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The symmetry lowering observed when passing from bulk samples to nearly two-dimensional thin
magnetic films requires new expressions of the free energy to be derived. A larger number of coefficients
must be included to describe the magnetocrystalline anisotropy and magnetoelastic coupling energies,
depending on the symmetries of both the magnet and the surface. Various cases will be discussed, in-

cluding amorphous and crystalline films. In addition, stresses due to the substrate impose in-plane
strains in the film. The experimental methods for investigating stress-induced anisotropy in thin films,
e.g., stress-modulated ferromagnetic resonance, or field-induced deflection of a magnetostrictive cantilev-
er, do not permit the determination of all the magnetoelastic coupling coefficients, contrary to the case of
bulk materials.

I. INTRODUCTION

An increasing amount of work has been devoted in the
recent past to the magnetocrystalline and magnetoelastic
anisotropies in multilayers and very thin films of metals
and alloys. ' Following Neel, surface and interface
effects have been taken into account by introducing sur-
face contributions to the anisotropy and magnetostriction
coefficients, which vary inversely with the thickness of
the magnetic films. ' ' However, the number of these
surface coefficients varies markedly with the actual sym-
metry of the surface, as mentioned in most of the previ-
ously cited works, ' but this fact is actually ignored in
a number of experimental papers, which deal with the
magnetostriction constant (A. or A,, ) as in isotropic bulk
substances.

Even when implications of the symmetry have been
recognized, the number of coefficients which appear in
the equations does not always correspond to the one pre-
dicted by group theory. For instance, only one surface
magnetoelastic coupling (SMC) coefficient B, has been
considered in Ref. 3, although the relevant symmetry has
been recognized to be uniaxial; only two thickness-
dependent magnetostriction coefficients are used in Ref. 4
for describing a (111) thin film of cubic symmetry, while
the actual symmetry is hexagonal (four coefficients need-
ed); in a recent paper, the first-order magnetoelastic cou-
pling coefficients B, and B2 for a fcc cobalt thin film have
been expanded as B; =B; +B /h, which implicitly as-
sumes that the number of SMC coefficients (B ) is the
same as the number of magnetoelastic coupling
coefficients in the bulk (B; ): This is often wrong except in
some specific cases, e.g., the (001) surface for a tetragonal
crystal or the (0001) surface for a hexagonal one, where
the local symmetry at the surface is the same as in the
bulk; note also that a factor of 2 is needed before B /h,
because a thin film has two surfaces, while in his original
theoretical paper, Neel considered only a semi-infinite

medium with one surface.
Even the notion of "surface magnetostriction'* is ir-

relevant to thin films which are necessarily firmly fixed
onto a substrate: Only the surface magnetoelastic cou-
pling is meaningful ' ' and must be clearly defined before
total confusion occurs.

Callen and Callen have given an illuminating descrip-
tion of the magnetoelastic coupling in single crystals,
based on group symmetry considerations, ' which pro-
vides an excellent introduction to the present work.
Later on, a slightly different normalization has been
adopted, which leads to much more simple and symme-
trical equations. " Now we shall extend their theory to
the case of very thin films and multilayers.

As mentioned above, surface effects do not necessarily
lower the symmetry: For instance, in hexagonal crystals,
a (0001) plane exhibits the same sixfold symmetry as the
bulk; only the intensity of the coefficients will differ at the
surface. On the other hand, in a cubic crystal where
a =b =c, a (001) surface exhibits the tetragonal symme-
try with a =b: In this case, the cubic coefficients are split
into several lower-symmetry coefficients, and additional
coefficients appear. The same is true for multilayers. For
instance, a (111) multilayer composed of two different
metals of cubic symmetry will exhibit hexagonal symme-
try at each interface, which increases significantly the
number of independent magnetoelastic coupling
coefficients.

II. MAGNKTOELASTIC COUPLING
IN AMORPHOUS THIN FILMS

There is no magnetocrystalline anisotropy in bulk
amorphous substances, and the magnetoelastic energy is
described by only two coupling coefficients, B ' for the
isotropic exchange magnetoelastic coupling and B ' for
the anisotropic Joule magnetoelastic coupling. Extending
the symmetrical notations first introduced by Callen and
Callen, the free energy density may then be written"
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where V is the volume, E, is the magnetostatic energy, the a, s are the direction cosines of the magnetization, and the
C"'s are the elastic coe%cients defined as

C =cii+2ci2 and C~=cii —ci2=2c4& (condition for isotropic material) .

The spherical symmetry is lowered to the cylindrical one in very thin films deposited onto a thicker planar substrate.
Letting (Ox, Oy ) be the film plane, one may write the free energy density for such a thin film:

E/V =b, ' —(E,„+s+E„)+b2'
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This latter expression must reduce to Eq. (l) when the thickness of the film, t&, increases and becomes very large as
compared with the one of a single layer: The only remaining anisotropy will be then the dipolar shape anisotropy.

For the sake of simplicity, we shall assume that a thin protective film of the same nature as the nonmagnetic thick
substrate has been deposited onto the magnetic film. As there are two identical faces to the film, we shall write, accord-
ing to Neel's model,

ks ba, 0 Ba,0+ ba, s ba, 0 b&a, s2 2 2
t 0 2 t 0f f f

ba, 2 ba, s2
tf

(4)
ba 2 —By 2+ ba s by 2 —By 2+ by s b»2 —By 2+2 2 2

2 2

Such relations define a surface magnetocrystalline an-
isotropy coefFicient k' and a few SMC coefIicients b,~'.
Rigorously, we should speak of interface efFects and of in-
terface magnetoelastic coupling coefIicients, since the na-
ture of the atoms in the substrate and the protective film
will inAuence those coefIicients; however, we shall retain
the widely accepted term of surface efFects, keeping in
mind that the surface coeKcients may difFer from one
film to another, depending on the nature of the substrate
and of the protective film. When comparing thin films
with bulk samples, one observes that B ' is simply
modified and By'2 is split into three difFerent coefIicients,
while b2' and b, ' are new coef5cients generated by the
symmetry lowering, as is k2.

The same kind of relations may be derived from the
coefIicients of elasticity:

c =C +—ca' c =—ca' ca =Cy+ c '2 2 2
11 11 & 12 12 & 22 22f f f

(5)
cy=Cy+ —cy',2 6sc =Cy+ —t." ' .

The bulk magnetoelastic coupling coefficients are writ-
ten B,~' where I =2,4, labels the degree of the harmonic
polynomial in the direction cosines of the magnetization,
p indicates the irreducible representation, and i appears
when the same representation occurs more than once.
The SMC coe%cients should have been written (b,i' )' (s
for surface), but it seems reasonable to simplify the full
notation, assuming the second-order terms (l =2) will
dominate higher-order terms (l =4, 6) in surface, as is the
case for magnetocrystalline anisotropy. It is then no
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longer necessary to recall the value of l =2.
The 1/t& dependence of the total magnetoelastic cou-

pling coefficients shown in Eqs. (4) has been already pre-
dicted theoretically and experimentally observed. ' ' It
must be mentioned here that elastic coefficients exhibit
also this 1/tI dependence, and we shall see that the
thickness dependence of any magnetoelastic effect may
arise from the combined thickness dependence of both
the magnetoelastic and elastic coefficients.

III. ENERGY DENSITY
FOR A STRAINED AMORPHOUS THIN FILM

The free energy (3) is no longer the relevant potential
energy since the film is magnetized and rigidly fixed to its
substrate. As opposed to the case of bulk samples which
work at constant stress, in-plane strains (E„„,E~~, and c, ~)
are imposed on the film by the thicker substrate. Minim-
izing Eq. (3) with respect to E„„E,, and s„provides

E,= —(b ' /c )a2a3, E,„=—(b ' /c )a&a, ,

bi' +&2hz' +(3/'1/2)(b, ' +&2hz )('a& —
—,')+(E„+E )[c»+(1/&2)c,2

—c22]
C

c 1, +2V 2C12 +2c 22

Substituting these equilibrium values in Eq. (3), one gets the following expression for the film energy density:

[b"+&Zb" + (3/&Z)(b "+V'Zb" )(a' — ) ]'E/V= —@0M H+ apl, —k2 a—23
——

c11+2i/2C 1, +2C„

c 11 +2i/2C 12 + 2C 22
3 3

E„+Eye b i (c,2+ v'2C22 )
—b2 (c 11 +V2C, 2 )

+b ' ' (s Eyy)(ai a2)+2E yaia2 '+
C11+2 2C12+2C22

3 C11C22 [C12 ] 1 1

4 c»+2 2c,2+2c22 2 2
(7)

Apart from the last three terms, which do not depend
on the orientation of the magnetization, this equation de-
scribes four contributions to the magnetic anisotropy in
thin films.

(i) The shape anisotropy (l20M, /2) favors the in-plane
magnetization; its origin is the long-range dipolar in-
teraction.

(ii) The magnetic anisotropy of an unstrained body (k2)
arises, as for the magnetoelastic coupling, from short-
range interactions, but it appears only when the symme-
try is broken at the interfaces of the film; it may be
markedly modified by the nature of the substrate and of
the protective film, and by the roughness of the sur-
faces. '

(iii) The third contribution (in a3 and a3) is a conse-
quence of the spontaneous magnetostrictive strains 'Ey„
E, , and c.„ofthe sample which are observed when E.

'Eyy and 8 are imposed . It is simi 1ar to the wel 1-known
magnetoelastic contribution to the first anisotropy con-
stant in cubic crystals, but there is a difference: The crys-
tals were allowed to expand freely, while in the present
case the interface is clamped. The a contribution is
somewhat complicated, and apart from a constant which
we neglect, it provides two terms in (a23 —

—,') and (a23 —
—,
' )2,

while the 5 one gives (a3 —a3). Actually, this third con-
tribution is usually very small compared with the shape
anisotropy for 3d metals and alloys. In the case of nickel
and neglecting surface effects, we have b1' =B ' =7
X108 Jm 3 b~2 $/2 Q~2 +f2 8X 106 Jm
c11=C =5X10" Pa, and c22=c~=c =C~=1.5X10"

I

Pa, the other coefficients being zero. For a thick nickel
film, this gives a magnetoelastic contribution of about—7X10 Jm for the a3 term and +3X10 Jm for
the a3 one, compared with the dipolar anisotropy, about
1.5X10 Jm . The inclusion of surface effects would
not change these orders of magnitude.

(iv) Last, the stress-induced anisotropy also contributes
to the uniaxial (a3 —

—,') term and may give an additional
in-plane anisotropy (a, —a2). Note that in-plane strains
may be related to the stresses through elastic coefficients
s,
' of the substrate, not of the film:

S S S S
Exx =$11%xx +$12%yy& Cyy $12%xx +$11%yy

S
Cxy

—
z S 44 Vxy

%'hen perfectly isotropic in-plane stresses arise from
differential thermal expansion or occur during the
preparation of the film, w„=~ and ~„=0and the in-

plane anisotropy disappears. On the other hand, when an
uniaxial stress, say, ~„,is applied to the substrate, one
may observe both in-plane and out-of-plane anisotropies,
thus providing more information concerning the magne-
toelastic coupling. Nevertheless, it is impossible to in-
dependently determine the two magnetoelastic coupling
coefficients of the same degree (l =0 or 2) belonging to
the o. representation. The a magnetoelastic coupling
coefficients appear always coupled with elastic
coefficients belonging to the same irreducible representa-
tion, thus defining the eff'ective coefficients
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b, '(c, +&2c ) b— '(c„+&2c,)
c„+2i 2c,~ +2c 22

The effective coefficient b ' will depend on the thickness in a way which may be derived from Eqs. (4) and (5):

B—i' C +(2ltf)[Cr&2b, C—b ' ]+(2ltf) (
.

)

C +2C~+(2/tf )[c»'+2&2c,z'+2czz']

and one sees that the thickness dependence of the elastic
coefficients also plays an important role in the thickness
dependence of this effective coefficient.

IV. EXPERIMENTAL METHODS FOR STUDYING
MAGNKTQKLASTIC EFFECTS IN THIN FILMS

We shall now discuss four experimental methods which
have been employed up to now for determining SMC
coefficients in thin films. In these four methods, phenorn-
enological rnagnetoelastic coupling coefBcients, namely,
b ~' and the effective coeKcient b ', may be experimen-
tally determined from in-plane and out-of-plane measure-
ments, and the SMC coef5cients may be derived from
their thickness dependence. In any case, the substrate
will be assumed to be thicker than the film.

In the first method, a film is strained by pulling on its
substrate, generally a polyimide ribbon or a glass
platelet: The magnetoelastic properties are deduced
from the induced magnetic anisotropy given by Eqs. (7)
and (8).

A similar and promising method has been recently pro-
posed by Bochi, Song, and O'Handley: Instead of
artificially created strains, the stress-induced anisotropy
is due to the spontaneous strains observed in as-prepared
films. These may be derived from the curvature of the
substrate after film growth.

We shall now present, in more details, the last two
methods, namely, the strain-modulated ferromagnetic
resonance (SMFMR) and the magnetoelastic cantilever,
since errors seem to have occurred in the recent past
when analyzing both these techniques.

The strain-modulated ferromagnetic resonance allows

)(
hz

H
t

F= poMH sin8c—os(P —PH)+ 3 cos26

+B(1—cos28)cos2$+ C',
with

,'@0M, + ,'k2+ —,'b—" (s» +s—',2 )o,
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4 11 12
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Al = —
—,
' Ai+3Bi), B~~~

= —
—,
' Ai —Bi

(12)

(13)

for the second geometry (h, in film plane).
The resonance frequency has been given by Smit and

Beljers
2 2

1 BF
y p~,'sin'a aa'

BF
away

BF
a@2

(14)

the rnagnetoelastic coupling coeScients to be derived
from the shift of the resonance frequency induced by ap-
plying a stress to any sample. ' This method has been
often applied to thin films.

We shall consider two geometries where the static
magnetic field Ho will lie in the xOy plane and the rf
magnetic field h„along the Oz axis (see Fig. 1): In the
first case, the film is perpendicular to h„and in the
second case, it lies in the xOz plane (see Fig. 1). In both
cases, uniaxial stress o. is applied along the Ox direction.
The substrate is strained, with the following in-plane

components E s 1 1 ~yy s 12~ and E y
start from Eq. (7), using these strain components, drop-
ping all the nonmagnetic terms and the magnetoelastic
contribution to the magnetic anisotropy (=b Ic) Let us.
assume the direction cosines of the static magnetic field

Ho to be [cosPH, sinPH, OI and those of the magnetiza-
tion [sin8cosP, sinB sing, costs]. The free energy density
is

First geometry Second geometry

PIG. 1. Two different possible orientations of the magnetiza-
tion (M), the static magnetic field (Ho), and the hyperfrequence
magnetic field (h, ) in strain-modulated ferromagnetic resonance
experiments.

FICr. 2. Definition of the axes in an experiment for observing
the deflection of a magnetostrictive bimorph.



51 DEFINITION AND MEASUREMENT OF THE SURFACE. . . 15 929

We may derive the analytic solutions in the following specific cases.
(i) For Ho~~Ox, we find the same resonance frequency in both geometries, namely,

2 + 11 12 11 122k 3b ' (s' +s' ) b—r' (s' —s' )

r Po&

(ii) For Mo~~Oy, in the first geometry, one gets

2br' (s' —s' )
o. . H— —g

PoMs
(15)

2
CO 2k2

Ho+M, + +
1' PoK

3b ' (s'„+s',~ )+br (s )i
—s )~ )

PoMs

2br (s' —s' )
o. . Ho+ 0

PoMs
(16)

Only the sign before b r' is changed with respect to (i).
(iii) For Ho ~~Oy, in the second geometry, one gets

2
CO 2k2

Ho —M, —
PoW

2k2
X H —M, —

PoMs

3b ' (s'„+s',2) b~' (s'„—s', 2)

PoMs

3b ' (s' +s', ~)+b ' (s'„—s', ~)

PoW
(17)

The elastic coefficients of the substrate (s'» and s'iz)
enter these formulas, contrary to several papers where
the resonance conditions have been expressed in terms of
the rnagnetostriction coefficients of the film (Ref. 6 and
references cited therein), which is incorrect: Here the
film is stressed through the substrate and cannot expand
freely.

We note that such resonance experiments do not pro-
vide all the magnetoelastic coupling coefficients, but only
the b ~' one and the effective b ' coefficient given by Eq.
(9).

A. De6ection of a bimorph

A bimorph made up of a magnetic film and its sub-
strate is known to bend under the influence of an applied
magnetic field. Klokholm has proposed that the
deflection be used to derive the magnetostriction
coefficient of the film recently, several authors have
corrected his analysis of this cantilever method. ' Again,
we must point out that it is incorrect to speak of magne-
tostriction since the active element is the film and the pas-
sive one is the substrate: only magnetoelastic coupling
coe+cients may be determined from such experiments.

Extending a calculation developed in our previous pa-
per for isotropic films where surface effects were not con-
sidered, ' we give the general expression of the deflection
for an isotropic thin film, starting from Eq. (7):

T

v. b

h, E, 2 1 —v,

where Oz is the axis perpendicular to the film plane, h&
and h, the thickness of the film and the substrate, respec-
tively, and v, Poisson's ratio of the substrate (see Fig. 2).
The deflection U, represents the vertical displacement of
any material point (x,y, z) in the film, which is assumed
to be horizontal and fixed at its end (0,0,0). The
deflection D is maximum at the other end, say, x =L.
For y =z =0, one finds

3 Af L 2b' 2 2 1D=— (1 —v, ) — +3b ' a3 ——2h'E ' v'2 ' 3

+(1+v, )b~ (a, —a2)
' .

Again, this experiment gives only the b~' magneto-
elastic coupling coefficient from the in-plane angular
dependence of the deflection and the effective b
coefficient from its out-of-plane angular dependence.

B. Case of a thicker Alm

9 h

2 h

3 h~+—
2 h

1 —v, vs 1
g a, 2 2+ 2+ 2 2

1 —v 3

1+v,
b ' I(x —y )(a, —a2)+4xya, a2J,

S

We consider here a film where surface effects become
negligible, but which remains, however, always much
thinner than its substrate. The film becomes isotropic,
thus giving

ba, O 1 —2v~ 1+vIpa, O a, ' and ga, 2 gy, 2 g /~2

&2 C +2Cr 3(1—vi) C +2Cr 3(1—vI)
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where vI is Poisson s ratio for the film. Equation (19) may then be rewritten

h& L2 (1—v, )(1—2v&) 3 (1+v&)D= 8 +—8r (1+v, )(a, —a )—(1—v, ) o. ——
h,i E, (1—vI) 2 (1—vt) 3

(21)

The static deflection associated with the isotropic ex-
change magnetoelastic coupling coefficient 8 ' will be
neglected hereafter. The

deflection

of the bimorph,
which depends on the magnetization direction, is zero in
an isotropic demagnetized state (( a; ) =

—,
' and

( a;ct ) =0). Otherwise, it is

8r, 2 h~L' (1—tv, ) ——,'(vg —v, )
D =2

II ~ hz 1 —
v~

for a =1

These are the two peculiar situations which may occur
often as a result of the very large spontaneous stresses
generally observed in thin IMms. The other extreme situa-
tion would be that of a film with anisotropic in-plane
stresses, creating an easy magnetization direction parallel
to Ox: Then one mould observe DII =0.

In any case, DII
—D~ remains always independent of

the initial state and provides 8~', provided the shear
modulus 6, of the substrate is known:

8r» hIL (1—v~v, ) —2(v~ —v, )

h2 1 VI

(22)

for o,2= 1,
(23}

gx» h~l.
D —D

hz

C. Conclusaon

(27)

8r 2 hfL (1 vfv, )+(v& —v, )
D

S S
1 vf

for as= 1 (out of plane) . (24)

8r.~ h&L (1 —vIv, )
D —DO=3 E h2

8r, 2 h~L (v~ —v, )
D~ —DO=3 E h 1 —vS S f

(25)

D~ —Do may exhibit the same sign as DII
—Do provided

Poisson's ratio of the film is larger than the one of the
substrate: This is diferent from the case of bulk samples

In the latter case, the magnetic moments lie in the film
plane (a3=0) and if there is no in-plane anisotropy
( a& ) = ( az) and the initial magnetostrictive deflection is
now Do = —Do/2. Then the defIections of the bimorph
observed when a magnetic field is applied in the plane are
very difterent:

h~L,
(1+v, )

h,

h~L,

h,

3 B~"
D —D' = —(D D' )=——

0 I 0
S

=3 8"
4 G,

(26)

One may verify that formulas (22) and (23) are just the
two given in our previous paper' and that
D~~+D&+Do =0 and D, =Do, when vI =v, (elastic isot-
ropy).

On the other hand, if large spontaneous stresses induce
a perpendicular magnetic anisotropy, the demagnetized
state is defined by either &x& =1 or o,3=0 depending on the
sign of the stresses and of the 8~' coe%cient. In the
former case, the initial magnetostrictive deflection is just
the one which would be observed if the film were magnet-
ized perpendicular to its plane, i.e., Do. Then the
deAection of the bimorph observed when a magnetic field
is applied in the plane becomes

Only one of the four magnetoelastic coupling
coefficients defined in Eq. (3), namely, br' (8r' for thick
films), may be determined by the four methods presented
above. The measurement of b ' requires the magnetic
film to be saturated under an applied magnetic field per-
pendicular to its plane. Although b ' is only an effective
coefficient, 6 ' and b~ will be the relevant parameters
for predicting the performances of any actuator or sensor
using magnetoelastic isotropic thin films.

V. LOWER SYMMETRIES

We shall consider now thin films of various sym-
metries: The lower the symmetry, the higher the number
of coefficients necessary for describing the thermodynam-
ic potential.

For instance, there are three magnetoelastic
coefficients (8 ', 8~', and 8' ) for a crystal belonging
to the CI cubic Laue group; the number of magnetoelas-
tic coupling coefficients describing such crystalline thin
fllllis Will be 7 (ba'0 ba, o ba, 2 ba, 2 by, 1 bs'2 alld bc, 2)

for a (001}thin film (tetragonal symmetry), 6 (b, , b2
b&' bz', b', and b~' ) for a (111) thin film (hexagonal
symmetry), and 12 (b, , b ' b b b b 1 b
b2', b3', b~', br', and b ' ) for a (110) thin film (or-
thorhombic symmetry). This latter case has been recent-
ly treated for magnetic multilayers within the microscop-
ic pair model, but exchange contributions (b, ', b2',
b 3' ) have not been considered because only pseudodipo-
lar interactions have been introduced. '

In the same way, there are seven magnetoelastic cou-
pling coefficients for a crystal belonging to the TI tetrago-
nal I aue group: g ' gz', g&*, gz', g~'2, g~', and8'; the same is true for TI crystalline thin films cut in a
(001) plane, since cutting this crystal in such a plane does
not lower the symmetry. However, they will be 12 for
( 100) and ( 110) planes (orthorhombic symmetry).

A (0001) thin film for a crystal belonging to the HI
hexagonal Laue group will exhibit six coefficients since
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the symmetry will remain the same as for the bulk ma-
terial.

The complete description of the magnetoelastic cou-
pling energies relevant to these symmetries as well as all
the above coefficients can be found elsewhere. " For any
symmetry, surface effects may split the coefficients
relevant to the symmetry of the bulk material and/or add
new coefficients, in a way quite similar to the one de-
scribed above for isotropic thin films. For each specific
case, it is necessary to introduce the condition of constant
in-plane strains and then derive the equilibrium energy:
Again, effective magnetoelastic coupling coefficients will
appear for the modes belonging to the a(I, ) representa-
tion.

Contrary to the case of bulk crystals, the exchange
magnetoelastic coupling coefficients (b; ) are difficult to
detect from anomalies in thermal expansion as a result of
the huge stresses which appear when heating the samples,
which are due to the differential thermal expansions of
the film and the substrate.

VI. MULTILAYERS

To illustrate the case of a crystalline magnetic film, we
shall now deal with a multilayer consisting of a succes-
sion of magnetic and nonmagnetic (001) films of cubic
symmetry. There are 2p interfaces, between p magnetic
films (thickness t ) and p nonmagnetic ones (thickness
t„),taking into account the protective film (thickness
t„also) and the nonmagnetic much thicker substrate.
The ratio u of the magnetic volume V to the total
volume Vis u =V /V=t /(t +t„).The total thick-
ness of the multilayer, without the substrate, is equal to
p (t +t„)and remains small as compared with the
length and width of the sample.

The symmetry of such a film is tetragonal. Choosing
the [001] direction as the Oz axis, we may write the free
energy density for such a multilayer divided by u, i.e., the
energy per unit volume of the magnetic part of the
sandwich:

E/V =b, ' —(E„+E+E„)+bz' e„—2 3

~xx + ~yy

~xx+~ +~zz ~xx+&+ ~2 k +ba2 xx yy zz +ba2 xx yy

2 Pu"-s 2 1
'

Q2 2 zz
1

CX 3 3

+ bi'' (E „——E )(a& —a2)+2b ' E aia2+2b' (E~,aza3+E,„a3ai)
2

+—c»(s„„+E~~+e„)+ c,2(E„+E~+e„)

2

2 4 xx yy (28)

All the above coefficients may be expressed in terms of surface coefficients, as for isotropic substances [see Eqs. (4)
and (5)]. One gets

ks ba, O Ba,O+ ba, s ba, O b&a, s2 2 2
2 9 1 0 ~ 2 t 0

m m m

ba2 bas ba2 By2+ bas by2 By2+ bys2 2 2

tm

b~'2=B~' + b6' b~' =B~' +-—— b~' c =C + c '2 2 2
t tm

ca = ca's ca —Cy+ ca's cy=Cy+ cy= 2 2 2
12 12 22 22

m m m

c6—Cc+ 6,s E. —CE, + c E, s2 2
t tm

(29)

It is preferable to express the energy density with respect to the magnetic volume rather than to the total volume, be-
cause the B ', By', B', C, Cy and C' coefficients remain those of the bulk pure magnetic material.

As for the isotropic thin film, we shall consider that E'xx E'yy and Ezy are imposed by the substrate and derive the
equilibrium values for the remaining strain components. We find e, = —(b' /c')aza3, e, = —(b'* /c')a3ai, and for
E„,the same expression as Eq. (6). Substituting these equilibrium values in Eq. (28), one gets
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[b ' +&2b ' +(3/&2)(b ' +V2b )(a ——')]
F. /V = p—oM, k—

2
. a3 ——

c» +2&2C,2+2c22

[bE,2]2
(ai —a3)

C

a a a 2

+—(E„„+E) +—cr(E,„—E ) +c s
3 2 CllC22 [C12]
4 c ii+2 2c,2+2c22 4

(30)

One finds again various contributions to the magnetic anisotropy, namely, the dipolar shape anisotropy, the magnetic
anisotropy of the unstrained body (k2), and two magnetoelastic contributions to the magnetocrystalline anisotropy (in

a& and a3).
The stress-induced anisotropy exhibits in-plane and out-of-plane components, given by the above equation, where the

strain components c,„„,e~~, and s„~are given by Eq. (8). As for isotropic thin films, the magnetoelastic coupling
coefficients belonging to the a(l, ) representation may not be determined independently, but only the effective
coefficient b given by Eqs. (9) and (10) is associated with out-of-plane anisotropy. On the other hand, for in-plane
stress-induced anisotropy, two coefficients must be considered now, since this anisotropy will be diff'erent for a stress ap-
plied along a [100]direction (br' coefficient) or a [110]direction (b coe'fficient). Hence, for a (001) thin film of cubic
symmetry rigidly fixed onto a substrate, three coefficients are relevant to the problem of stress-induced anisotropy, b ~',
b ', and the e6'ective b ' coefficient, and not only two as sometimes found in the literature.

VII. CONCLUSIONS

In the framework of the theory of Callen and Callen of magnetostriction, the thermodynamical potential relevant to
thin films rigidly fixed onto a thick substrate has been given for various crystalline symmetries and crystallographic
planes. The number of SMC coefficients is larger than the number of magnetoelastic coupling coefficients of the bulk
material, but only a few of them contribute to the magnetic anisotropy induced by in-plane stresses. The SMC
coefficients belonging to the l, (a) representation contribute to the energy density only through linear combinations
(eff'ective coefficients). A magnetoelastic contribution to the magnetocrystalline anisotropy arises from the minimiza-
tion of the free energy under the boundary conditions at the interface with the substrate: It provides a contribution to
the out-of-plane uniaxial anisotropy.

SMC coefficients may be derived from the 1/t dependence of the stress-induced anisotropy: This requires excellent
samples to be prepared with densities as high as possible, because porosity would reduce magnetization, introduce other
surfaces, and hence modify also the values of the magnetoelastic coupling coefficients. Evidently, the 1/t dependence
of the magnetoelastic coupling coefficients must not be masked by any spurious thickness dependence of the magnetiza-
tion.
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