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A recently proposed density-matrix renormalization group is used to investigate the ground-state
properties of the Kondo-necklace Hamiltonian. It represents a chain of XY interacting pseudospins that
are Kondo coupled (J) to localized spins. The spin gap as well as the short- and long-range spin correla-
tion functions are consistent with the existence of a smooth crossover at J =~0.5. For J <0.5, the gap de-

pends exponentially on J ~!/?

and the in-plane correlation function of the localized spins shows RKKY

oscillations while the z one falls monotonically in contrast to the XY behavior. The correlation length
diverges at J =0. For J 20.5, the gap is linearly increasing with J, and the system is made of nearly in-

dependent singlets.

I. INTRODUCTION

Alloys of heavy-electron materials such as Ce, Yb, or
U are found to exhibit a variety of low-temperature prop-
erties including antiferromagnetism, superconductivity,
Kondo-insulator, and metal' ™3 At these low tempera-
tures, the physical properties are nearly those of heavy-
fermion liquids. The local moment and the conduction
electron do not exist independently. Such a situation has
also been observed recently in an organic chain com-
pound where the localized spin degrees of freedom are
strongly coupled to those of itinerant electrons.*> The
physical picture which describes these properties is that
there is a competition between magnetic ordering and the
Kondo effect. When valence fluctuation effects are
neglected, the standard Hamiltonian for this problem is
the Kondo lattice model (KLM), which is a generaliza-
tion of the Kondo one-impurity problem. This Hamil-
tonian is written as

Hyim=—1 3 (¢h1o¢,tH.c)HT T8y, (1)
1o i

where the conduction electron spin density on site i is s;,

and the f electron spin density is s;.

The KLM has been widely studied in the last few
years, especially at half filling. Monte Carlo calculations®
as well as exact diagonalization,’ real-space renormaliza-
tion-group® approaches have led us to conclude that there
is an unstable critical point at J=0 while the critical
points J == o0, corresponding to the local antiferromag-
netic and the ferromagnetic cases, respectively, are stable.
Thus the ground state at J =0 is degenerate and a gap is
opened for infinitely small values of J. Yu and White’
have recently reached the same conclusion by means of a
new version of the real-space renormaliza-
tion-group technique. Their results also reveal that the
spin gap is always smaller than the charge gap. Thus the
low-energy properties of the KLM are driven by spin ex-
citations rather than charge excitations. These con-
clusions are in qualitative agreement with the Doniach
ansatz'® which neglected the charge degree of freedom of
the conduction electron. His Hamiltonian, called the
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Kondo-necklace model (KNM), cannot be directly relat-
ed to the KLM but is expected to retain the fundamental
competition between a magnetic state driven by the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
and a nonmagnetic state controlled by the Kondo mecha-
nism. The KNM reads

Hynm=w 3 (675 +817, )+ s, 2
i i

We set w=1 in the rest of the present study. A pseu-
dospin chain t; is here coupled to an ensemble of local-
ized spins s;. These are all spin 1. The rotational invari-
ance of the KLM Hamiltonian is lost in the KNM. How-
ever, Doniach has calculated the weak-coupling limit and
found that the scaling behavior of an individual spin s; in
the chain of pseudospins is equivalent to that of the one-
impurity Kondo Hamiltonian.

We first review the results of previous calculations of
the physical properties of the KNM. The first treatment
of the KNM by Doniach'® in the mean-field approxima-
tion led to the observation of a critical value of J =J,=1.
It described a transition from an antiferromagnetic state
below J, to a Kondo state above. The order parameter
below J, was observed to be proportional V1-J CZ, a typ-
ical mean-field behavior. However, it is well known that
the mean-field approach is not valid for such a system be-
cause of the important of quantum fluctuations at 7=0
K. Jullien, Fields, and Doniach!! went further by using a
real-space renormalization-group method but obtained
qualitatively similar conclusions. They calculated end to
end correlation functions and found them to have finite
value, even for an infinite lattice system. This indicated a
long-range order in the small-J phase. They found
J.=0.375. However, this method leads to poor accura-
cy. For instance, the ground-state energy at J =0 agrees
with the exact XY value only within 9-20%. It is also
known that the XY Hamiltonian does not exhibit any
long-range ordering. Jullien er al.,® in a subsequent cal-
culation, concluded the absence of a long-range order for
all values of J, yet maintained their previous conclusion
concerning the existence of a critical point at J=0.375.
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Scalettar et al.'? carried out a Monte Carlo calculation
of the KNM up to N=16 sites. They extrapolated the
ground-state energy to the N — o limit with an estimat-
ed error of 0.5%. Their results contradict the real-space
renormalization-group conclusions. The phase transition
between the XY state and the Kondo state takes place at
J.=0. This study, however, is restricted to small lattice
sizes. An accurate calculation for large lattices of such
physical properties as the energy gap between the singlet
and triplet states or the correlation functions is still
necessary. We point out, concerning the singlet-triplet
gap, that an attempt has been recently made by Santini
and Sélyom to calculate it. They believe that a transition
exists at J, =0. 24." Finally, Strong and Millis'* proposed
a generalization of the KNM in which they introduced
an anisotropic Heisenberg coupling within each of the
two chains. The calculated the phase diagram of these
two coupled chains system using a boson field approach.
They found that a gap opens for nonzero values of the in-
terchain Kondo coupling within a certain range of the in-
trachain couplings. This gap behaves as J¢ where «a is a
function of the couplings. This phase diagram agreed
qualitatively with the existence of a crossover, in the
KNM, between a Kondo and an XY phase. Thus, the
question is still open whether the KNM shows a ground-
state phase transition or not.

In this paper, we apply a new version of real-space re-
normalization group to the KNM. This technique
developed by White!* differs fundamentally from the ver-
sion used in previous studies. In the standard real-space
renormalization-growth approach, one diagonalizes the
Hamiltonian matrix between the states of two coupled
hlocks of spins and then keeps its lowest-energy states to
dc’ne a new block of spins. This procedure has been
shown to mistreat the boundary conditions which play an
important role.!® Indeed, although one couples two
blocks at each iteration, this pair of blocks remains isolat-
ed from the rest of the chain. This is too constraining on
the possible spin states of this superblock. White has
shown that, in such cases, an accurate description of the
system is given by the highest eigenvalues of the density
matrix of the block instead of that of the Hamiltonian.
The method of White, the density-matrix renormalization
group (DMRG), has been successfully tested on Heisen-
berg chains and leads to extremely accurate results. For
instance, the ground-state energy of both s=1 and s=1
chains has been obtained with up to nine-digit precision.

We have calculated the ground-state energy, the spin
&2p, and the short- and long-range correlation functions
for iattices of up to a few hundred sites, keeping up to 80
states per block. We varied J from O to 5. We obtained
typical truncation errors of 107° at J =0.1 and less than
10710 at J=5. We also used the infinite system method
with open boundary conditions. This approach, although
less accurate than the finite system method,!’ allowed us
to calculate satisfactorily the behavior of large systems.
Our results elucidate the nature of the ground state of the
KNM. The system is characterized by two regimes. For
low values of J, medium-range RKKY oscillations are
seen on the localized spins while the conduction spins
will show XY oscillations. As the coupling increases,
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these oscillations decrease, eventually driving the system
into a Kondo state in which the localized spin are drawn
into singlet pairing with the conduction spins.

II. GROUND-STATE ENERGY

Let us first examine the ground-state energy per site
versus J, for 0=J =<5. For this calculation, we form the
density matrix by projecting only the ground-state wave
function.!® We obtain the value —0.3183 at J=0.
Comparing this value to the exact result of —1/7
= —0.318 31 allows us to estimate the quantitative error
in our calculation. It is found to be less than 0.003%,
better than the best extrapolation of the Monte Carlo cal-
culations. For large J, the ground-state energy tends to
—3J. For example, we have obtained the value —3.77

for J=5. This result is consistent with the strong-
coupling expansion
3 1 |1
E=—=J|14+— |=
4 12 |J @)

One can note the high accuracy of the results. We will
see later that despite this accuracy, the determination of
the ground-state character is not straightforward.

III. SINGLET-TRIPLET GAP

The study of the gap is also important in order to un-
derstand the nature of the ground state. We show in Fig.
1(a) the value of the spin gap A versus J, for 0<J <1.
The gap is defined here as the energy difference between
the states having total spin S of 1 and 0. In the DMRG
algorithm the states are labeled by the total z component
of the spin S,; the state with S =1 corresponds to the tri-
ply degenerate state having S, equal to 0, 1, or —1. In
order to improve the precision on the gap, we have built
the density matrix projecting not only the ground state
but also the first excited state. We have noticed that the
truncation errors are in this case slightly larger. But this
method has the advantage of leading to a better estima-
tion of the gap because at each step, we keep the informa-
tion on the first excited state. In the region J >0.5, the
truncation errors are very small. We retrieve the results
of previous calculations in this range: the gap is linear.
But as J decreases, the accuracy also decreases and the
gap gets smaller; thus the calculation in the interval
J <0.5 becomes extremely delicate. To our knowledge,
the only numerical study which has tried to clarify the
gap behavior in this range of parameters is that of Santini
and Sélyom.!? These authors have studied clusters con-
taining up to ten sites and have extrapolated their results
to infinity. They came to the conclusion that the gap
vanishes in a Kosterlitz-Thouless fashion at the critical
value J,=0.24. This was supported by the fact that at
J=0.325, the gap is equal to 4X 1073, at J=0.3, it is
only 1074, and below J=0.3, it fluctuates between very
small positive and negative values. We have not found
such a behavior. Although our study is restricted to 100
sites, it is reasonable to think that if the tendency found
by Santini and Sélyom exists, it should appear at this
number of sites. But as we found, there is no large shift
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FIG. 1. (a) Spin gap A versus the coupling J. (b) Log(AJ 2) as
a function of 1/V'J for J=0.2, 0.225, 0.25, 0.275, and 0.3.

between J=0.325 and J=0.3 where the gap takes, re-
spectively, the values 0.003 67 and 0.00242. We note
that the value 0.004 found by Santini and Sélyom at
J=0.325 is consistent with ours. We arrived at the con-
clusion that for 100 sites, the gaps are close to that of the
infinite system for those values of J of interest here. It is
also interesting to study the mathematical behavior of the
gap. We verified [see Fig. 1(b)] that it can be satisfactori-
ly fitted by J ~2exp[ —1/V'J ] as Ref. 12 suggested.
Tsunetsugu et al.” have recently calculated the spin
gap of the half-filled KLM by means of exact diagonaliza-
tion and infinite lattice extrapolation. The spin gap has
two regimes. In the small coupling case, the spin gap
behaves as A «<exp[—cst/J]. A similar behavior is
found in Ref. 6 where the Gutzwiller results for the sym-
metric Anderson lattice have been related to the Kondo
lattice by means of the Schrieffer-Wolff transformation.
In the strong-coupling case, the ground state is a set of
on-site singlets. The lowest excited state is a triplet
which can be obtained by breaking up one of the singlets.
The energy cost in this process is J since the spin gap
represents the energy of a singlet to triplet transition.
The gap here behaves as A «<J. These results can be com-
pared to ours. The change in the gap regime from ex-
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ponential to linear behavior occurs near J=0.5. Since
the KNM is expected to describe the spin excitations of
the KLM, its gap may be expected to have similar
behavior. So we conclude that in spite of the breaking of
symmetry introduced in the KNM, both KLM and
KNM belong to the same class of universality.

IV. CORRELATION FUNCTIONS

A. Short-range correlations

We have chosen to illustrate the short-range order by
calculating correlation functions such as G,=(s;s; ),
G,=(tit; ), G,=(s%53), G,=(tit3), G!=(s{s; ),
G/=(t{ty ), G;=(sis3), G,=(tit3), Gp={sfsf),
and G,;=(tit?). These are plotted in Figs. 2—4 as a
function of J or of distance. The short-range gradually
falls to zero above the value J=0.5, the value at which
we have already seen the change of regime in the gap. It
should be noted that the equal-distance correlation func-
tions for spins and pseudospins become nearly equal
around this value of the coupling. Finally, the localized-
delocalized spin correlation function G, ={s-t) (not il-
lustrated) rapidly decrease as J increases, approaching
the value —2which is consistent with the fact that at
strong J, the system condenses into independent singlets
on each site. For instance, we obtain —0.25, —0.69, and
—0.748 for J equal to 0.1, 1, and 5, respectively.

For J <0.5, the spin correlation functions are observed
to be quite different from the pseudospin ones. The latter
rapidly tend to the XY chain values as J decreases. The
former ones, as borne out by Figs. 3 and 4, are typical of
a RKKY chain. Indeed, we have simulated a small chain
of spins interacting through the RKKY interaction gen-
erated by the pseudospins and found the behavior of G
to have the same characteristic monotonic decrease with
distance as the J=0.1 curve of Fig. 4. This correlation
function proves to bear the signature of RKKY intra-
chain correlations in the KNM for small J. Such a
behavior can be understood by the fact that the effective
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FIG. 2. In-plane nearest-neighbor and next-nearest-neighbor
correlation functions, G¢, versus J, for the conduction spin
chain (C=tand t') and the localized spin chain (C=s and s’).
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FIG. 3. The z component of the nearest-neighbor and next-
nearest-neighbor correlation functions, Gz, versus J, for the
conduction spin chain (C=t) and the localized spin chain
(C=sands’).

coupling between the localized spins is ny~(—1)"‘1/
(i)71/% in the plane, and J, =0 if i is even and J, ~1/i? if
i is odd. This behavior should persist to distances of the

order of the correlation length £ < A7 1.

B. Long-range correlations

Although we have obtained satisfactory results on cal-
culating energies or short-range correlation functions at
J =0, when w =1 between all the sites, we were unable to
evaluate the asymptotic behavior of the correlation func-
tions with equal accuracy. In order to avoid end effects,
we first build our lattice up to 5O sites and then we start
the calculation. We have calculated intersite correlations
for distances up to 25 lattice sites. In the XY chain, the
correlations functions decay as i ~!/2, i being the distance
between the pseudospins, but we found local values of the
exponent which are typically 0.52 at i =10 and 0.60 at

0.00
-0.01

-0.02

Gezi

-0.03

-0.04

-0.05 1 | 1 | 1 | L 1 L

FIG. 4. The z-component correlation function, G¢z;, of the
conduction spin chain (C=t) and the localized spin chain
(C=5), as a function of the interspin distance i for J=0.1.
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TABLE 1. The first six calculated values of the transverse
correlation functions in an XY chain of length 100 versus the ex-
act values. The values of the exact result are taken from Ref.
18.

i Gtiexa Gricalc
1 0.3184 0.3177
2 0.2026 0.2027
3 0.1720 0.1715
4 0.1460 0.1461
5 0.1322 0.1318
6 0.1194 0.1197

i=20. This is not due to the precision of the method but
rather to the effect of the open boundary conditions
which induce a strong alternation of the bond strength
near the ends on an s =1 system.!® These alternations de-
cay very slowly as the size increases. But they can be
suppressed by the introduction of smooth boundary con-
ditions.!” In our case, we artificially set w =0.18 between
sites at the end of the chain, and we obtained a very good
agreement with the exact result. The calculated values of
the correlation functions reproduce the exact one (see
Table I) at up to 7X 10~ % We have noticed that these os-
cillations become negligible at nonzero values of J, even
at J=0.01, so that the trick used above is not necessary
in the case J >0. We plot in Fig. 5 the results for the in-
plane correlation functions G;=(sss;,” ) where the s,
spin is taken in the middle of the chain. It presents
RKKY antiferromagnetic oscillations which slowly van-
ish as the distance increases. But, as already observed in
Fig. 4, there are no oscillations for small J in the z direc-
tion and the decay with distance is more rapid.

It is interesting to look at the decay of the correlations
as a function of the distance. In the Monte Carlo calcula-
tions,'? the authors found that the exponent of a power-
law decay increased from the value 0.5 at J=0. This
would have precluded any possibility of a ground-state
Kosterlitz-Thouless transition as proposed in Ref. 13
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FIG. 5. In-plane correlation function Gg; between two local-
ized spins as a function of the distance. One of the spins is tak-
en in the middle of the chain.
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FIG. 6. The calculated exponent 7 for the conduction spin
chain (diamonds) and the localized spin chain (circles), for an
algebraic decay versus J of the in-plane correlation function.

since the power-law exponent must equal 0.25 at the tran-
sition. We have obtained the in-plane exponents from
our 25-site correlation function calculations. Figure 6
shows that our results disagree with those of the Monte
Carlo calculations. Starting from J =0, the exponent de-
cays until J=0.1 for both the conduction and localized
spin chains. It then increases. Note that it takes the
value 0.25 at a coupling value of roughly J=0.27. The
reason for the discrepancy surely has to do with the
much larger chain lengths we were able to use. 25 Sites is
still, however, shorter than the correlation length &« A~}
for J <0.3. We have thus calculated the RKKY quan-
tum regime exponents and cannot observe the asymptotic
exponential behavior caused by the opening of the small
gap. Interestingly enough, we obtain a “‘critical” cou-
pling value close to J,=0.24 of Ref. 13. This may well
point to a natural tendency for a Kosterlitz-Thouless-
type instability of the quantum regime, thwarted by the
Kondo mechanism.

V. CONCLUSION

The DMRG method has allowed us to investigate the
properties of the KNM. This method shows better accu-
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racy than the Monte Carlo calculations or the standard
real-space renormalization group (RG). The study of the
KNM shows three interesting values of the coupling:
+ o0, 0.5, and 0. The point + oo is a stable fixed point
where the system consists of on-site independent singlets.
The point J=0 is the XY limit where the system shows
algebraic magnetic order. The question was to know if
there is a phase transition at a finite value of the cou-
pling. In their previous RG calculations, Jullien et al.
have concluded the existence of a phase transition at
J=0.5 because they found no gap below this value. But
then the examination of the correlation functions by
Scalettar, Scalapino, and Sugar!? by means of the Monte
Carlo method indicates an absence of a critical behavior
at finite J. Our results indicate that the ground state is a
singlet for all nonzero values of J. This shows that the
system does not present a phase transition at finite J.
Thus our results agree with the Monte Carlo conclusion
that the transition occurs at J =0. But we emphasize the
fact that the Monte Carlo conclusions were based on sys-
tem sizes which were too small to capture certain
behaviors in the thermodynamic limit. The point J=0.5
can be seen as the onset of a smooth crossover from the
small-J RKKY medium-range correlation regime to the
Kondo regime. Indeed, the small-J regime in which
RKKY oscillations dominate is not a real antiferromag-
netic state with a long-range order (LRO). It is well
known that in a one-dimensional system, the transverse
fluctuations tend to reduce a LRO to a quasi-LRO which
still have a collective mode and a correlation function
that shows algebraic decay. Furthermore, in the case of
the KNM, our results display the fact that this quasi-
LRO is inhibited by the presence of a small gap which is
probably a reminiscence of the singlet-triplet splitting
found at higher values of J. Finally, we noted the analo-
gy between the Kondo necklace and the Kondo lattice
models.

ACKNOWLEDGMENTS

The authors wish to thank Liang Chen for enlightening
discussions. They also benefited from grants of the Natu-
ral Sciences and Engineering Research Council (NSERC)
of Canada and the Fonds de formation et d’aide a la re-
cherche (FCAR) of the Québec government.

1G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

2P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham, and J. W. Wil-
kins, Comments Condens. Matter Phys. 12, 99 (1986).

3G. Aeppli and Z. Fisk, Comments Condens. Matter Phys. 16,
155 (1992).

4M. Y. Ogawa, B. M. Hoffman, S. Lee, M. Yudkowsky, and W.
P. Halperin, Phys. Rev. Lett. 57, 1177 (1986).

5C. Bourbonnais and L. G. Caron, Europhys. Lett. 11, 473
(1990).

6R. M. Fye and D. J. Scalapino, Phys. Rev. B 44, 7486 (1991).

7H. Tsunetsugu, Y. Hatsugai, K. Ueda, and M. Sigrist, Phys.
Rev. B 46, 3175 (1992).

8R. Jullien, P. Pfeuty, A. K. Bhattacharjee, and B. Cogblin, J.
Appl. Phys. 50, 7555 (1979).

9C. C. Yu and S. R. White, Phys. Rev. Lett. 71, 3866 (1993).

10§. Doniach, Physica B&C 91B, 231 (1977).

1R, Jullien, J. N. Fields, and S. Doniach, Phys. Rev. B 16, 4889
(1977).

12R. T. Scalettar, D. J. Scalapino, and R. L. Sugar, Phys. Rev.
B 31, 7316 (1985).

13p, Santini and J. S6lyom, Phys. Rev. B 46, 7422 (1992).

145, P. Strong and A. J. Millis, Phys. Rev. Lett. 69, 2419 (1992).

158, R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48,
10 345 (1993).

165, R. White and R. M. Noack, Phys. Rev. Lett. 68, 3487
(1992).

17M. Vekic and S. R. White, Phys. Rev. Lett. 71, 4283 (1993).

18E, Lieb, Th. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16,
407 (1961).



