnetization
since that axis is in a random position. However, in or-
der to preserve the axial symmetry of the problem and its

This is an axially symmetric bistable potential with an-
isotropy constant K representing the free energy per unit
volume of a particle. The stable configurations of the
magnetization M are at 6=0 and 8=~ where the orien-
tation for M, on a sphere of radius M, is specified by the
spherical polar coordinates 8 and P, 8 being the polar an-
gle. The calculation of the decay of the longitudinal com-
ponent of the magnetization following the removal of a
weak constant applied field hH superimposed on the field
H then amounts to the calculation of Ak and kk in the
equation

M, (t) =mNf i(t) =mN(cos8 )

and the external field parameter

with

kT
(12)

II. DIFFERENTIAL-RECURRENCE RELATIONS
FOR RELAXATION IN THE PRESENCE

OF A CONSTANT FIELD

The Fokker-Planck equation for the probability densi-

ty W(8, g, t) of orientations of the magnetization M on
the unit sphere for an axially symmetric potential V(8)
is

This potential was originally introduced by Neel' who
gave an expression for the time of reversal of the magne-
tization using the discrete orientation approximation. It
was further studied by Brown who obtained approxi-
mate expressions for the lowest nonvanishing eigenvalue
in the limit of large and small 0 using the Kramers tran-
sition state method and perturbation theory, respective-
ly. Later A.

&

' was calculated numerically by Aharoni ~

However, he did not calculate any other V or the associ-
ated amplitudes including that of A, , thus it was not pos-
sible to ascertain the role they play in the relaxation pro-
cess, nor is it possible to test the accuracy of the single-
mode approximation. On the other hand the analysis
presented by Garanin, Ischenko, and Panina enabled
them to derive an integral expression for the correlation
time T~~ from the Sturm-Liouville equation. However,
rather than trying to calculate T~~ exactly from their
equation, they presented various asymptotic formulas for

T~l and the complex susceptibility.
It is the purpose of this paper to study in detail the re-

laxation behavior of the system under consideration. In
order to accomplish this, we shall calculate accurately
the eigenvalues [kk } and the corresponding amplitudes

[ Ak },the correlation time r~~ and the complex suscepti-
bility for the potential of Eq. (10) using the methods we
have described in Refs. 5 and 8—10. The most important
results of the calculation are (a) that the correlation time
has behavior dramatically diferent from I,

&

' above cer-
tain critical values of the parameters tr and h and (b) the
existence of high-frequency relaxation modes in addition
to that arising from the low-frequency one associated
with the reversal of M. This is due to the fact that the
high-frequency modes make a distinct contribution to the
response.
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am
27+

Bt

a ~ aV 1 am
sin6 BP kT aM sin6 BP

+1 ox +(g+g )x
e ' Pi(x)dx

fi(0) =
+i ~x'+(g+g, )x

e ' dx—1

—(P, ( )&, , QN

which in the linear approximation in the perturbation g,
reduces to

where

(14)

or

f, (0)=g, [(xP,(x) &,—(x &,(P, (x) &,] (21)

(15)

is a dimensionless damping parameter. In order to study
the longitudinal relaxation behavior we suppose that the
constant field term in the potential of Eq. (10) is altered
by a small amount g, =mhH/kT «1 at an initial time
t =0 so that we determine the after-e6'ect solution of Eq.
(14). We can disregard the dependence of W on!)! for the
longitudinal relaxation; hence we may assume that the
distribution function 8'is

l+1 l
fi( ) 41 2/ ~1 ~ !+1&0

2/ ~1 ( ! 1&0

—(P, &0(P! &o

or

l+1 0 l 0 0 0f! 0} kl 2/~if!+! 2/~if! —! ! !

(22)

(23)

W(8, t) = g ai(t)Pi(cos8),
1=0

(16)
where

where the P& are the Legendre polynomials. On substi-
tuting Eq. (16) into Eq. (15) we obtain the diff'erential-
recurrence relation

f,'(0) =(P, &, .

The equilibrium quantities f! satisfy the set of equations

2rN 2'it+ 1—
(2/ —1)(21+3),

(r go g Q Q

(2/ 1)(2/ /3} ! 2/ ~1 ' +'

2/ ~1 If!—i(t) —fi+i(t)]

2o (I —1)
(21+ 1)(21—1 }

2o. ( I +2)
(21+ 1)(21+3)

(17)

2o (I —1) o

(21 + 1)(21—1)

2o. ( I +2) o

(21+1)(21+3)
(24)

where

a!(t) a, ( ~)—
fi(t)= (Pi(cos8) &

—(Pi(cos6) &0= (18)

and the symbols ( & and ( &o mean ensemble average and

equilibrium ensemble average, respectively.
We are interested in the decay of the magnetization

M, (t) which in this case is

M, (t)=mX[ (cos8 &
—( cos8 &o]

=mX f (cos8—(cos6&0)W(8, t)sindd6

=mXf, (t),
so tl'at we are required to calculate fi(t). This is consid-

erably more involved than the case /=0 because Eq. (17)
does not decouple into separate sets for even and odd

f, (t) Furthermor. e, it is a five-term recurrence relation
so that it is not obvious how its solution may be found in

the form of a scalar continued fraction. It may however,
be cast into the form of a three-term matrix recurrence
relation as in Ref. 10.

The initial conditions for fi(0) may be determined as
follows:

which is the set of Eq. (17) with f!=0.
The recurrence relation of Eq. (24) can be evaluated for

any I if we have a knowledge of (Po &o, (.Pi &0, and

(P2 &o. These may be given just as in Ref. 10 by using the

results of p. 369 of R.ef. 11. We have

(25)

(P, &,= T(g, o ) 2o.

3 gL(g)+1 —
g /2o g /2cr —1

2 T( g,o)2o. .
1

2
'

(27)

where

L(g) =cothg ——1 (28)

is the Langevin function and the function T( g, o ) is given

in terms of Dawson's integral"'

D(x)=e f e' dt
0

of given argument as
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T(g, cr ) =V'cr [gL(g)+1+/]D &cr+
2 cr

+[gL(g)+1 g]—D &o-
2&2o

(29)

III. SOLUTION OF THE SET OF RECURRENCE
REI.ATIONS (17),FGRMUI. ATION AS A MATRIX

DIFFERENTIAL EQUATION

The first method proceeds as follows. In Eq. (30) the
column vector X(t) is

The set of equations (17) may be solved to yield the relax-
ation behavior of f, (t) in either of two ways. The first is
to arrange them in the form

X(t)= AX(t), (30)
X(t)= (31)

and the second is to arrange the di6'erential-recurrence
relation as a three-term matrix one, the Laplace trans-
form of which may then be obtained analytically in terms
of a matrix continued fraction as described for the corre-
sponding two-dimensional problem in Ref. 10.

The system matrix A is determined by Eq. (17) and is
given by

2
1 ——o.

5

3
5

24
35

3

2
3 0

7

6
7

20
21

4
6— o

15

10~
9

24
35

10— o
20

0 0

0 0

20
o 0 ~ ~ ~

21

10 40
(32)

In Eq. (17), 1 is taken large enough (equal to L say) to en-
sure convergence of the set of Eqs. (30). The lowest non-
vanishing eigenvalue which corresponds to the reciprocal
of the greatest relaxation time, is then the smallest root of
the characteristic equation

where

m X
3kT

is then given by

(37)

det(A, I—A) =0 . (33)

m EH' k N

k=1

The corresponding normalized complex susceptibility

(35)

The relaxation modes of fi(t) may be found from Eq.
(30) by assuming that' A has a linearly independent set
of L eigenvectors (Ri, . . . , RL ), so that' '

X(t)=b, e 'R, +b2e 'R2 . . +bl e RI, (34)

where the b; are to be determined from the initial condi-
tions (23). Equations (30) may now be solved to any
desired degree of accuracy to yield the decay of the longi-
tudinal component of the magnetization according to Eq.
(6), namely

miiif, (t) =mN[(cos8) —(cos8)o]

3Ak

1 + l co%~ /A, k
(38)

Here we have made use of the linear-response theory for-
mula"

~~(
)= ',

~( ) —'
t~'( )

i(t)
=cct((0) 1 ico f — e ' 'dto, 0

(39)

The correlation time T~~ in terms of the Ak and kk is
given by Eq. (9).

We note that the correlation time T~~ itself may be eval-
uated more simply by noting that as in Ref. 5

f i(0)
T~~=lim C& t e "dt=C& 0 = (40)

o o
' ' f (0)

y)~(co) =y~) (co ) i/)~ (co)=Gai(co) (36)
with the tilde denoting the Laplace transform where

f, (0) is determined from the matrix equation
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X(0)= —A 'X(0), (41)

where X(0) is the initial value vector that is

f)(0)
fp(0)

X(0):

2CT

15

Equation (41) is obtained from the Laplace transform of
Eq. (30) for s =0.

We have formulated the problem of determining the
initial values f, (0) from the recurrence relation with the
first three ft given as in Eqs. (25)—(29). The fI may
however, be evaluated numerically by simply calculating
A '. First we note that the set of Eq. (24) constitutes
the inhomogeneous set

where we have taken into account the fact that fo =1.
Thus we can calculate numerically all f& needed from the
equation

F =A 'B. (45)
This is the formulation of the solution of Eq. (17) as the
solution of the matrix differential equation (30).

IV. SQLUTION DIi EQ. (17) IN TERMS
OF MATRIX CONTINUED FRACTIONS

with

AF =8

fo

The advantage of posing the problem in such a manner
is that an exact formula in terms of matrix continued
fractions may be written for the Laplace transform of the
after-e6'ect function. Furthermore, the correlation time
and the complex susceptibility may also be written as ma-
trix continued fractions. The starting point of the calcu-
lation is the matrix diff'erential-recurrence relation'

pO C, (t)=Q, C, I(t)+Q, C, (t)+Q, C, +,(t), (46)

and

where the Q&—, Qt are time independent l X I matrices and
the C&(t) are time-dependent column vectors. Equation
(17) takes the form of the matrix three-term differen'tial
recurrence relation Eq. (46) if we rearrange it as follows:

f2l —1( t)
4o (l —1)(21—1)l

(4I —1)(4l —3)
j(2l —1)l
(4l —1)

2o.(2l —1)(2l + 1)l
(4l + 1)(41—1)

f2, 3{t

fbi-z( )

2cT

(4I —3)(4I + 1)

g(2l + 1)l
(41+1)

—gl(2l —1)
(4l —1)

20'

(4l —1)(4l + 3)

fbi —i(t)

f2t+2(t)

A general method
proach which has
scribed in Ref. 10.

f, (s)
Cl(s)= f-( )

—2o (2l + 1)(21—1)l
(4l —1)(41+ 1) f2t+&(t)+' —g(2l +1)I —4o (I +1)(2l +1)l (47)

(4l + 1) (4I + 1)(4l +3)
of solution of Eq. (46) in terms of matrix continued fractions was given by Risken. ' Another ap-
the merit of being considerably more simple than the previously available algorithm has been de-
Thus Eq. (47) may be solved for the Laplace transform

using the method of Ref. 10 to yield

n

C,(s)= [sI—Q, —Q,+S,(s) ]
' . C,(0)+ g + Q„,S,(s)(Q„) 'C„(0). ,

n=2k=2
(4&)
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where the 2 X 2 matrices Q„+—, Q„areas shown in Eq. (47),
S„(s)is the 2 X 2 matrix continued fraction defined as

TABLE I. The lowest nonvanishing eigenvalue k& for various
values of the barrier height (o. ) and field (h) parameters.

S„(s)=(sI—Q„—Q„+S„+,(s) ) 'Q„ (49) 21$
h o =0.2 cr=0.5 o =1 o =2 o =5 o.=10

The initial value vectors

f2„ i(0)
C„(0)= f (0)

are most conveniently determined from Eqs. (23) and (24)
in this case. The after-effect function f, (s) is simply cal-
culated from the scalar product of C, (s) with the unit
vector e = ( 1,0) namely

0.01 1.84
0.1 1.84
0.2 1.85
0.4 1.85
0.5 1.85
0.7 1.86
0.8 1.86
1 1.88

1.63
1.63
1.63
1.66
1.68
1.72
1.75
1.82

1.31 0.808 0.136 0.00293
1.31 0.832 0.179 0.0086
1.34 0.906 0.313 0.038 3
1.43 1.2 0.91 0.385
1.49 1.41 1.4 0.883
1.67 1.97 2.78 2.93
1.78 2.32 3.67 4.52
2.05 3.12 5 ~ 82 8.78

4.24 X 10
7.79 X 10
0.000 198
0.032 7
0.206
2.27
4.78

12.9

f, (s) = [C,(s).e], (50)

while the correlation time T~~ and the complex suscepti-
bility g~~(co) are given as before by Eqs. (40) and (39), re-
spectively. Equations (48)—(50) constitute the exact
solution of the problem in terms of matrix continued
fractions.

V. RESULTS AND COMPARISON
%'ITH EXPERIMENTAL DATA

In Fig. 1 and Table I we show the behavior of the
lowest eigenvalue A, , calculated from the characteristic
Eq. (33) as a function of cr for various values of h showing
that our calculation agrees with the corresponding Fig. 1
of Aharoni in all respects. A 45X45 matrix A was
sufficient to obtain a value of k&

' accurate to three
significant digits for the range of parameters chosen. In
Fig. 2 and Table II we show the behavior of the correla-
tion time T~~ computed from the matrix formula Eq. (41)
for the same values of h. The most astonishing result of
this calculation is that T~~

' differs greatly from X, '

above a certain critical value of h. Again a 45X45 ma-
trix yielded satisfactory results. For example, at h =0.2
and o. =20, T~~

=13.6 and A,
&

'=1.01 X 10 . This
behavior is further emphasized in Table III where one
can easily see that A,

&

' differs dramatically from T~~.
Thus the correlation time is far more sensitive to any al-

teration of the two potential well structure of Eq. (5)
caused by the imposition of the field g than is A, We
were first alerted to this behavior by calculating T~~ using
the matrix formula of Eq. (41) which merely requires a
knowledge of the initial value vector X(0) and A
More insight into the disparity between A, , and T~~ may
be gained by calculating T~~ using Eq. (9). This requires a
knowledge of a suKciently large set of the eigenvalues

and their corresponding amplitudes t Ak J and is
shown in Table IV. The reason for the disparity between

T~~ and A,
&

' now becomes obvious. It is due to the fact
that at short to intermediate times the high-frequency de-
cay modes cannot be neglected as they contribute
significantly to the correlation time. Indeed it is apparent
by using the values of Table IV that Eq. (9) for the corre-
lation time T~~ cannot be reduced to Eq. (4) in contrast to
the case /=0 where the Ak are negligible for all k) 1

(see Table I of Ref. 5) so that

g ~k~k

Q3k A, ,
(51)

The results are corroborated by the matrix continued
fraction method of Sec. IV.

By way of further illustration of our results we show in
Table V the behavior of the first ten decay modes
Ak exp( —A.kt lr&) for various values of the time t rang-
ing from 0.01 to 10. The general structure of the decay

?i=0.8

h=0.7

0.1.- 0 1-

0. 01 .- 0. 01 .-

0.2 0. 5 10. 20. 0. 2 0.5 10 ' 20.

FIG. 1. The lowest nonvanishing eigenvalue k& as a function
of the barrier height parameter o. for various values of the field
parameter h.

FIG. 2. Inverse of the correlation time T~~ as a function of
the barrier height parameter o. for various values of the field pa-
rameter h.
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0.01 1.84
0.1 1.84
0.2 1.85
0.4 1.85
0.5 1.85
0.7 1.86
0.8 1.87
1 1.88

1.63
1.63
1.64
1.66
1.68
1.74
1.77
1.85

1.31 0.813 0.138
1.32 0.84 0.183
1.34 0.925 0.35
1.45 1.29 2.74
1.53 1.61 9.16
1.74 2.65 24.6
1.89 3.45 28
2.24 5.73 33.2

0.002 94
0.008 92
0.084 2

43.3
51.8
60.8
65.1

73.7

4.24 X 10-'
0.000 0107
0.147

104
112
129
137
154

modes now becomes apparent. In this case (cr =10) for
small values of t &0. 1 the high-frequency mode charac-
terized by A, 5 makes a greater contribution to the decay
than that of A, , however, as time progresses (see Fig. 3)
this and all other modes vanish so that only the A,

&

mode —which is, as usual, that associated with the stabil-
ity of a given distribution of magnetization —Neel relaxa-
tion remains. It is also obvious from Fig. 3 that the gen-
eral behavior of the correlation function C, ( t ) differs
markedly from that of the first mode decay function
exp( A, ,tlrz). T—he dominance of the high-frequency
modes at short and intermediate times has important
consequences in the frequency domain, where a high-
frequency absorption peak will appear in the imaginary
part y~'~'(co) of the complex susceptibility along with the
usual low-frequency absorption maximum associated
with k&. This behavior is illustrated in Figs. 4 and 5 for
cr =S and 10 for various values of h. One can see from
these figures that the high-frequency mode exists even at
h =0.01. It should be noted that the existence of a weak
high-frequency mode in the case of the potential (5) was
first noted by Martin, Meier, and Saupe' for the similar
problem of dielectric relaxation of nematic liquid crys-
tals.

The discussion so far has centered on the numerical
solution of the problem. We shall now describe how this
solution may be related to previous analytical results.

TABLE II. Inverse of the correlation time T~~ for various
values of the barrier height (o. ) and field (h) parameters.

2/T()
h o =0.2 o.=0.5 a =1 o =2 o =5 can=10

0.01
0.1

0.2
0.4
0.5
0.7
0.8
1

1

1

1

1

0.999
0.999
0.999
0.998

0.999
0.999
0.999
0.997
0.996
0.992
0.99
0.984

0.998 0.994
0.997 0.99
0.995 0.979
0.986 0.926
0.979 0.878
0.959 0.746
0.945 0.672
0.913 0.544

0.988
0.974
0.896
0.332
0.153
0.113
0.131
0.176

0.996
0.964
0.455
0.008 87
0.017 1

0.048 2
0.069 5
0.119

0.999
0.725
0.001 34
0.000 315
0.001 83
0.017 6
0.034 8
0.084

Thus Aharoni has shown that for h ~0.4 and a ~2 the
lowest eigenvalue A,

&
can be approximated by Brown's for-

mula

o (1—h )[(I+h)exp[ cr(—1+h) ]

+ (1—h )exp[ —cr(1 —h )2] ] (52)

or by noting that g =2o h (Ref. 17):

&~=2~ ' o' [1—g /4o ][cosh(—(g/2cr)sinhg}

Xexp( cr —g /—4o. ) . (53)

Thus we can also use the analytic equation (53) for evalu-
ation of the correlation time T~~ from Eq. (4). For larger
h and smaller o this formula is inadequate (see Table III).
However in this case we can use another approximate
equation, which has been already derived in Ref. 11, viz. ,
the inverse of the effective eigenvalue. ' The effective ei-
genvalue A.,&

is determined by evaluating Eq. (17) for l = 1

att=0:
f)(0)
f i(0)

Thus on using Eqs. (17), (23), and (25)—(27) we can ob-
tain an analytic equation for the effective correlation time
T~~ =A,,~' in terms of the Langevin and Dawson func-
tions, namely"

(54)

TABLE III. Product of the lowest eigenvalue k& and the
correlation time T~~ for various values of the barrier height (cr)
and field (h) parameters.

Tll ~l
h o.=0.2 o.=0.5 cr=1 ca=2 o.=5 o.=10

2o/T(g, cr)(gL(g)+ I+(' /2o ) —1 2o g /T (g, o )—

2o —2o /T(g, o )[gL(g)+ I —g /2cr'] —
g /2cr)+1

(55)

TABLE IV. Amplitudes Ak and eigenvalues Xk of the first ten modes of the decay of the longitudi-
nal magnetization for h =0.01, 0.2, and 0.4 and cr = 10.

Ak

h =0.01 A =0.2 A =0.4

1

2
3
4
5
6
7
8
9

10

0.858
9.05 X 10
0.002 83
0.000049
0.000 807
2.18X 10-'
0.000 036 1

8.78 X 10-'
9.45 X 10
1.92 X 10

0.001 47
8.06

12.3
14.8
19.2
25.2
32.1

40
49
58.9

0.0019
2.01 X 10
0.000 063 2
0.0014
0.000 668
0.000 101
0.000 029 8
5.84 X 10-'
1.02 X 10
1.5 X 10

0.0192
7.32

12.7
17.6
20.3
)6.6
33.4.
41.2
50.1

60

1.11X 10-'
6.68 X 10
7.86 X 10
0.00041
0.001 06
0.000029
0.000 022 7
6.14X 10-'
1.18 X 10-'
2.06 X 10-'

0.19.
7.12

14.4
22.6
23.6
31.2
37.7
44.8
53.6
63.5
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TABLE V. EA'ect of the first ten modes on. the decay of the magnetization for t/~& =0.01, 0.1, and

10 for h =0.2 and o.=20.

W, e —II 2t
W, e

A3e

A4e

A, e
~6t

A e —
A, 7E

A7e

Wse
t

W, e
t

A )Oe
10

o.oa

6.55 X 10
9.66x 1O-"
2.46 X 10

2.O4x 1O-"
3.14x 10-'
2.22 x 10-'
9.08 X 10
8.79 X 10
a.29 x 10-'
1.23 x 10-'

0.1

6.55 X 10

2.13 X 10

2.82 X ap-"
1.1xao "
6.45 x 10-'
4.22 x 10-'
5.62x10—"
1.71x 10-"
1.45 x 10-'
6.94x 10-"

6.55 X 10
5.81 X 10
1.11 X 10
2.27 X 10
8.6X 10
2.55 X 10

4.61x10 "
1.29 X 1—
4.52 xaO-"
2.24 X 10

10

6.54 X 10

1.32 x 10-"
1.03 X 10
3.18x1O-"'
1.53 X 10

1.66 X 10

6.36x 10-'"
8.O4x 1O-'"
3.99xaO-'"

77 X 1P
—36s

where the I. and T functions are given by Eqs. (28) and
(29), respectively. We compar Tll and TII in Fig. 6 for
di6'erent values of the Geld parameters h. One can see
from this figure that Eq. (55) provides a good approxima-
tion to the magnetization correlation time TII for h )0.5

and all ranges of o. . This is not surprising because we
have already shown that the e6'ective eigenvalue method
provides in general an acceptable approximation to the
correlation time T for o. =0 in contrast to the case h =0

II

when the e6'ective eigenvalue approach is applicable only
for low potential barriers (o (1.5) and there is exponen-
tially large divergence from the exact solution in the limit
of high barriers.

The results obtained for the relaxation time are in
agreement with experimental data of Barbara et al. ,

'

where the field and temperature dependence of the relax-
ation time were measured for Tb05Ceo 5Fe2 particles.
The particles had a size distribution about a mean value
150 A and cubic symmetry. Our uniaxial anisotropy
model does not necessarily apply in such a case. Howev-
er, it seems very likely that it should qualitatively hold

0. 1-

hW. 01

hW. 2

h=0.4

0. 001-
hW. 8

0.00001-

0.00001 0.001 0.1 10 ' 1000.

for cubic anisotropy as well. The relaxation time ~ ex-
perimentally' measured was directly related to the re-
ciprocal of the slope (dMI'dt) ' of the magnetization
M(t) curve at M =0. Therefore, only the contribution of
the longest lived mode to the relaxation rate was mea-
sured. Thus, we may evaluate the relaxation time ~ from
the equation

0.8-

0. 6- 0.1-

0.2-
0.01-

0-
0. 01 0.1 10. 100.

0.001-

0. 00001 0.001 0.1 10. 1000.

FIG. 3. Comparison of the correlation function C& (t)
(dashed lines) with the single exponential decay function
exp( —A, &t/r&) (solid lines) for various values of the field param-
eter h: 0.4, 0.2, and 0.01 (curves 1 —3, respectively).

FIG. 4. The real (A) .and (B) imaginary parts of the normal-
ized susceptibility aII as a function of frequency for o.=5 and
h =0.01, 0.2, 0.4, and 0.8.
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0. 01-

hW. 01
10-

5-

hW. 4

0.0001-

—61. 10
0.00001 0.001 0.1 1000.

—5

—10-

4~

~ 0 10K

8K

0. 3 0. 4
I

0.5

]/H(kOe ')

0. 6 0. 7

0.1 =

FIR. 7. Comparison of theoretical [dashed lines, Eq. (53)]
and experimental [filled circles (Ref. 18)], log& (1o!T» ) vs 1/8
at 8 and 10 K in Tbo 5Clo 5F12.

0. 01-

0.001-

0.0001-
0.00001 0.001 0. 1 10. 1000.

observations are in qualitative agreement with the
theoretical results. The values of model parameters o.
and h yielded by the best fit are o =900 (K)/T and
h =0.222 (kOe ')H.

VI. CQNCI, USIGNS

FIG. 5. The same as in Fig. 3 for 0.=10 and h =0.01, 0.2,
and 0.4.

where A,
&

is given by Eq. (53). The comparison is made in
Fig. 7 for two temperatures 8 and 10 K, when the contri-
bution of the quantum tunneling to the relaxation rate
may be neglected. As observed by Barbara et al. ' the
plot of log, o(1/Tll) vs 1/H at different temperatures as a
parameter may be approximated by a family of straight
lines with a focal point. Figure 7 shows clearly that these

1-5.

1.25..

T ej'
II

Tll

0.75-

0.5-

The analysis of Neel relaxation of single-domain mag-
netic particles has usually proceeded using the assump-
tion of Brown that except in the very early stages of an
approach to equilibrium the only appreciable time-
dependent term in the solution of the Fokker-Planck
equation [Eq. (14)] will be that corresponding to the in-
verse of the lowest nonvanishing eigenvalue. The state-
ment is certainly true in the case of zero applied field
/=0. However, when /&0, we have demonstrated that
the higher-order decay modes have a significant role to
play in the relaxation process. This eItect manifests itself
in two ways (i) in the large difference between TII and A, ,
for values of h )0. 15, (ii) in the existence of a high-
frequency loss which for small values of h displays itself
as a shoulder in the conventional low-frequency absorp-
tion peak for h =0 and then predominates as h increases.
We remark in conclusion that we have assumed
throughout (in accordance with the work described in
Refs. 2 and 3) that the field H is applied along the easy
axis. In practice the easy axis is in a random position so
that the calculation must also be carried out when H is at
an arbitrary angle g to that axis. The preliminary results
of such a calculation are described in Ref. 19.
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