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The Raman light scattering from magnons in exchange-noncollinear many-sublattice magnets of
diferent symmetry was studied theoretically. It is shown that in contrast to magnets collinear in the ex-
change approximation the intensity of scattering from the exchange magnons in exchange-noncollinear
magnets is determined by the magneto-optic constants of the exchange nature, and does not contain any
small factors. This intensity can be higher than the one for the acoustic magnons. The inhuence of the
dipole-dipole interaction on the magnon states and selection rules for the Raman light scattering was in-
vestigated. Possible geometries of the light scattering from the longitudinal and transverse magnons are
found.

I. INTRODUCTION

Exchange-noncollinear magnets may be referred to as
many-sublattice magnetic crystals in which the spins of
sublattices form a noncollinear magnetic structure in the
exchange approximation. Investigations of magnetic
properties of exchange-noncollinear many-sublattice
magnets attract increasing interest at present. ' ' Three
examples of exchange-noncollinear magnets of different
symmetry will be considered in the present study. The
four-sublat tice exchange-noncollinear antiferromagnet
UO2 is one of the most peculiar representatives of such
magnets. A unique noncoplanar magnetic ordering when
the sublattice spins are oriented along the spatial diago-
nals of the cubic crystal lattice takes place in this crystal.
A wide variety of possible coplanar exchange-
noncollinear magnetic structures may be found in the
six-sublattice hexagonal perovskites with the composition
RMn03 (where R is a rare-earth ion). A coplanar
exchange-noncollinear magnetic structure has also been
revealed in the four-sublattice antiferromagnet Nd2cuO4.

Exchange-noncollinear many-sublattice magnets pos-
sess, as a rule, a higher magnetic symmetry than collinear
ones. The preferred direction given by the equilibrium
magnetization orientation as in ferromagnets or by the
equilibrium orientation of the antiferromagnetism vector
as in two-sublattice antiferromagnets is absent for the
magnets under consideration. Due to this circumstance
it is possible to expect a more complicated and rich pic-

ture of possible spin-reorientation phase transitions in
these magnets. " It was shown in Ref. 7 that the sym-
metry of some exchange-noncollinear antiferromagnets
allows for the existence of linear magnetoelectric and
piezomagnetic effects of an exchange nature.

It is necessary to note that even in magnets collinear in
the exchange approximation the breaking of the collinear
alignment of magnetic moments leads, as a rule, to new
phenomena. This breaking of the collinearity may be
caused by both the Dzyaloshinskii-Moriya interaction
and the external magnetic field. For example, a contribu-
tion to the scattering tensor caused by the isotropic light
scattering mechanism of the exchange nature has been re-
vealed in antiferromagnetic EuTe in Ref. 19. The light
scattering in a strong magnetic field which leads to the
canting of the sublattice magnetizations has been studied
in Ref. 19.

Dynamic properties of exchange-noncollinear magnets
are also different from those of magnets collinear in the
exchange approximation. For example, the distinguish-
ing feature of exchange-noncollinear magnets is that the
number of acoustic spin-wave modes is equal to 3
whereas for magnets collinear in the exchange approxi-
mation this number is equal to 2. The acoustic spin-wave
modes may be referred to as oscillations of the sublattice
spins for which the activation energy tends to zero in the
exchange approximation. The type of precession of the
sublattice spins during which the magnetic structure of
the crystal rotates mainly as a whole, without changes of
the angles between the spins forming this magnetic struc-
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ture, corresponds to the acoustic spin-wave modes. In a
crystal with n magnetic sublattices the remaining n —3
modes of the magnetic resonance spectrum will be re-
ferred to as the exchange spin-wave modes. The activa-
tion energies of these n —3 modes are determined by
different combinations of intersublattice exchange in-
tegrals. These activation energies remain finite in the ex-
change approximation. The exchange magnons are
analogous to the optical phonons. During the oscilla-
tions corresponding to the exchange magnons the sublat-
tic;e spins precess in antiphases and the magnetic struc-
ture of the crystal does not rotate as a whole.

It is necessary, however, to distinguish the notions of
optical and exchange magnons. The term "optical mag-
nons" has been used recently for the excitations which
exist in magnetic crystals containing ions with the spin
S ~ 1 and having a strong one-ion anisotropy. These
excitations correspond to transitions with nonconserva-
tion of the spin projection. The energies of these excita-
tions may be of the order of the exchange energy. The
presence or absence of the optical magnons is in no way
connected with the many-sublattice structure of a mag-
netic crystal. They can, for example, exist even in fer-
romagnets which have only one magnetic ion in the unit
cell. However, it is necessary to note that in earlier pa-
pers published in the 1960s and 1970s those magnons
which we call the exchange ones were also called optical
magnons due to their analogy with the optical phonons.

Investigation of the exchange magnons gives direct in-
formation about the values of the intersublattice ex-
change integrals. At the same time it provides additional
data on the magnetic structure of the crystal; for exam-
ple, on the angles of canting of the spins of the sublat-
tices.

By now the exchange modes have been observed in
some many-sublattice magnets by means of different ex-
perimental methods. Restricting ourselves to many-
sublattice antiferromagnets, one can say that the ex-
change modes have been revealed in n-FezO3 by inelastic
neutron scattering. ' The exchange modes in CsMnF3
manifested themselves in an indirect way by taking part
in the exciton-magnon absorption. Later the total
spin-wave spectrum of this crystal including the exchange
spin waves was studied by inelastic neutron scattering.
The antiferromagnetic resonance of the exchange modes
has been observed in the following antiferromagnets: in
the three-dimensional CuC12. 2H2O in Ref. 24; in the
quasi-two-dimensional (NH3)2(CHz)3MnC1~ in Ref. 2S; in
the exchange-noncollinear CsMnBr3 in Ref. S; and in a
number of other antiferromagnets.

By means of the Raman light scattering method the ex-
change magnons have been observed only in the ferri-
magnet Fe304 in Ref. 26. We shall show further that in
Ref. 27, which dealt with Raman light scattering in UOz,
the scattering from the exchange magnon has actually
been observed. However, the authors of Ref. 27 did not
give such an interpretation to the results obtained. The
known attempts to reveal the exchange magnons in the
collinear antiferromagnets a-Fe203 in Ref. 28 and
NaNiF3 in Ref. 29 did not lead to successful results. As
was theoretically shown later, the intensity of scattering

from the exchange magnons caused by the ordinary
mechanisms (without taking account of dissipation) is
smaller than the intensity of scattering from the acoustic
magnons both in three-dimensional magnets of the
RFe03 type and in quasi-two-dimensional magnets of
the LazCu04 type. ' These intensities may be of the same
order of magnitude only in the presence of an external
magnetic field of particular value and orientation. As
will be clear from what follows the situation is quite
different for some types of exchange-noncollinear mag-
nets; namely, the scattering cross section for the ex-
change magnons may be larger than the one for the
acoustic magnons. There are two reasons for this. First
is that the intensity of scattering from the exchange mag-
nons is determined by the exchange mechanism. Second
is that in some cases, for example, in NdzCuO4, there ex-
ists the effect of exchange enhancement of the amplitudes
of oscillations corresponding to the exchange magnons.

Along with the above-listed peculiarities of scattering
from the exchange magnons in exchange-noncollinear
magnets there will be peculiarities of scattering from the
acoustic magnons. The reason is that all three acoustic
magnons are magnetodipole active. This circumstance
leads to such phenomena as the longitudinal-transverse
splitting in the case of cubic symmetry if the dipole-
dipole interaction is taken into account, or the depen-
dence of the magnon limiting frequencies on the spin-
wave propagation direction in the case of uniaxial crys-
tals. That is why the frequency of the scattered light and
the form of the scattering tensor will be dependent on the
scattering geometry, similarly to the scattering from po-
lar phonons.

II. SCATTERING TENSQR

There is a rich variety of magnons of different symme-
try in many-sublattice magnets. Generally speaking, the
light scattering from these magnons may not be connect-
ed with the rotation of the polarization plane. That is
why in every particular case we shall be interested in the
selection rules. In this connection it is convenient to con-
sider the tensor of scattering a; (q) from the magnon of
the vth mode with momentum q instead of the scattering
cross section. The Cartesian indices i and j correspond to
the components of the incident and scattered light, re-
spectively. The relative contributions of different scatter-
ing mechanisms can be easily taken into account in the
framework of this approach. The scattering tensor is
determined as the matrix element of the spin-dependent
part of the crystal dielectric permittivity Ac; between the
states with a difference in magnon number equal to unity:

a,,(q)=[n, (q)+I] '~ (n (q)+ 1~be., ~n (q)) . (1)

In this formula n (q) is the number of magnons of the
vth mode with momentum q. In what follows we shall
neglect the spatial dispersion of the incident and scat-
tered light (see Ref. 20) and the wave vector q will only
be taken. into account in order to consider the effects con-
nected with the direction of spin-wave propagation. In
the same way as in Ref. 33 one can represent hc. ; as a
series in powers of the spins of the sublattices. However,
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in the case of the many-sublattice magnet it is very
dificult to deal with the spins of separate sublattices as
was done in Refs. 20 and 33. That is why we will decom-
pose Ac., into a power series in linear combinations L of
the sublattice spins entering the magnetic unit cell. The
components of the vectors L execute the irreducible rep-
resentations T of the symmetry group of the paramag-
netic phase of a given crystal. These linear combinations
of the sublattice spins can easily be obtained with the
help of the projection operator for every particular mag-
net. The expansion for Ac.;. may be written as

b, E; =+A. ,;'~('L i+go~j~( 'L iLs +gP,'f '(L Ls) . (2)

The first term in expression (2) describes the Faraday
eff'ect if one substitutes the equilibrium values L for the
operators L in the absence of absorption. The two other
terms describe the Cotton-Mouton e6'ect under the same
conditions. The form of the tensors A, , o', and P can easi-
ly be determined because the values L are transformed
in accordance with the irreducible representations of the
symmetry group of the paramagnetic phase of a given
magnet. The values 8 and P can be expressed through
the polarizability of the pair of ions if required. The last
term in expression (2) has exchange nature. We shall not
be interested further in the microscopic nature of the
values A, , o', and P, which have been considered in detail
in Refs. 33—35. The main attention will be paid to the
elucidation of the role and value of the contribution of
the exchange mechanism, which is determined by the
constant P, in the scattering of light from exchange and
acoustic magnons in exchange-noncollinear magnets.

The form of the scattering tensor a;, (q) depends on
what components of the vectors L take part in the oscil-
lations corresponding to the given mode v. The
classification of the uniform oscillations of the spin sys-
tem and the calculations of the energies of these oscilla-
tions will be carried out for every particular magnet sepa-
rately. In order to compare the relative contributions of
the values A., o., and P to the components of the scattering
tensor a;J(q) we have to obtain the relative amplitudes of
the oscillations of the components of the L vectors for
every magnon mode. These amplitudes can be expressed
through the coe%cients of the unitary u-v transformation
in the scheme of the second quantization of the Hamil-
tonian of the many-sublattice magnet in the simplest
way. The method of the second quantization of the
Hamiltonian of the many-sublattice magnet developed in
Ref. 30 allows one to take into account the symmetry of
the magnet in the most comprehensive way and will be
used in all the cases under investigation.

,
2

FIG. 1. Magnetic structure of UOz.

L, =L2 =L~, =4SI&3 . (4)

Using all the aforesaid the spin-dependent part of the
dielectric permittivity of the crystal can be represented in
the form

will be carried out in the framework of conventional
spin-wave theory for S &&1 at k=0 and for the tempera-
ture region T «T~. The applicability of this approach
will be discussed later.

The possibility of the existence of such a magnetic
structure has been pointed out in Ref. 36. Following this
paper, let us introduce the linear combinations of the sub-
lattice spins

F=S(+S2+S3+S4p L] S]+S2 S3 S4,

L2 S& S2+S3 S4& L3 S) S2 S3+S4

From the point of view of the high-symmetry (paramag-
netic) phase the magnetic ordering in UO2 is caused by
the phase transition corresponding to the three-ray chan-
nel of the irreducible star k,0 (here and further the nota-
tion of Ref. 37 is used) of the Fm 3m group with the fol-
lowing rays:

k, —
—,'(b2+13), k2 —

—,'(b, +b3), k3=
2 (bl+b2) .

Here b&, bz, and b3 are the vectors of the reciprocal lat-
tice. The vectors k&, k2, and k3 are parallel to the X, Y;
and Z axes, respectively (see Fig. l). The components of
the vectors L&, L2, and L3 correspond to the one-
dimensional irreducible representation T3 and the two-
dimensional irreducible representation T9 of the group of
the wave vector of the ray of the star ki0 (see Table I).
The F, F, and F, components of the vector F belong to
the same three-dimensional even representation T9 of the
star kii(k=0). The following components of the vectors
L are nonzero in the ground state:

III. MAGNETIC STRUCTURE OF THE UO2 TYPE

The four-sublattice exchange-noncollinear noncoplanar
magnetic structure of UQ2 is shown in Fig. 1. The syrn-
metry of the paramagnetic phase of this crystal is de-
scribed by the Fm3m group. There is one chemical for-
mula unit in the primitive cell. The magnetic unit cell is
four times larger than the crystallographic one. The
magnetic symmetry group is Pn3rn'. The consideration

Irreducible
representation

T3

T9

k)

Lqy

j L„
3z

L3x
L3y

TABLE I. Distribution of the components of the vectors I.
with respect to the irreducible representations of the group of
the wave vector of the ray of the star kIQ.
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=Pi L] +P2F +o. iL i„
+o z(L &»+L ~~+L» )+cr 3F»,

Ac. =P)L2+P2F +o.)L2

o.~(L „+L2 +L3, )+o3F.

a„=S, L', +r2F'+ , L'„

+o~(L „+L2 +L3, )+cr3F, ,

L3

L2

L)

L)„
L)
Li,

L3,

L3

Li
L2

L3,

=P L2

Fl

F,'

(8)

AE, =AF, +o4(L„L, +L2„L2 )

+o.5L3„L3 +o.6F F

EE, =AF +cr4(L~ L»+L3„L3, )

+o.sL2 L2 +o.6F„F

bc, , =AF„+o4(L2 L~, +L3 L3, )

+o.qL j L j,+o.6F F, .

In order to investigate the scattering tensor obtained with
the help of (5) one has to eliminate the terms linear with
respect to the operators of creation and annihilation of
the magnons. For this we consider the following Hamil-
tonian corresponding to the given magnetic structure:

~=jap —a(L +L2~ +L )+D(g$+z,2+/. ~3) .

In this expression B is the exchange constant, a is the
constant of magnetic anisotropy, and D describes the bi-
quadratic exchange. The constants describing the contri-
butions of different interactions to the Hamiltonian have
the dimension of energy throughout this paper. %'e shall
consider the case A= 1, that is, the energy and frequency
have the same dimension. Writing expression (6) we used
the relations

F +L +L2+L =(4S)

L& 'L2+ F L3 =L] L3+F L2= L2'L +F L =0

The only fourth-order invariants (L ) which determine
the static and dynamic properties of the magnet under
consideration are retained in expression (6).

The conditions of stability of the magnetically ordered
phase (4) have the form a )0, D )0. The spin-wave
spectrum and classification of the oscillations in accor-
dance with the symmetry types have been determined in
Ref. 38 with the help of the linearized equations of
motion for the operators L. Below we shall reproduce
these results in the framework of the second-quantization
method using the Holstein-Primakoff representation.
To do this one has to transform the operators S into the
operators S' each written in its own local coordinate sys-
tem with the Oz' axis oriented along the equilibrium
direction of the spins. The matrices of the transforma-
tion p for different ions which can be permuted by the
symmetry operations are connected with each other.
That is why one can find the relations between the opera-
tors L and new operators L' which are the linear com-
binations of the operators S' of the form given in (3)

As will be shown in what follows, the subscripts of every
column in the left-hand sides of equalities (8) are the
numbers of magnon modes. The components of the vec-
tors L entering the vth column take part in the oscilla-
tions corresponding to this mode v. The matrix P in (8) is
the matrix of the transformation into the local coordinate
system of the first ion (see Fig. I). This matrix has the
form

6
—1/2

6
—1/2

(
2

)
1/2

2
—1/2

2 1/2

0

3
—1/2

3
—1/2

3
—1/2

(9)

L„'=V4SQI, L' =i/4SPr, L = IF L„L2,L3];

F,' =4S + —,
' Q I PI —QJ ];

L

L i, =PFPi, +Pi,Pi, QF K, —
QI.,Qi, —'

Lz. =L'i. ILi —L2]

In these expressions

(10)

1 1—IPi+Pi] Pi= ~- IK Pi]—
2 V'2

p~= —,'[b, +b2+b3+b4], pl = —,'[b)+b~ —b3 b~];—
pl. =

—,'[bi bz+b3 bc]—, pI.,
=

—,
'—

[b& b2 b3+b~]—. —

The operators PI are determined in such a way that the
ordinary commutation relations

[pi p~ 1
—&i~ (12)

are satisfied. The operators Ql and Pz in (10) are analo-
gous to the generalized coordinates and momenta for
some oscillators. Substituting (8)—(10) into expression
(6), one can get the part of the Hamiltonian quadratic
with respect to the Ql and Pl operators,

The OZ' axis of the local coordinate system is directed
along [111]and the OY' axis is oriented along the direc-
tion [110]in the XYplane.

The operators L' are directly expressed in terms of
linear combinations of the Holstein-Primakoff spin-
deAection operators b and b of separate sublattices
(a=1,2, 3,4)
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—[B+3a](QL +QL )
1

+&3[B+a](P +P )

—jB (P~ Q~ PL Q~
—)+ [4B +3a]QL

1

CA lB

[E„(B+3a)]'i
1/2

31/4B+3a
Ll A

l

cA+IB

[.,(B+3a)]'" '

1/2
B +3a

L2A2 (16)

a&3—PI +D(QF PF) ' .— tL3 A3

1/4

In this expression dL3 A3

4B +3a
3Q

1/4

B = —[B—'(4S) D—], a = —a, D = '(4S) D —.4S — 2 — 8S
V'3 ' ' v'3

Using the unitary transformation

1
QL, —g(tL k +tL. 52.
PL, = —g(dL* g, dL, g ), —2.

(14)

one can represent Hamiltonian (13) in the standard form

Note that the summation over the wave vectors of the
magnons is absent in expression (15) because we consider
the case when the wave vector of spin waves is negligibly
smaH. That is why a11 the calculations have been carried
out for k=0. In correspondence with the results of Ref.
38 the spin-wave spectrum of the crystal under considera-
tion contains three acoustic magnons which are threefold
degenerate with respect to the energy. These magnons
have the energies

tF dF 1 .

A
a IJ 0 0 Ge

It follows from (16) that all the coefficients dL are ex-
change enhanced, that is, they are of the order of
(B/a)'~". The substitution of (14) and (16) into (8) allows
one to analyze the relative amplitudes for all magnon
modes. Thus for the oscillations corresponding to the
acoustic magnons the components of the vector F have
the smallest relative amplitudes and those components of
the vectors L1 L2 and L3 for which the equilibrium
values are equal to zero have the largest relative ampli-
tudes. The last circumstance reAects the Goldstone char-
acter of the acoustic magnons in the framework of the
Hamiltonian considered. In the exchange approximation
the rotations of the magnetic structure as a whole around
the X, Y, and Z axes correspond to the oscillations of the
modes A1, A2, and A3 with k=O, respectively. The os-
cillations corresponding to the exchange mode cannot be
reduced to a uniform rotation of the magnetic structure
as a whole.

Using the obtained expressions and relations (1) and (5)
one can determine the scattering tensors for all magnon
branches. For the acoustic magnons these tensors are the
following:

0 0

= [a (4B +3a)]'" .

There is also one exchange magnon for which the activa-
tion energy is determined by the biquadratic exchange

A
a lJ

where

4S
v'3

I /2

0 Re ' 0

0 0 Re'
0 0 0

Ge' 0 0

0 G 0
A3

a,- '= 8 0 0
O 0 O

1/4

Thus the meaning of the classification (8) is the following:
those components of the vectors L take part in the oscil-
lations of the same magnon mode which contain terms
linear in the coordinate or momentum of the same oscil-
lator.

The coe%cients of the unitary transformation
tL = uL +UL and dL = uL —

UL have the form

4S
l k+ —cTg

3

(4B+3a)' +i3&a
2(B+3a)'"

Let us note two circumstances following from expressions
(17). First, both the antisymmetric term (the Faraday



THEORY OF RAMAN LIGHT SCATTERING IN THE MANY-. . . 15 903

term) and the symmetric term (proportional to cr4) are
exchange weakened by the factor (a/B)' . The sym-
metric term of relativistic origin is exchange enhanced in
some cases in collinear antiferromagnets. * Second, the
calculations show that the Stokes —anti-Stokes asymmetry
of the scattering intensity which is usually observed in
collinear magnets will be absent in the case under con-
sideration. Thus the scattering from the acoustic mag-
nons in collinear and noncollinear antiferromagnets, be-
ing different in detail, have one common feature that the
contribution of the Faraday term is always exchange
weakened.

An absolutely different situation takes place during the
scattering from the exchange magnons. The scattering
tensor for this case has th'e form

pe i 2m/3 0 0
p —

E 2m'/3 0
0 P

(18)
0

where P =(8S/3)(4S)'~ P, . As follows from (18) the
given tensor does not contain any small factors and is
determined by the quadratic magneto-optic constant of
the exchange nature. The quantity P, can be expressed
in terms of the spin-dependent exchange part of the po-
larizability of the pair of ions. The exchange part of the
polarizability of the pair of ions may be written as
aI "'=TrIa;,.I& I, where the trace is taken with respect to
the spin Cartesian indices. The expression for P& is

p (ex) (ex)
II

In this expression aII"' and a~"' are the components of
the polarizability of a pair of neighboring ions longitudi-
nal and transverse with respect to the line connecting
these ions. As could be expected the form of tensors (17)
and (18) coincides with the ones found in Ref. 39 for the
magnetic point group m3m'. In the spectroscopic nota-
tion the tensors (17) describe the scattering from the Tg
modes and tensor (18) describes the scattering from the
E mode. It has to be noted here that the two-
dirnensional corepresentation of the Shubnikov group
m3m' corresponds to the representation Eg of the uni-

tary subgroup. This two-dimensional corepresentation of
the Shubnikov group m 3m ' contains two combined
complex-conjugate one-dimensional representations, one
of which corresponds to the nonphysical value of the en-

ergy —~E.
Let us consider the peculiarities of the manifestation of

the dipole-dipole interaction in the light scattering from
the acoustic magnons. The acoustic magnon with wave
vector q=k, . —k, (k; and k, are the wave vectors of the
incident and scattered light) is created or annihilated dur-
ing the scattering process. If the so-called "forward-
scattering" geometry is not considered we have that
IqI = Ik,. I, Ik, I

for all the other geometries of the scatter-
ing. The inequality X '«q «ap ', where X is the

sample size and ao is the lattice constant, is as a rule
satisfied for such wave vectors. In this case on the one
hand one can neglect the lag effects (the polariton effects)
because Ac /c «q and on the other hand the dispersion

in the magnon spectrum can still be neglected. As was al-
ready mentioned in Sec. II the magnon wave vector will
be considered in order to take into account the effects de-
pending on the spin-wave propagation direction only. In
order to determine the dependence of the energy of the
magnon on its propagation direction one has to add a
term describing the nonanalytic part of the dipole-dipole
interaction to the Harniltonian (15). This term may be
written as

2m 2(q F)
Vo

(19)

In this expression vo is the volume of the unit cel1, g is the

g factor, and pz is the Bohr magneton. Note that the
zero Fourier component of the vector I' enters expression
(19). The analytic part of the dipole-dipole interaction
will not be considered because it does not depend on the
direction of the spin-wave propagation.

Separating out the part of (19) which is quadratic with
respect to the operators of creation and annihilation of
magnons and carrying out the diagonalization procedure
for the total Hamiltonian &' '+&'d d once again, one can
get the magnon energies. We obtained the following ex-
pressions for the energies of the "transverse" acoustic
magnons:

+ll(q) +12(q) =e ~

and for the "longitudinal" acoustic magnon
1/2

All&(q) = a 4B +3a + —(gp~ )
32Sm

Up 3

(20)

4S
v'3

a
4B +3a

X 'equi, (kx&+kz& + x2, (kzz+ku

1/2

+ f (&ii+&ii)
Qq

(22)

Here the vectors of the magnon polarization ez&, e~2, and
f =q IqI

' form the three mutually orthogonal unit vec-
tors, with the vector e~& lying in the X, Y plane.

Now the form of the tensor of scattering from the
acoustic magnons is determined by the relation

a,~i yi.,aV— (23)

As one can see from (21) the value of the longitudinal-
transverse splitting is small because the dipole-dipole
contribution enters the magnon energy as an addition to
the large exchange constant. The terms "longitudinal"
and "transverse" acoustic magnons characterize the
direction of the oscillation of the magnetization with
respect to the magnon wave vector q. In particular, the
components of the operator of the total spin of the mag-
netic cell assume the following form after the transition
to the operators g and g of creation and anmhilation of
the magnons:

1 /2
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where the coefficients l are determined by the expres-
sion

i6e e
—I6e e (24)

p, z

in which the notation e~~= f is used. The quantity 6 is
determined after formulas (17).

The light scattering from all types of magnons will be
observed in the 90' geometry of scattering. However, in
the case of the "backward-scattering" geometry the only
possible scattering process is with the participation of the
longitudinal acoustic magnon as follows from relations
(17) and (23).

The magnetic-ordering phase transition in UO2 takes
place as a first-order phase transition. Without going
into discussion of the mechanism of this phenomenon, it
is necessary to remark that there is a subgroup relation
between the high- and low-symmetry phases. This cir-
cumstance allows one to use the above-given terminology
characteristic for a second-order phase transition for the
derivation of the Hamiltonian. The second circumstance
consists in that the ground state of the U + ion is de-
scribed by the e6'ective spin S =1. The magnetic spec-
trum contains "spin" and "quadrupole" excitations.
However, the analysis of the spin-wave representation
carried out by us shows that the symmetry of the spin
excitations is retained the same as in the above-
considered model. Thus the results obtained here may be
applied to the analysis of the light scattering from the
spin excitations in UO2 at T(& T& in this qualitative
sense.

The consideration of the data of Ref. 27 is of great in-
terest from this point of view. The Raman light scatter-
ing in the backward-scattering geometry has been experi-
mentally investigated in the antiferromagnetic phase of
UOz. Scattering from magnetic excitations with symme-
try Eg and the value of the energy equal to 18.5 cm ' and
also with symmetry T and the energies 78 and 98 cm
was observed. The magnetic character of these excita-
tions has been proved by the fact that their intensity
tended to zero as the temperature increased towards the
Neel temperature. Another confirmation is the agree-
ment of the observed values of the energies with the data
obtained by inelastic neutron scattering. ' Such experi-
mental facts as the number of the lines and their symme-
try were in contradiction with the theory used by the au-
thors of Ref. 27 for the interpretation of the results. The
theory used was based on the two-sublattice collinear an-
tiferromagnetic model of UO2.

Note that the symmetry of the magnetic excitations re-
vealed in Ref. 27 and the circumstance that the excitation
with energy 18.5 cm ' and symmetry E is not manifest-
ed in the infrared absorption are already enough to make
a conclusion that this excitation is the exchange magnon.
They are also enough to conclude that the magnetic
structure of UOz is an exchange-noncollinear noncopla-
nar magnetic structure. The calculations of the magnon

energies made later in Ref. 40 in the framework of the
model of the exchange-noncollinear noncoplanar magnet-
ic structure taking into account the efFective spin value
S = 1 have shown that the exchange spin magnon does
have smaller energy than the acoustic spin magnons (hav-
ing energies equal to 80 cm ') and the acoustic quadru-
pole magnons (with energy 100 cm '). The data of in-
elastic neutron scattering ' were used to determine the
constants of the Hamiltonian of UO2 in Ref. 40. The
symmetry classification of the magnon branches was not
carried out in Ref. 40. By this means the results of Ref.
27 could serve as a proof of the fact that the magnetic
structure of UO2 is noncollinear and noncoplanar already
in 1975.

As one can clearly see from the spectrum given in Ref.
27 the intensity of the line of the scattering from the ex-
change magnon is actually higher than the intensity of
the lines of the scattering from the acoustic magnons.
This result is the remarkable circumstance for our theory
considered here.

IV. MAGNETIC STRUCTURE OF THE RMnO3 TYPE

There is a big group of exchange-noncollinear coplanar
magnets with the so-called triangular magnetic ordering.
Compounds with the composition RMnQ3 where R is a
rare-earth ion are representative of this group. The sym-
metry of the paramagnetic phase of these compounds is
described by the spatial group C6, -P63cm. The primitive
cell contains six formula units of RMnO3. The man-
ganese ions occupy the 6c positions. 7'here are three of
them in every plane normal to the sixfold symmetry axis
and separated from each other by a distance equal to half
of the lattice period along the hexagonal axis. We con-
sider the Raman light scattering from magnons for two
possible types of magnetic ordering which are shown in
Figs. 2 and 3. The appearance of these magnetic struc-
tures is not accompanied by the multiplication of the
primitive crystal cell. Consequently, there are three
acoustic and three exchange magnons in these cases. The
symmetry, spin waves, and peculiarities of magnetoelastic
properties for both these types of magnetic ordering in
AMn03 have been considered in Ref. 3. Following this
paper, we also introduce the linear combinations of the

Mn Zo

Mn Z=c/2

FIG. 2. Magnetically ordered phase T2 of RMn03.
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~ Mn X=0

Mn X=c/2

FIG. 3. Magnetically ordered phase T3 of RMn03.

cpi
=S,+S2+S3+S4+Ss +S6

4= S& +S2+S3—S4—Ss S

ys &

=S&
—co S2—coS3—S4+co*Ss+mS6

0's, II 0's, r

y6 i
=S

&

—co*S2—coS3+S4—co*Ss—coS6

(25)

In these expressions the subscript of the linear combina-
tion denotes the number of the irreducible representation
of the group in the framework of the numbering scheme
adopted in Ref. 37; the roman numerals number the
linear combinations for two-dimensional representations;
co=exp(i]r/3I. The form of the linear combinations (25)
is slightly different from the ones used in Ref. 3 and has
been chosen for convenience of performance of the
second quantization. The following unimodularity condi-
tions are satisfied for vectors (25):

0'1 +0'4 9's, i
' 0's, ii +2V'6, r 0'6, ii =36~2 2 2

0'& '0'4+ 0's, i 0'6, ii 0'6, i 0's, ii =O

9' &

' 0's, i +0'4 0'6, i 0's, it 0'6, ii =O

0'& '0's, il 0'4'0'6, ii 0's, i 0'6, i
=O

2 2
0'6, r +0'4 ' 0's, r +9's, it +V'6, ii

=O

2 2
0'4 0's, rr +0's, i +0'6, i

=O

(26)

vectors of spins of the ions. These linear combinations
execute the permutational representation and in our case
they are as follows:

of the crystal coordinate frame (the Z axis coincides with
the sixfold axis of the crystal lattice; see also Fig. 2). The
definition of the vectors 4 and their classification in ac-
cordance with the irreducible representations of the spa-
tial group are given in Table II. The conventional spec-
troscopic notations for the irreducible representations are
given in Table II along with the notations used in Ref. 37.
The linear combinations 4 which are the components of
the vector F of the total spin of the cell are also shown in
Table II. The vectors (25), corresponding to the ex-
change symmetry which is higher than the magnetic one,
allow one to write down the exchange part of the Hamil-
tonian in the form

=J]0'] +J4%'c+Js V's, ]'0's, ]]+J6%'6, ] 0'6, ]] .2 2 (27)

In this expression the quantities J are the linear combina-
tions of the intersublattice exchange integrals K &

of the
form

J, = 6(K„+2K]~+K]~+2K]s),
J4 =

—,'(K „+2K, 2
—K]4 —2K, s ),

Js =
—,'( —K„+K,2+K,4

—K, s ),
J6 ——(K]]—K]2+K]4—K]5) .

(28)

+ +3+3 a4+4 a 6+6,v+6, vg+d 3+3+3 ~ (29)

The magnetic ordering shown in Figs. 2 and 3 corre-
sponds to the nonzero linear combinations of the vectors

which are transformed in accordance with the T2 and

T3 irreducible representations, respectively. In what fol-
lows we use the terms magnetically ordered phase T2 and

magnetically ordered phase T3 . The phase T2 is realized
under fulfillment of the conditions

TABLE II. Classification of the components of the vectors
in accordance with the irreducible representations of the spatial

group C6&.

Irreducible

The conditions K» =K&3 and K» =K,6 have been used
while obtaining expressions (28). The exact magnetic
symmetry of the crystal is described by the linear com-
binations of the vectors %. These linear combinations of
the vectors 4 describe all possible (allowed by the sym-
metry) contributions of a relativistic nature to the Hamil-
tonian. We keep only those terms which determine the
activation energies of the acoustic magnons and fine de-
tails of the magnetic structure:

+1]II] ~2+2 as+5, v+s, v]+d2+2+2

The magnetic representation corresponding to 3 X 6 de-
grees of freedom is performed by some linear combina-
tions 4' of the components of the spins which may easily
be expressed in terms of the components of the vectors
(25) written in the cyclic coordinate frame. The vectors
(25) written in the cyclic coordinate frame have the form

~ey + ex +~eyy++ y +cp'e,
2 2

w«hey, =y"+i+; e;—are the unit vectors along the axes

represen-
tation

TI,' A I

T2,'

T3', BI
T4, B2
Ts, E)

T6,' E2

g4

[ gs, ]
I 'ps, ]]
l m6, ]
I &p6, ]]

+v
+2 +5 I +5 II~ +2 +1
+3 g 6,I+ P6, II~ +3 'P4

++4=g6, rr

r
+ + Z+5 r=I =+

~ +5 III=+6 rr~ +5 v=0'5 I

l +5 rr =WI =F
~ +5 rv =%6 r~ +s vr

= 0'5 rr
+ Z

+6, I =X4 ~ +6,rrr
= gs rr~ +6,v =&6,r

+ Z
+6, II =+4 +6,Iv=+5, r +6,vr = 0'6, II
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0 & —Js &2J),2J4, J6 and a2 & a), —as )0 .

The phase T3 corresponds to the case

The matrix p is connected with the matrix of the transi-
tion into the local coordinate system of the first ion:

0&J6 &2J„2J4,—Js and —a3 & a4, a6) 0 . sinB

0
0 2 cos8
1 0 (31)

The magnetic symmetry of both phases allows the mag-
netic structures to be slightly noncoplanar. It goes
without saying that the magnetic structures remain co-
planar in the exchange approximation. The weak fer-
romagnetic moment %z'=F, (the overbar stands for the
equilibrium value) appears in the T2 phase and the weak
antiferromagnetic moment %'3' exists in the T3 phase.
The angles of canting of the equilibrium spin orientations
with respect to the X, Y plane are determined by the con-
stants d describing the Dzyaloshinskii-Moriya interac-
tions in Hamiltonian (29). These angles are equal to

sin8 = —d 2 (J, + —,
' J5 )

' for the phase T2

and

sin8 = —d 3(J4 —
—,
' J6 )

' for the phase T3 .

Thus both phases T, (i =2, 3) are described by the follow-
ing equilibrium values:

4,' = 12S cos8= 12S and 4',"=6S sin8 .

Let us carry out the calculations of the magnon ener-
gies and coeScients of the unitary transformation. The
transformation to the local coordinate systems and at the
same time the classification of the oscillations of the mag-
netic subsystem in accordance with the types of symme-
try for the T2 phase has the form

cos8
sin8

2

1P4= —[b, +b2+b3 b4 b5 —b6],— —
6

1
P = —[b co*b—cob +b —a)*b c—ob ]=—6, I ~6 I 2 3 4 5 6

(32)

however,

The orientation of the OZ' axis of the local coordinate
system is along the equilibrium orientation of the spin
and the OY axis is parallel to the OY axis shown in Fig. 2.
The quantities @ have a form similar to (25) but are con-
structed with the help of the linear combinations of the
components of the spin operators S'—+ and S"written in
their local coordinate systems. In the approximation
linear with respect to ihe spin-deAection operators b
(cc= 1 —6) of the sublattices the quantities y form some
generalized boson operators P and P of creation and an-

nihilation in such a way that y, =/12SI3;; here i is the
combined index i = 1;4;5,I;5,II;6,I;6,II. Clearly the
operators P and P have the same structure as expressions
(25). For example,

goal

l
2

+4

qual
l

3
r

0'5, I+%5,I

Cp4 ++4

+4 p4
P6 t= —[b, cob~ c—o*b 3+b4t —cob ~~ co*be]— —1

&12S

+5 I +5 III

+s,v

+5,II++5,IV

+5,II +5, IV

+5,VI

+6,I++6,III

+6,III

+6,v

+6,II+ +6, IV

+6, IV

+6,VI

tPS, I

0'5, II +0's, II
+

0'5, II+0 5, II

O'S, II

0'6, I+0'6, I
+

0'6, I

0'6, II +0'6, II

0'6, II+%6,II

(30)

Furthermore, the ordinary commutation relations are
satisfied for these operators:

[P; P, ]=[0;0,']=0 [0; P, ]=f1;, . (33)

y;=6S —ggtP; .

Using relations (30)—(34) one can obtain the explicit
form of the Hamiltonian &' ' in the T2 phase:

Among all tp'; we will only give the expression for rp&

which is necessary for obtaining the part of the Hamil-
tonian &' '=&,'„'+&', ' quadratic with respect to the
operators P:
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(2)

,'I—I(pI+ pI ) ,'—A—I{p1—ptI) + ,'I4—(p4+/34) ,'—i4—{p4 p—4) +{Is+A 5+ 2V5 )pts Ip

+(I5+ A 5 2V5 )p5, IIp5, II ( 5 A 5 )(ps, Ips, II+p5, Ips, II)+(I6+I6+2V6 )p6, Ip6, I

+{I6+16 2V6)P6, IA, II (I6 i6){P6,A, II+P6,A, II) .

The following notations are introduced here:

I, = (2J, +Js+ a& )cos28 —4d 2sin26,

I4 =2J„cos 6+ (J6 +a 5 )sin 8—2d 3 sin 26+6,
Is =J)+—,

' J6+6, I6=J4 —
—,
' Js+5,

A, =a& —a, —2d2tanB, b =Js+az —2dztanB,

As a2 as+(J1+—J6+Js+as)sin t) —2d2tanB,

i4
——J,+a, +a,

i6=(J6+a6)cos 8+(J4—
—,'Js)sin 8+6, ,

Vs = (J, —
—,
' J6 )sin6, V6 = (J4+ —,

' Js )sin6 .

(36)

( A, !I,)'"(g, +g', )

=I 12SP {II!AI)'"{CI—0»

{i4!I4)' "{(4+4)
'P4 =&12SP (I4!i4)' (g4 —g„)
qy

I I 03

+S,I++S,III

+S,I +S,III

+s,v

+6,I++6,III

+6,v

=V 12SP

{I6!i6)'"{4,++4, —)

{i6!I6)'"{4,+ —
k6, —)

0

(I5!A s )
'

($5, + + $5~, —)

=' 12SP {As!Is)'"{ks,+ —
ks, —)

0

(38)

The sets of the constants of the Hamiltonian in which the
integral of the intralayer exchange K&2 will remain after
the transition to the exchange approximation are denoted
by I. The quantities i will only contain the integrals K,4
and K» of the interlayer exchange in the exchange ap-
proximation. All the terms entering the quantities
have the order of magnitude of the anisotropy because in
magnets for which the exchange approximation
J ))d ))a is valid the estimation a -d J ' is true as a
rule. The quantities Vs and V6 are of the order of the
constants d describing the Dzyaloshinskii-Moriya in-
teractions.

The diagonalization of Hamiltonian (35) gives the fol-
lowing expressions for the magnon energies:

EI"'=6SQI, A, , ~',"=6S[QI, A, + v, ],
e4' '= 6SQI4i 4, e61 + =6S [QI6i 6+ V6 ] .

(37)

In these expressions the energy superscript signifies that
this frequency corresponds to the acoustic or exchange
magnons. For investigation of the one-magnon light
scattering one has to obtain the parts of the combinations

linear with respect to the operators g and g, of
creation and annihilation of the magnons of the vth
branch. The above-mentioned parts of the operators '0
may be obtained as a result of the calculation of the u-U

coefficients of the unitary transformation from the opera-
tors P and P to the operators g' and g . Finally the ex-
pressions (30) may be rewritten as follows:

The two columns which are Hermitian conjugate to the
last two are not written here. The zero value in the bot-
tom lines of the columns in the right-hand side of expres-
sions (38) means that the corresponding contribution is
quadratic with respect to the creation and annihilation
operators and has to be neglected for the one-magnon
light scattering.

Let us dwell on the formulas (37) and (38). The unitary
point subgroup corresponding to the phase T2 is C6(6),
which has no two-dimensional representations. Due to
this circumstance the degeneration of the magnons at
k=o is absent. The degeneration appears only at d2 =0.
Similarly to the case of collinear magnets the activation
energies of the acoustic magnons are of the order of
E„—&Ja where the quantity J contains the intralayer
exchange integral. The splitting of the energies of the
acoustic magnons 8s

"+' may be important because
VJa -d. The activation energies of the exchange mag-
nons are determined by the interlayer exchange integrals.
Indeed, using (28), one can obtain in the exchange ap-
proximation

E4 2e6, + 6SV 3 {+12 +15 ){+14 15 )

The integrals of the interlayer exchange are often consid-
erably smaller than the integrals of the intralayer ex-
change. A similar situation taking place in the four-
sublattice antiferromagnet Lazcu04 leads to the fact that
the energy of the exchange magnons falls within the re-
gion of the energies of the acoustic magnons.
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It follows from formulas (37) that during the oscilla-
tions corresponding to the acoustic magnon modes the
largest [because of the presence of the factor (J/3)' ]
deviations of the spins from the equilibrium orientations
correspond to the rotation of the magnetic structure as a
whole. That is, the spin triangules in the neighboring lay-
ers precess in phase. The rotations of the magnetic struc-
ture inside the X, Y plane (in the plane of the layer) corre-
spond to the acoustic mode with the energy c, (, '. The ro-
tations during which the magnetic structure leaves the
X, Y plane correspond to the acoustic modes with ener-

(3)gies cs +.
Let us consider the spin-dependent part of the dielec-

tric permittivity of RMn03 which we will write using the
coordinates g=x+Iy and g=x iy —in the X, Y plane.
For the sake of simplicity we will keep only those terms
quadratic with respect to the spins which have the ex-
change nature

E(~=lk1% 2+1A,2+2 +
1. 0 1+ 2V 4+ 3V 5, I '(|t 5, 11

2~~@=P4%'1'0'6, i+Ps%'4 0's, i+P6V'5, 11 ~

~Ezz P7V 1+P8V 4+P9V 5, I 9 5, II
2 2

AE z l k3% 5 I+ I k4% 5 III+ les% 5

+P10V 1 0 5 I+P11%4 It 6 I ~

~E„,=(~E,„)*, ~.„„=(&.«)*, ~., =(a.„,)*.

(39)

The orthogonality relations (26) have been used while
writing expressions (39). The presence of the contribu-
tions linear not only with respect to the components of
the ferromagnetism vector but also with respect to the
components of the antiferromagnetism vector is a well-
known phenomenon and in weak ferromagnets that has
been studied in suIticient detail, for example, in orthofer-
rites. ' Such terms have to appear in all magnets in
which the components of the antiferromagnetism vectors
are transformed in accordance with the same irreducible
representations as the components of the ferromagnetism
vector. In the case of the light scattering from magnons
such contributions have been considered by Moriya.

For the sake of convenience the Cartesian indices of
the electric field of the incident and scattered light are
used in the quantities Ac; and further in the scattering
tensor a,".Let us recall that in terms of the cyclic coor-
dinates the electric-field energy is written in the form
4c.+ .+E;E, for example, Ac„,E„E,.

E J
The form of the tensors of scattering and the explicit

form of their components one can obtain with the help of
formula (1) and the substitution of expressions (38) in
(39). As a result we obtained the following.

(a) For the acoustic mode A, ,

0 a~„0
(A )1a;. = a~ 0

0

0

0 azz

(40)

Here

a~ =&12S
I1

1/4

l X1slnP 2 A,2cosB

a = —&12Szz
1

3S
2

(2P, +P3 )sin28

1/4
3S
2

(2P7+P9)sin26 .

(A )
a 1J

0 0 a~,
0 0 0

(a(, )* 0 0
(41)

0
(& )

a ' = 0lJ a„,
0 (a„,)* 0

Here

Let us recall that the quantities P are symmetric whereas
the quantities k are antisymmetric tensors with respect to
the Cartesian indices of the incident and scattered light.
In addition, the quantities P and A, are real in the frame-
work of the present consideration. It follows from (40)
that the contribution of the exchange mechanism of light
scattering from the acoustic magnons contains two small
parameters, namely, the factor ( A /J)'~ and sin8 which
determines the weak noncoplanarity of the magnetic
structure.

The Stokes —anti-Stokes asymmetry does not appear in
the approximation used while obtaining the expressions
for b, c.. However, in case we take into account the terms
of a relativistic nature in Ac, &„ quadratic with respect to
the spins, this asymmetry appears. For example, a term
of the form

R 4,+2- &12SR (I, /A, )'~ (g, —g, )

which is exchange enhanced will enter the tensors of the
Stokes and anti-Stokes scattering with different signs.

The given example explains in general the mechanism
of the appearance of the Stokes —anti-Stokes asymmetry.
Such an asymmetry always appears when the parts of Ac
linear with respect to g and g operators have the form
(g, —g, ). In particular, these terms were absent in the ex-
pressions for b c, in the case of U02.

(b) For the acoustic modes 35+ the scattering tensors
have the form

Is
a„+,'. —, =&3S + [(iA3+iA4+3SP, ocos8)sin8 —iA5cos8]x lp, z 3 4— 10 5

1/4

(i A3 ik—4+ 3SP—,ocos8)
5

'1/4 '

(42)
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In these expressions, similar to the case of light scattering
from the acoustic magnons in exchange-collinear ortho-
ferrites, there exists the effect of the exchange enhance-
ment of the antisymmetric part of the scattering tensor,
which is proportional to X5 in the present case. Let us re-
call that this quantity determines the contribution of the
antiferromagnetism vector %'5 v in linear magneto-optic
effects. Using the terminology of Ref. 20 one can say that
these linear terms, which are proportional to the antifer-
romagnetism vectors, describe the out-of-phase scatter-
ing. However, comparing formula (42) and the expres-
sion for a&& in (40), one can see that the contribution of
the above-mentioned terms is not necessarily exchange
enhanced [that is, containing the factor (J/A)' j, in
contrast with the example given in Ref. 20. The contri-
bution of the magneto-optic term of the exchange nature
P&o is weakened due to the presence of the factor sin8 in
spite of the presence of the factor (J/A)'~ . Neverthe-
less, the appearance of this term together with the ordi-
nary Faraday summand iA.3 in the terms proportional to
( A /J)'~ can testify that the value of the symmetric part

(&~ +)of the off-diagonal components of the tensors a;- '+— may
be considerable. The quantity P&o expressed through the
spin-dependent exchange part of the polarizability of the
pair of ions belonging to a and 13 sublattices
m'~js= ,'Tr(n'~&—) has the form

1P =—W' —&3~"+W—lo 2 rz i2 Is ~ ls

0 0 0
'Ee+)

0 0 0

(E )
a

EJ

ag 0 0

0 0 0
0 0 0

Here

In connection with the aforesaid it is interesting to carry
out measurements of the tensor of scattering from the
Az* acoustic magnons in the presence of an external
magnetic field oriented along the Z axis (the sixfold axis
of the crystal). The quantity sinB will increase linearly
with increasing Geld in this case. The contribution to the
scattering tensor proportional to P&o and at the same
time proportional to (J/A )' sinB will also increase.

(c) For the exchange magnons E6 + the scattering ten-
sors are as follows:

a„+, +, =(3S) cos8(Ee + ) 3/2

I ~/4

X ~ ( 2P—4+ Ps +P6 )sin8
6

16

l6+ (Ps P6)—
6

1/4 '

(44)

As follows from this expression, the scattering from the
exchange magnons E6+ is determined by the exchange
magneto-optic constants only. The main contribution
which does not contain any small parameters is given by
the term proportional to (Ps P6). T—his term may be ex-
pressed through the quantities m'~& as follows:

(P, P)= ,' —
t H„—m»»+—2(rr"," »„)— ","+— »»

+2&3(u»+ ~»; —W» —~»", ) I .

2' 2 1 (tx)Ps
~ ~2 g@jgiSJ~
~ ll ij, a

J

(45)

The positional symmetry of the local surrounding of the
manganese ions leads to the following form of the tensor
of the g factor, for example, of the first ion:

(1) (&)
gxx 0 gxz

g{1) 0 g(&) 0 (46)
LJ

(&) (&)g,.
Using this form of the tensor and also the symmetry rela-
tions between the tensors of the g factor for different Mn
ions, the sum entering the expression for &d d may be
rewritten in terms of the 4 operators as

Note that in the case of the exchange-collinear antifer-
romagnet La2Cu04 the contribution of the exchange
mechanism into the tensor of scattering from the ex-
change magnons was exchange weakened by the small
factor determining the small noncollinearity of the mag-
netic structure.

Thus the scattering from the exchange magnons in
exchange-noncollinear magnets of the RMn03 type exists
even in the exchange approximation. The exchange
mode E4 is a silent mode, that is, in the absence of an
external magnetic field this mode is manifested neither in
infrared spectra nor in Raman ones.

Let us take into account the nonanalytic part of the
dipole-dipole interaction for the case of RMnO3-type
magnets. In the general case without utilizing the ap-
proximation of the isotropic g factor the contribution of
this part of the dipole-dipole interaction to the Hamil-
tonian has the form

X&(~j 'W~Sju= 4Q —I:gxx'(q's, i++s,m)+g»»"('Ps, i +s, iii)+2gxz'+s, v j
ij,a

+ 40+(gran'('Ps, ii++s, iv)+g»»'(+s, n +s, iv)+2gxz'+s, vil+Qzl. ~gzx''Pz+gzz"'Pz'1 . (47)
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In correspondence with the symmetry, all the operators
4 which are transformed like the components of the total
spin of the crystal (see Table II) entered the sum in (47).

For a better understanding of what follows, let us note
that the response of the crystal to the external magnetic
field H is in general determined by the quantity

the canting angle 8 one has at the same time to put the
value g„, equal to zero.

Since the frequencies of all magnetodipole-active
acoustic magnons are nondegenerate in a given magneti-
cally ordered phase T2 taking into account the dipole-
dipole interaction will not lead to the appearance of pure
longitudinal or transverse acoustic magnons. The only
exceptions are the cases when qllOZ and qlOZ. In the
first case by symmetry of the alignment of the vector q
the oscillations of the components of the vector of the
magnetic moment are longitudinal for the c', ' magnon
and transverse for the c(5+ magnons. In the second case
qlOZ the oscillations of the M, component are transverse
for the c(&"' magnon. As to the E5"+ magnons their polar-
ization will be oblique as will be clear from what follows.

For the other directions of the vector q the polariza-
tion of all the acoustic magnons will be oblique due to the
mixing of states caused by the dipole-dipole interaction.
A similar situation takes place for the oscillations of the
electric-dipole moment of the cell during the propagation
of polar optic phonons in crystals belonging to the
lowest-symmetry crystal classes.

Consider the mixing of states and the form of the
scattering tensors in the simplest case qJ.OZ. Since only
the two first terms inside the curly brackets on the left-
hand side of (49) will remain in this case the energy e', "' is
unchanged. The energies of the two other acoustic mag-
nons obtained after diagonalization of the Hamiltonian
&' '+&~& &~ turn out to be independent of the orientation
of the vector q in the X, Y plane. These energies have the
form

&+= ,' t e2+ E3+4g-'+ E2+ 4g ' E3+[&'+T-'l'" j

5& ()M;= — =@~kg;, 5
j,a

which one can determine as the magnetic moment of the
magnetic cell of the crystal. If the g factors of the ions
are anisotropic the tensors g ' contain the o8'-diagonal
components. In this case the components of the total
spin of the cell (the components of the ferromagnetism
vector) and the components of the antiferromagnetism
vector which are transformed in the same manner during
the symmetry operations give a contribution to the quan-
tity M. For example, in the case of RMno3 we have

The following notations are introduced here:

C = c.z
—c.3+4g+ E2

—4g

T —4g+g y C.2C.3y E2 F5 +y E3 C5
(&) —(&)

The intensity of the scattering has the simplest form in
the case when the scattering plane coincides with the XY
plane. The mutual orientations of the wave vectors of the
incident k; and scattered k, light are shown in Fig. 4.
The components of the vector q=k; —k, may be easily
expressed through the angle P and the scattering angle g
if we assume that lk;I = lk, l

because of the inequality
m;, co, ))A+. Taking into account the dipole-dipole in-
teraction leads to the result that the components of the
tensors of scattering from the mixed states of the acoustic
magnons depend on the scattering angle,

+g.f.(ki+ki) )' .

The following notations are used here:

p~ +(g.'"sine —g„',"cosa)
5

1/4
3S~g+=
2Up

1/4
(1) 5+' r 5

where %z' is the component of the ferromagnetism vector.
In the case of UO2 the components of the total spin only
entered the expression for M.

The definition of M given above allows us to write the
nonanalytic part of the dipole-dipole interaction Hamil-
tonian for a magnet of any symmetry in the form

2' (q M)
(48)

Uo Iql'

That is why in what follows, when speaking about the
longitudinal or transverse magnons, one has to under-
stand that the case in point is about the oscillations of the
vector of the total magnetic moment of the cell which are
longitudinal or transverse with respect to the direction of
the magnon propagation, rather than the oscillations of
the vector of the total spin.

Using relations (45), (47), and (38), one can obtain the
part of &d d for the T2 magnetic phase quadratic with
respect to the operators of creation and annihilation of
the magnons. As a result one can get

~g d
= [g+(f+kz+f k2) g (f+4+f —4)— — —

Up

' 1/2

p, (g,'."sine —g,',"cosa)
1

Iql

It is necessary to note the presence of the exchange-
enhanced term in the quantities g+. Notice also that due
to Moriya's paper" the quantities g„, and sin8 have the
same microscopic nature. Because of this if one neglects

FIG. 4. The mutual orientations of the wave vectors of in-

cident and scattered light.
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(&y) 1 ~ ~2 ++
a * =—(a )*

qz 2 gz
E,2

Xexpi P+

t2 ++a„,
C3

I
&

I I I4 I4 Is I6 Ie 'I s

i4 "I ie -ie ~&=~4 ~s ' ~s

(n~)
a&, ——

a&,
C.3

—0+
t2 ~+(a„,)"

C3
t3+

(50)

X exp i —P+

(Q~) (Q~)
The quantities a,„—and a,&

— may be obtained from (50)
by the permutation of the complex-conjugation sign over
components a&, and a„„respectively. The coefficients t2
and t3 of the new unitary transformation have the form

C2 C
1/2

t2+=+ 1+
2Q~ QC2~4T2

t3+ =—
1/2

1+ C
&c'+4T2)

The relationships (50) have to be taken into account dur-
ing the determination of the symmetric and antisyrn-
metric parts of the tensor of the scattering from the
acoustic magnons.

It is of interest to determine the dipole-dipole contribu-
tion to the energy of the acoustic magnons. To do this
one has to compare the energies 0+ of the acoustic mag-
nons in the case when qlOZ and the energies c.2 and c3
which will be observed at q~~OZ.

Let us consider the magnetically ordered phase T3.
The transition to the local coordinate systems for the
functions 4 is described by the formulas (30) in which
one has to change

+2 +3~ +S,I++S,III +6,I++6,III

+s,v —+e,v

+s, II++s, Iv +6,II++6,1v +s,vI +6,vI

The quantities Vs and Ve are determined in the same way
as in. the phase T2.

The energies of the two acoustic magnons c.+ and two
exchange magnons e from formulas (51) are 2 X 2 degen-
erate from the fact that they belong to the two-
dimensional representation of the group C3~(3mm)
which in turn is the unitary point subgroup of the sym-
metry group of the T3 magnetic phase. The states of
these magnons are described by the linear combinations
of +s and 46 and belong to the same representation of the
unitary subgroup. By virtue of this fact there is mixing of
these states. The magnitude of this mixing is determined
by the weak noncollinearity of the magnetic structure,
that is, by sin8. The account of this mixing is not of fun-
damental importance for the consideration of the light
scattering and will not be taken into account in all fur-
ther calculations. For our purposes it is enough to keep
sin8 in the matrix p, putting it to be equal to zero during
the calculation of the u-U coefficients and in expressions
(51) for the magnon energies E+.

The account of the mixing of states for exchange and
acoustic rnagnons is of fundamental importance during
the investigation of the magnetic resonance of exchange
magnons. The situation which appears in this case is
similar to the one which occurs in exchange-collinear
magnets. The exchange modes manifest themselves in
magnetic resonance only owing to those relativistic terms
in the Hamiltonian of the magnet which lead or can lead
to a weak disruption of the initial type of exchange order-
ing.

Taking into account all the abovesaid one can
represent the parts of the operators 4' linear with respect
to the operators g, and g of creation and annihilation of
magnons. For the case of the magnetic phase T3 they
have the form

The form of the p matrix remains the same. Carrying out
the same calculations as in the case of the T2 magnetic
phase, one obtains the energies of the magnons in the
magnetically ordered phase T3 .. gyl I

3

=&12SP

(i, /I, )' (j,+g, )

(I, /i, )' (g, —g, )

0

EP'= es &I,t „E',"'=eS&I,t, ,

E~=3S(I5A~+I6i6+2V5 V6

+[(I~ A 5 I6i 6)—
+4( V, A, + V, t, )( V,I,+ V,I, )]'"),'" .

(51)
4'4 =&12SP
qy/I

2

+6,I++6,111

( A4/I4)' ($4+$4)

(I4/A 4)' (g4 —g4)

0

(52)

The quantities I, i, and A may be obtained from the for-
mulas for I, i, and A for the T2 phase by means of the
following changes:

J4 ~s Je d2 d3

a, —a4, a2 —a3, as ae

Then one can obtain that

+S,I +S,III

+e,v

(Is /4 )'"(ks, i
—

k~, n+ k~s, t+ 4~, n)

0
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+5,I++5, III

+6, I +6,III

+s,v

(I6 /i~)' (g6 t
—g'6 tq+g6 t+g

=+6SP (4~I6)'"(4,t
—4,n

—h, i
—h, n)

0

The two columns Hermitian conjugated to the last two
columns of (52) have to be added to the above expres-
sions. The roman digit in the subscripts of the operators
$5 and g6 numbers the twice-degenerate states. In our ap-
proximations the energies of these states are equal to

'=QI525 for the acoustic magnons and
=QI6i 6 for the exchange magnons.

Consider now the tensors of scattering for the T3 mag-
netic phase. Using relationships (52) and (39) we get the
following.

(a) For the EI
' exchange magnon

1/4
l1a"' = —2(3S) Pzsin28
I1

a„=a&'„'(P2 Ps) .

(b) For the s4'"' acoustic magnon

o a',"„' 0

a" ' = (a"')* 0 0(A )

V

0 0 0

(54)

a'" =i&l2S
' 1/4

A4
[A, ,sin8 —

—,
'

A,2cosB] .

(c) For the acoustic and exchange magnons which have
the energies c.~

' and c,6 ', which correspond to the two-
dimensional irreducible representation of the unitary sub-
group C3&,

0 a„

O Q",„' 0
1 Q(l) 0'J 0'9

0

(53)
Q;J

=
a&,Qg.

0
r/g gz

(a~, )* (a„,)* 0

(55)

where for the case of the acoustic magnons the com-
ponents of (55) are determined by the expressions

(s, r) (s, rr) (s, r) (s, rr)

' 1/2

i (A, ~
—A.4)

P4
Is

and for the exchange magnons

1/2

Q
(5 I) —

Q
(5 II) — a (5 I) —a (5 II) — 3s 3S

Q&&
—

Q&&
— a „' —a„„'

' 1/4

+
Is

' 1/4

cos8,

sin28
1 /4

3S Is
P11

5

(6 I) (6 rr) (6 r) (6 rr)
Qg —

Qg — Q — Q
3S

1/2 1/4
I6

i [(A.3+A4)sin—8.—A, ~cos8] +3SP„
1 /4

l6
cos6

I6

(6, r) (6, rr) (6, r) (6, rr) 3S
3/2

(P4 —2P5 )

1/4I6
sin28 .

l6

It follows from formulas (53) that in contrast to the phase T2 the exchange mode corresponding to the one-dimensional
representation is not silent any more. The tensor of scattering for this mode is determined by the quadratic magneto-
optic constants of the exchange nature. However, all the components of the tensor contain the small factor sin8. In
distinction to the tensor of scattering from the acoustic mode corresponding to the one-dimensional representation, all
the components of the tensor of scattering from the acoustic magnons corresponding to the two-dimensional represen-
tation contain the contribution of the exchange mechanism of the scattering. This contribution is exchange enhanced
in the a&, and a„, components despite the presence of the small factor sin8-. Finally, the tensor of scattering from the
exchange magnons corresponding to the two-dimensional representation does not tend to zero even in the exchange ap-
proximation in the same manner as for the T2 magnetically ordered phase.

Let us turn to the consideration of the inAuence of the dipole-dipole interaction on the magnon spectrum and selec-
tion rules in the magnetically ordered phase T3. Note that besides the magnon c'1 ' all five other magnons are magneto-
dipole active in the given phase. Using the relationships (45)—(47) and (52), one can write the expression for the Hamil-
tonian Wd d in the ordinary Cartesian coordinate system for the case of the arbitrarily oriented vector

f= (cosP sinO, singqsinOq, cosO )

in the form
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~d'd(q) = lgE[coskq(46, r+4, r) —r»nkq(k6, rr
—

$6, rr)]»n8q

+gA, ~ cos4'q(k, rr+k, rr)+i »n4'q(ks, r
—k, r)1»n8q+gA, (g'g+gq)cos8q)' . (56)

gE Pa
Up

In this expression
' 1/2

3mS (g„'"sina —g„',"cosa)
' 1/4I,

l6

Here

Ell KE6+4gEKE sin Oq
2 2 2 2

gx5 =Pa
1/2

3~S
g~v

Up

1/4
A5

ll
=cg5+4gg EA sin Oq

2 = 2 2 2

gw4 =Pa
1/2 1/4

67TS (1) . (1& 4
(g, sina —g„cosa)

Up I4

The solution of the dispersion equation taking into ac-
count the contribution from &'d d shows that at any
orientation of the vector q there exist two transverse
magnons, one exchange and one acoustic. The direction
of the magnetic-moment oscillations corresponding to the
acoustic magnon is always oriented in the XY plane and
at the same time normal to the vector q. These magnons
have the energies QE~ =cE and A ~~ = c.~ . The energies

of the remaining magnons are the solutions of the equa-
tion

It follows from this that the degeneration of the states of
the pair of exchange and acoustic magnons remains only
for the case qllOZ (at 8q=0). The mixing of the states of
the magnons corresponding to the two-dimensional and
one-dimensional magnetodipole-active representations at
0 (8 (m. /2 leads to the appearance of oblique polariza-
tions lying in the qOZ plane of all three magnons. The
pure longitudinal exchange and acoustic magnons appear
at qlOZ (at 8q=m/2) only.

The mixing of the states of these longitudinal magnons
can be neglected in the case of the fulfillment of the con-
dition cE )&c ~ . In this case the longitudinal-transverse

6 5

splitting is supposedly more significant for the exchange
magnon s

(0 — „)(0 —„„)(0— )

—4(n2 —EZEII)(Q2 —
KZAII)gA2 EA cos'8q

—4(&' —eEII)«' —e'A, )gA, sA, »n 8,
—4(Q —„,)(0 —„)g i 8 =0 . (57)

2 2 = 2
QEll

—QE~ —8gE CE (58)

The transition to the operators g and g of the creation
and annihilation of the longitudinal and transverse mag-
nons is determined by the following relations:

1/4'I, I,
Ar+(Ar+l

1/2

(&AII+0AII)

+6,I++6,III

+s, r +s, rrr =exp('4' )+6Sp

+6,v

1/4
A5

gA~ gAr+i—
~ll

0

1/2

(59)

+5,r+ +5, III

q'6, rrr
=exp(i pq )&6Sp

+s,v

1/4I,
l6

' 1/4
l6

I6

EE
r (PE~+ 0E~)+

+Ell

n Elli ((Er /El)+—
CE

6

0

1/2

~EII ~EII

in which the quantity QII is determined by (58).
Let us consider the form of the scattering tensors and

the angle dependencies which appear in the geometry
when the scattering plane coincides with the XY plane.
The orientations of the vectors of incident and scattered
light are shown in Fig. 4. In the case when the polariza-
tion of the incident light e"iOZ and polarization of the
scattered light e"llOZ the intensity of the scattering Ir„r

is determined by the o1T-diagonal components a„d of ten-
sor (55) and depends only on the scattering angle g. For
the scattering from the longitudinal magnons we have

Ir,",
&

—fa„gf sin (f/2)
and for the scattering from the transverse magnons

Ir„I —~a ~
cos (g/2) .
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The presence of the factors (c./Sl) +—' in formulas (59)
slightly changes the form of the components of the ten-
sors of scattering from the longitudinal magnons, for ex-
ample,

1/2
3S

P2
i [(A,3+F4)s—in'

—k,cos8]

+3'))

1/2

nEll
1/4

Ell cos8

and for the diagonal components
1/2

CE

d g

One can easily obtain analogous formulas for the com-
ponents of the tensors of scattering from the acoustic lon-
gitudinal magnon with the help of (59). Note that all the
peculiarities connected with the contribution of the ex-
change mechanism of scattering will remain as before.

The analysis of the inhuence of the dipole-dipole in-
teraction on the behavior of the spectra of scattering in
fact reduces to correctly taking into account the addi-
tional symmetry of the problem which is generated by the
appearance of the magnon wave vector. This additional
symmetry is connected with the orientation of the mag-
non wave vector in a crystal of the given symmetry. It is
easy to see that if we do not take into account the dipole-
dipole interaction under the condition when the twice-
degenerate states of acoustic and exchange magnons are

Thus in the case of backward scattering at qlOZ the in-
tensity of the scattering from the transverse magnons
turns to zero. The situation here is similar to the one
that took place in the case of UO2.

The picture is slightly more complicated if e"lOZ and
c"lOZ. The intensity of scattering is determined by the
diagonal ad components of the tensor (55) in this case.
For the scattering from the transverse magnons we have

I~„~—ad'
l

cos 3(P+Q/2)

and for the scattering from the longitudinal ones

I " —la"
l

sin 3(y+@/2) .

The intensity of the scattering depends on the angle P be-
tween the OX axis and the wave vector of the incident
light for these polarizations. However, this intensity does
not depend on the choice of the orientation of the OX axis
within the plane normal to the QZ axis.

The form of the obtained angular dependences does not
depend on taking into account the mixing of the states of
acoustic and exchange magnons. If one neglects the mix-
ing one can obtain for the scattering from the transverse
magnons

indistinguishable with respect to the energy all the angu-
lar dependencies will be absent for the above-considered
geometry of scattering. That is why it is of interest to
carry out the experiment to observe these angular depen-
dencies. Their detection can testify to the considerably
large value of the longitudinal-transverse splitting.

V. MAGNETIC STRUCTURE QF THE Nd2CuO4 TYPE

Consider the light scattering from magnons in the
four-sublattice exchange-noncollinear antiferromagnet
Nd2CuO4. The results published earlier will be amplified
by taking into account the dipole-dipole interaction and
furthermore by the consideration of the peculiarities of
the manifestation of the exchange mechanism of scatter-
ing in the presence of an external magnetic field.

In the stoichiometric composition Nd2CuO„ is a four-
sublattice exchange-noncollinear antiferromagnet with
the ordering temperature Tz =276 K. Nd2Cu04
possesses a unique magnetic structure of the "plane
cross" type in the magnetically ordered state. ' ' The
existence of this peculiar magnetic ordering in Nd2Cu04
may be considered as reliably revealed by measurements
in an external magnetic field. ' ' The exchange-
noncollinear magnetic phase which exists in the tempera-
ture intervals' ' 1.S & T &30 K and 75 K& T& T~ is
shown in Fig. 5. We will restrict ourselves to the con-
sideration of this magnetic phase only.

The structural phase transition

D4h (I4/mmm):D4h (P4z/mnm)

taking place at T =300 K precedes the magnetic ordering
of the spins of the copper ions. ' ' ' The results of Ref.
18 in which the light scattering from the electron transi-
tions between the basic multiplet I9/2 and the first excit-
ed multiplet I~]/2 of the Nd + ion has been studied can
testify in favor of this phase transition. A doublet struc-
ture of spectra in the temperature interval 10 & T & 150 K
has been observed. The authors of Ref. 18 interpreted
this structure of spectra as the so-called Davydov split-
ting phenomenon based on the fact that the symmetry
group of Nd2Cu04 is D4h (I4/mmm) and the unit cell
contains two neodymium ions occupying positions with
the local symmetry C«. However, if one considers that
the structural phase transition D4& =D4h did occur the
shift of the copper ions has to be necessarily accompanied
by displacements of the neodymium ions. In this case the

'
.C(

Cu (X=O)

Cu (Z=c/2)

FIG. 5. Magnetic phase ~2 of Nd~Cu04.
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number of neodymium ions in the unit cell becomes equal
to 8 and their positional symmetry lowers to C, . The
last circumstance has evidently been manifested in the
spectra of scattering observed in Ref. 18. Unlike the elec-
tron spectra of scattering, the phonon ones are less sensi-
tive to the lowering of the local symmetry and the pres-
ence of the structural distortions because of the small ab-
solute value of the last.

It is necessary, however, to note that the exchange-
noncollinear magnetic structure shown in Fig. 5 can exist
in both the presence and absence of structural distortions.
In what follows we will assume that structural distortions

leading to copper ion displacements are present and the
symmetry of the paramagnetic phase is D4&. The mag-
netic representation of the given group is realized by the
components of the vectors which are linear combinations
of the copper ion spins of the form (3). The classification
of the components of these vectors from (3) in accordance
with the irreducible representation of this group is given
in Table III. Here and further we are using the same
numbering of the copper ions (see Fig. 5) and the frequen-
cies of magnetic resonance as used in Refs. 9 and 12.

Based on Table III one can represent the Hamiltonian
of the magnetic subsystem of the copper ions in the form

&=JoF +Ji(Li+Lz)+az(L„+Lz ) +a4(L, Lz„)—+a6(L,„Lz )z+—as(L, +Lz„) +d(F„L3 +F L3„)+aL3,

+ ,', D[—(L,—Lz) +(F,—L, ) —8(F.L, ) —8(F Lz) ]—H„(g„„F„+g„L3) H(g —F +gy L3 ) g H P' (60)

L2 L3x Li
L3 =p L2 =p L)
L L(, L(, L2,

(61)

where J, D, d, and a are the constants of bilinear ex-
change, four-spin exchange, Dzyaloshinskii-Moriya in-
teraction, and anisotropy, respectively. The explicit form
of these constants written in terms of the constants of in-
tersublattice interactions is given in Ref. 9. The follow-
ing equilibrium values of the linear combinations of the
copper spins (3)

Li Lzy:&8S

which are transformed in accordance with the ~2 irreduc-
ible representation of the D4& group correspond to the
magnetic phase under consideration. The given magneti-
cally ordered phase is stable under the conditions

D) 0, a2(0, a4, a6, a8 .

The transition to the local coordinate systems which
are necessary for the calculations of the magnon energies
is determined by the relations

Here L runs from 0 to 3 which corresponds to F, L &, L2,
and L3. The quantities qI and pz are determined by the
formulas

Po=8S(Jo —J, ), P, =Pz = —16Saz,

p&
= —8S(J, +2az+a),

qo=16S(a4 —az),

q, =
qz =8S (Jo —2J, 4S D —d——4az ),

q3=8S[4S D+2(a6 —az)] .

The group D4 is the unitary subgroup for the magnetical-
ly ordered phase &2 in Nd2Cu04. The energies of the two
acoustic magnons corresponding to the two-dimensional
representation of this group are degenerate,
E~ =E„=+p,q, . The energy of the third acoustic

magnon e„=+poqo is lower than that of the first two.

This is connected with the fact that the expression for p &

contains a strong intralayer anisotropy which prevents
the copper spins from leaving the XY plane, and that the
expression for qo contains only a weak interlayer anisot-
ropy. This circumstance has been discussed in Refs. 9

L2

L3,

Li L3„

L2y =P L 3y

L3,

TABLE III. Classification of the components of the vectors
L in accordance with the irreducible representations of the
group D4p.

14

where the matrix p has the form

1/&Z 0 1/v'Z

P = 1/&2 0 1/&2
0 1 0

(62)

,'$(qI. QI'. p'r. &l'. )-. —
I.

(63)

A.fter the substitution of (61) and (10) into (60) it is easy
to see that the part of the Hamiltonian ~' ' quadratic
with respect to the operators of spin deviations takes the
canonical form

7]p l4 ]g

A2g
7 5y B]g
&7 Beg
w9, Eg

A 1„
w4', A2„
+6~ B1 u

8) B2u
+10~ Eu

F,
L3z

F„,(L,
Fy, L3

L) +L2y
L ry

—Lax
L&x L2y
L)y+L2

(L„
L„
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and 12 in greater detail. The value of the energy of the
exchange magnon Ez =Qp3q3 is determined by the con-
stant of the four-spin exchange D for which the relation-
ship 1/4

The b and c components of the tensors of scattering from
the acoustic magnons contain the exchange-weakened
constants of the linear magneto-optic effects,

1/4

Ji ))D (65) c =( —X, +A,,)v'S b =il3v 2S
Po

is satisfied. Any measurements of the value of the energy
cE are not known to us so far.

The transition to the operators g and g„of the
creation and annihilation of the magnons is determined
by the relations

L,„'=&2Sr,.(g'.+g.), L,,'=iv'2S d,.(g'. g.),—
where

Similarly to the cases of UO2 and RMn03 the scattering
from the acoustic magnons in Nd2Cu04 is absent in the
exchange approximation.

An absolutely different situation takes place in the case
of scattering from the exchange magnons. The com-
ponents of the scattering tensor contain the constants of
the quadratic magneto-optic effects of the exchange na-
ture:

PL
Lv

qL

1/4
QL

dLv=
PL

1/4
d =(o2—o, )S&8S

J1 2a2 a

4S D+2(a6 —a2)

' 1/4

(69)

Thus along with the exchange-enhanced coe ancients

d», d2&, and to& for the acoustic magnons the
1 2' 3

coefficient t3z for the exchange magnon will also be ex-
change enhanced due to the relation (65).

Consider now the spin-dependent part of the dielectric
permittivity Ac; . We keep only those terms quadratic
with respect to the operators L which have the exchange
nature

AE —0 pF +0 1L1+0 2L2

AEyy
—0 pF +0 2L1+0 1L2

bs„=o 3F +cr4(L, +L2),
b, E y

=A,3F, +cr5(L, L2),

~~yz 11Fx+X2L 3y, AEyz 11Fy X2L 3x

The orthogonality relations (7) for the vectors L&
(f3=0, 1,2, 3) have been used while obtaining expressions
(67). The coefficients o. may be expressed through the
spin-dependent polarizabilities m;& of the pair of ions
from a and P sublattices

In contrast with all the cases considered above these
magneto-optic constants are exchange enhanced. Thus a
unique situation exists in Nd2Cu04, namely, the intensity
of scattering from the exchange magnon mode will be
several orders of magnitude larger than the intensity of
scattering from the acoustic modes.

Consider the inAuence of the dipole-dipole interaction
on the states and energies of the acoustic magnons. The
exchange magnon is not magnetodipole active in this
crystal. The tensor of the g factors for the first ion has
the off-diagonal components

gxx gxy

gij gxy gxx

0 0 g„
(70)

The equalities g =g and g =g are explicitly taken
into account while writing the expression (70).

Using (70) and Table III, one can write the Hamiltoni-
ail JYd d as

v~ If.(g..F.+g.,L 3, )
=2~ 2

Vp

oo= —,'Tr(~.".»+ ~,",»),
13 14o2 6 Tr(~xxll ~xxll )&

cr4= —Tl(Ir ll Ir I I ),12 14

o. , = —,Tr(Ir,„„rr „), —12 14

cr 3
=

—,
' Tr(Ir,'„,),

+f(g„F+g L, )+fg FI . (71)

Here f=q q '. The part of &„d obtained after the
transition to the operators g and g of creation and an-
nihilation of the magnons has the form

~'d'd =
I g if.(k~, +k~, )+—g lf, (kg, +kg, )

o5= —,'Tr(Ir„' „) .

+ &g 3f.(k~, —k~, ) I' (72)

where
1/41/2

8mS P1

Vp

1/4

0 0 c 0
0 0 0, a '= 0
—c 0 0 0

0 b 0 d
—b 0 0, a = 0
0 0 0 0

0 0
0 c
—c 0

a
' 1/2

16~S ~o
Pagzz

Vo Po
(68)

0 0
—d 0 The diagonalization of the Hamiltonian &+Skid d leads

to the same situation which was realized for the T3 mag-0 0

If one substitutes the equilibrium values of the operators
L into formulas (67) the change of the dielectric permit-
tivity caused by magnetic ordering is obtained.

Substituting (61) and (66) into expressions (67) and us-

ing the definition (1) one can obtain the tensors of scatter-
ing from magnons for Nd2Cu04.
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netic phase of RMn03. There always exists the trans-
verse magnon A~~=c.„,which corresponds to the oscil-

1

lations of the magnetic moment lying in the XYplane, for
any orientation of the wave vector q. The polarizations
of the other two magnons are oblique and lying in the
Ozq plane. The energies of these magnons are deter-
mined by the equation

( fl —e „)(0—E„)—(A~ —s ~ )g, E „cos 8

—(0 —E„)g,s„sin 8 =0 .

In the case qlOZ the polarization of one of the magnons
is pure longitudinal and the polarization of the other one
is pure transverse.

The coeKcients of the unitary transformation from the
states of the ordinary magnons to the states of the
longitudinal-transverse magnons have the following form.

(a) For the transverse magnons

t~ „=—cosy&, t~ „=—sing, dz „=0.

(b) For the other two magnons with the oblique polar-
ization

t„„=E„g,sin8 sing~(Q„—E~ )N„,

t„„=—E „g,sin8„cosy& (0„—E ~ )N„,

d„„=is~ g~cos8~(A„—s„)N„.

N„= ID [E„g,(Q„—E„)sin 8

+E„g3(Q„—E„)cos 8 ]]

ing tensors contain the induced magnetic moment
m =4SgpiiH/J, as a factor in the region of magnetic
fields of interest. The quantity m is small because the
value J, contains the large interlayer exchange EC &4. It is
possible to show that in the case of a magnetic field
oriented along the Z axis, H~~OZ, all the magneto-optical
constants of the exchange nature give the contribution to
the components of the scattering tensor; however, besides
the small factor m all these contributions contain the
exchange-weakened t and d coefFicients. Thus one can
neglect the changes of the scattering tensors in this case.

For the magnetic field H~~OX mixing of the states of
A 3 and 3 2E magnons takes place. The tensor of the

scattering from the 3 2 and E modes has the form

Id, 0 0
, Ea-

EJ
0 d2 C)

0 c2 d3

The exchange-enhanced magneto-optic constant oo gives
a contribution to the components d, and dz. The com-
ponent d3 contains the exchange-enhanced constant o3.
However, these contributions contain the factor m . The
tensor of the scattering from the A &, A 3 modes contains
the exchange-weakened contribution of the magneto-
optic constant a5. An analogous situation takes place for
the case HE~[110]. Thus the role of the magneto-optic
constants of the exchange nature, o.o, o.3, o.4, and o.5, is
inessential in the case of light scattering in the presence
of an external magnetic field.

The behavior of the scattering tensors in the region of
the fields corresponding to the spin-reorientation phase
transitions has to be considered separately.

Thus the form of the tensors of scattering becomes
dependent on the scattering geometry if one takes into
account the dipole-dipole interaction. This dependence is
determined by the relation

a&j a&j t~
) p+ aj&t~ p+ a&j d

The analysis of this relation shows that at qlOZ and q~~OZ
in the geometry of backward scattering the only possible
scattering is from the longitudinal magnons. It is similar
to the foregoing cases of UO2 and RMn03.

Let us brieAy discuss the inhuence of the external mag-
netic field on the behavior of the intensity of scattering
and the changes of the form of the scattering tensor in
Nd2Cu04. We will be primarily interested in the appear-
ance of the contributions of the exchange magneto-optic
constants o.0, o.3, o4, and o~ which did not previously
enter the tensor of scattering. However, we will not con-
sider the region of the fields in which spin-reorientation
phase transitions ' " take place. The behavior of the
magnon modes of the copper magnetic subsystem in
Nd2CuO4 in an external magnetic field oriented along the
highly symmetric directions has been considered in Ref.
9.

First of all it is necessary to note that all the newly ap-
peared contributions and new components of the scatter-

VI. SUMMARY

The study of the Raman light scattering from magnons
in many-sublattice exchange-noncollinear magnets car-
ried out here has shown that these objects provide favor-
able situations for the detection and investigation of the
exchange magnon modes by means of light scattering
spectroscopy. It was shown that, in contrast with
exchange-collinear magnets, the intensity of the scatter-
ing from some exchange magnons is determined by the
magneto-optic constants of the exchange nature, as in
hexagonal perovskites, and does not contain any small
factors. It has also been demonstrated that, for the
"plane cross" exchange-noncollinear magnetic ordering
which exists in Nd2Cu04, the components of the scatter-
ing tensor are proportional to the constants of the quad-
ratic magneto-optic efFects of the exchange nature, and
what is more these constants are exchange enhanced.
Due to this circumstance the intensity of the Raman light
scattering from the exchange modes has to be several or-
ders of magnitude higher than the intensity of the scatter-
ing from the acoustic modes.

Our approach allowed us to carry out an analysis of
the experiments of Ref. 27. As was shown the Raman
light scattering from the exchange magnon in U02 has
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actually been observed in Ref. 27. In exact correspon-
dence with our theoretical results the observed intensity
of scattering from the exchange magnon was higher than
the intensity of scattering from the acoustic ones. As was
shown in Sec. III the tensor of scattering from the ex-
change magnon in UO2 is determined by the magneto-
optic constant of the exchange nature and does not con-
tain any small factors.

Let us recall that the intensity of the well-studied two-
magnon light scattering is precisely determined by the
quadratic magneto-optic constants of the exchange na-
ture. ' ' It is quite possible that the exchange magnons
have already been observed in experiments on light

scattering in exchange-noncollinear magnets but not,
however, been identified, as in the case of UOz.
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