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Quantum difFusion of muonium in the alkali halides
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Electronic-structure calculations are described for muonium in NaF, giving a value for the
transfer-matrix element ~t~ l~ 9 mK and a muonium-phonon coupling strength characterized by a
deformation potential ~Es~ 2.6 eV. When used in the small polaronic quantum diffusion model,
these values do give the crossover from coherent to incoherent tunneling at 100 K, as observed in
other alkali halides. However, a large upward renormalization of ~t~ ~~ is needed if this theory is to
give the observed tunneling rates.

I. INTRODUCTION

Studies of the motion of muonium (Mu) in insulating
crystals provide a fundamental test of our ideas of quan-
tum motion of light impurities in solids. A minimum is
observed in the relaxation rate of the muons of muonium
(Mu) as a function of temperature in alkali halide and
other insulating crystals. In the alkali halides, this min-
imum occurs at = 70 K in KC1 (Ref. 1) and 50 K in
NaCl, and is interpreted as the crossover from coher-
ent to incoherent quantum diffusion. By 20 K in NaC1,
Mu appears to be delocalized in a coherent wave function
spanning several sites. In solid N2, a minimum in the Mu
inverse residence time on a site is seen at 50 K, along
with other interesting behavior. One of the Mu species
in CuCl shows a similar minimum. Because the crystals
are insulating, these studies provide the first experimen-
tal examples of quantum diffusion around the coherent-
incoherent crossover that are uncontaminated by the ef-
fects of conduction electrons.

Theories of quantum motion of light impurities in
solids (Sec. VI) basically begin with the small polaron
model of a particle which tunnels between adjacent
lattice sites and is linearly coupled to phonons through a
site-diagonal interaction,

II = t) c( c~ + H.c—. '+ ) (d~ga ) G~p

E, ~m) qA

+ glakc& clf'gA~
lqA

where c& creates an electron on site l, a & creates a
phonon of wave vector q and polarization A, and Pzg =
aq~ + a &. The small polaronic theory of the crossover—qA

from coherent to incoherent quantum difFusion5 gives a
minimum in the tunneling rate at the temperature where

the impeding of coherent bandlike propagation by in-
creasing numbers of thermal phonons is short circuited by
the decrease in the effective barrier height that accompa-
nies increased thermal vibration. However, the (partly)
renormalized tunneling matrix element t and phonon cou-
pling g~qp appearing in the small polaron Hamiltonian

(1) are not the bare tl l and g& & that would result from

a microscopic calculation based on the actual Mu po-
tential energy surface within the rigid host crystal. In-
stead, Shore and Sander found that t as deduced from
experiments on impurities in alkali halides was appre-
ciably larger (by factors of 10 —10 ) than reasonable
estimates of the microscopic t( ~. The reasons for this
are becoming clear s, io—i2 The state space of the particle
has been truncated~ in (1) to the Wannier states of the
lowest band, so the particle's dynamics during tunneling
are lost. In reality, the high-frequency modes of the envi-
ronment follow the particle nearly adiabatically, reducing
the effective barrier heights. Since this dynamical efFect
has been lost, it must be incorporated in t. Although a
general framework for the calculation of this renormal-
ization t( ~ ~ t is now in place, no estimates of
its magnitude are yet available. This is partly because
values of the microscopic t( & have not been available for
comparison. Additional information about the Mu po-
tential in the distorted lattice will also be needed to make
quantitative comparison of the theories with experiment.

This information about the potential surfaces and
particle-phonon interactions will come from electronic-
structure calculations giving the energy of the impurity
as a function of lattice configuration. We demonstrate
here that such calculations are practical for Mu in an
alkali halide. We report our estimates of the micro-
scopic intersite transfer-matrix elements t(0~ and particle-
phonon coupling strengths g& & for Mu in an alkali halidelqA
in Secs. III and IV, respectively. These are the two basic
parameters needed to begin a quantitative comparison
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of theory and experiment. Our estimates use the stan-
dard methods ' of electronic-structure calculation for
defects in insulators. With further work, it should be
possible to obtain more information about the potential
energy surfaces to make comparisons of theory with ex-
periment beyond this initial and elementary attempt. On
the assumption that Mu will behave similarly in all the
alkali halides, we chose NaF because it is relatively easy
to simulate.

However, an important observation results from the
present work. We find that using our microscopic values
in place of t and gi~~ in the truncated Hamiltonian (1)
does give a crossover temperature T, h 100 K in this
material, as observed in the other alkali halides. Qn the
other hand, the calculated residence time ls orders-of-
magnitud. e longer than that observed. This implies an
upward renormalization t/t( ) 102. This large value is
surprising, given the characteristic zero-point frequency

4900 K that we find. for this very light impurity,
which is far higher than any of the phonon frequencies of
the host crystal.

within this cube, using as the quantum cluster two ad.—

joining cubes (12 ions). Since the computer time needed
to compute the energy for a single p+ position is signifi-
cant and since the Mu band is expected to be narrow, the
full Mu potential surface was not mapped out. Instead. ,
the energy in the rigid lattice with d = 2.31 A (the equi-
librium spacing) was calculated for p+ positions along
various symmetry directions in the fundamental 1/32 of
the cube (Fig. 1).

In addition, the relaxation energy was evaluated when
the ions of the quantum cluster and the rest of the crystal
relax to equilibrium with the Mu in its activated (saddle-
point) position at the center of the common face between
the two cubes.

III. TUNNELING MATH. IX. ELEMENT

A. Numerical calculation

II. MUONIUM POTENTIAL

The energy of Mu in NaF was calculated for various
p+ positions using the ICECAP methodology ' for point
defects in ionic crystals. The total energy of the system
is evaluated for given positions of the impurity nucleus
(here a positive muon, p+) and of the host ion nuclei.
The electrons of the neighboring ions, and the Mu elec-
tron, are treated. fully quantum mechanically as an all-
electron molecular cluster using the unrestricted Hartree-
Fock self-consistent Geld approximation. The rest of the
crystal is described by classical shell-model ions in equi-
librium with the quantum cluster. "

Na+ and. F are isoelectronic, and since Mu is neutral
the two diferent ions are almost indistinguishable to it.
Consequently, the lattice seen by the Mu is simple cu-
bic, with the classical Mu sites at the centers of cubes
of side d having four ions of each kind at the corners.
The Mu potential was found by moving the p+ around

The results of our calculations of the Mu potential
in the rigid lattice (with d = 2.31 A.) were reasonably
well described by a potential of (135 eV) x exp( —[6~r-
R,; „~/dj '

) placed at each ion. site. The resulting poten-
tial is shown as solid curves in Fig. 1, and was used to in-
terpolate the calculated potential throughout the crystal.
The Schrodinger equation for a p+ in this potential was
then solved by a numerical relaxation technique for two
boundary conditions on the cube faces, odd (k = 7r, 7r, 7r)
and even (lt. = 0) parity. The difference of the two en-
ergies gives the rigid-lattice bandwidth, W = 12~t(o) ~.

The results of calculations for difFerent numbers of Inesh
points within 1/8 of the cube of side d are given in Ta-
ble I. Although changing the mesh spacing shifts the
band by much more than the very narrow bandwidth,
the width remains consistently 10 peV, leading to our
estimate of the bare tunneling matrix element t~ ~ —9
mK.

10

0
0.0 0.2 0.3 0.4 0.5

TABLE I. Bandwidths calculated numerically using vari-
ous mesh spacings. An % x N x N mesh has N —1 equal
divisions along each direction within 1/8 of the simple cubic
unit cell. The bottom of the band is at k = 0, and the top
of the band is at k = (vr, vr, vr). The transfer-matrix element
is given by t = —W/12, where W is the bandwidth. The
result of the approximate (tight-binding) calculation and the
energy as estimated by the zero-point energy in the parabolic
well 6tted around the p,

+ site are given in the last row.

xid

I IG. 1. Muonium potential in three directions from the
interstitial site. The solid curves are the fit described in the
text. The dashed curves show our best isotropic parabola fit
near the minimum, and (as lighter lines) the corresponding
energy (3~ ~/2) and wave function.

Mesh
21 x 21 x 21
31 x 31 x 31
41 x 41 x 41
51 x 51 x 51
Approximate

Eg ( ) (eV) @k=o (eV)
0.657 751 0.657 741
0.658 753 0.658 744
0.659 103 0.659 094
0.659 265 0.659 256

0.629

W (peV)
10.1
9.57
9.41
9.33
4.9

t (mK)
-9.7
-9.3
-9.1
-9.1
-4.8
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B. Approximate calculation

In addition, the tight-binding method as described by
Ashcroft and Mermin was used to estimate t~ ~. To
do so, only potential in the regions in the vicinity of the
minimum at the cube center and around the saddle point
at the face center were needed. Around the cube center,
an isotropic harmonic potential is a good approximation,
shown as the dashed line in Fig. 1. This harmonic po-
tential was used as the "atomic" potential of the tight-
binding method, and the corresponding well-localized os-
cillator wave function is also shown. The two-center in-
tegrals involve the overlap of these wave functions on ad-
jacent sites, which is only significant near the face-center
saddle point, and were evaluated using a quadratic fit
to the potential in that region. The result of this esti-
mate is t~ ~ —5 mK, in satisfactory agreement with the
numerical calculations.

IV. DEFORMATION POTENTIAL PARAMETER

Mu is a neutral particle, and as such sees little dif-
ference between the positive and negative ions and ex-
periences only short-range forces exerted by the ions.
Thus, the predominant Mu-phonon coupling is to the
longitudinal-acoustic phonon branch, and the strength of
this coupling can be characterized by a deformation po-
tential Eg. This was evaluated from the force exerted on
the p+ by the neighboring ions, given by computations
involving small displacements of those ions, with the re-
sult Eg ———2.64 eV. For this calculation, the p+ was
located at the cube center, a reasonable approximation
since the wave function of Fig. 1 is well localized.

V. RELAXATION ENERGY

The Mu potential in the rigid lattice shown in Fig. 1
is for the situation where the lattice is held rigid and the
nuclei do not move at all in response to the motion of
the impurity. This is the usual Condon approximation.
The opposite extreme would occur if the lattice were to
follow the Mu s motion adiabatically, remaining in equi-
librium with it at each position throughout its trajec-
tory. How difFerent are the two cases? Prom Fig. 1, the
barrier height is approximately 1.45 eV for motion from
one cube center to an adjacent one. We have evaluated
the relaxation energy with the Mu in the saddle-point
position at the center of the common face between two
cubes. This was done using a quantum cluster consist-
ing of the saddle-point Mu and its four nearest-neighbor
ions, which are two Na+'s and two F 's. The relaxation
energy to equilibrium is found to be 1.34 eV. This means
that the barrier height is reduced from 1.45 to 0.11 eV,
i.e., by an order of magnitude. The calculated outward
relaxation is substantial but reasonable: the two Na+'s
are radially displaced by 18%, the two F 's by 20%, with
some associated expansion of the Mu electron's mean ra-
dius. In this calculation all ions of the infinite crystal
are relaxed to equilibrium. The magnitude of the bar-

rier height reduction in this case supports the view that
the renormalization e8'ect t~ ~ ~ t could be potentially
significant, since it depends roughly exponentially on the
barrier height. The question to which we do not yet
have an answer is to what extent the barrier has time
to respond to the tunneling Mu. The characteristic fre-
quency u, ~ 4900 K that we find using the rigid-lattice
potential of Fig. 1 suggests not very much. The way in
which theories of quantum diffusion have begun to ad-
dress this question in a way which should be calculable
by electronic-structure techniques such as those we use
here are outlined in Sec. VIC below.

VI. RELATION TO THEORIES
OF QUANTUM DIFFUSION

A. Small polaron theory

In the small polaron theory of the truncated Hamilto-
nian (1) the time-of-stay iss'7'

n~t~
B'"' "/h2, incoherent channel

2+n~t~2Z/vrh, coherent channel, (2)

where n is the coordination number and

(p(u )
Z = exp — G u coth &2)

is a renormalization constant, while

Quantum propagation is a fascinating subject that
spans several regimes and diverse systems. ' ' Both co-
herent, or bandlike, quasiparticle propagation and inco-
herent tunneling are possible. Scattering by the envi-
ronment impedes coherent propagation but assists inco-
herent motion, so the coherent mobility decreases with
increasing temperature while the incoherent mobility in-
creases. Several theories have been discussed in the con-
text of, or seem relevant to, the quantum propagation of
Mu, and we summarize them here and discuss the future
of calculations using our electronic-structure techniques.

There is a fundamental difFerence between measure-
ments of muon-spin relaxation (@SR) and macroscopic
transport measurements. ' ' ' @SR basically measures
the correlation time of the e8'ective magnetic fields at
the position of the muon. When these are static fields
originating from the surrounding nuclei, their correlation
length is about a lattice spacing, and the relevant correla-
tion time is the time-of-stay w, on a site. In the coherent
quantum difFusion regime, T, is not directly related to
the long-range difFusion constant. For example, in small
polaron theory the difFusion constant has the well-known
T caused by two-phonon scattering in a narrow band.
However, since the two-phonon mean free path must re-
main larger than the lattice spacing for this picture to
be valid, v, is not governed by this scattering and has a
diferent temperature dependence.
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pincoh g

cos
XG cd 1 ~

sink (~~ )
(4)

For the effective phonon density of states G, which in-
cludes the particle-phonon coupling, we use a refinement
of an earlier version that is suitable for the alkali-halide

~ . (o) .structure. The sum over ions appearing in g& A
is re-

placed by a spherical average. Then, using the Debye
model and the long-wavelength limit of the coupling func-
tion, we obtain

G(Cd) = gpCd
3ji(z)

z
sin x1— (5)

where x = (3n ) ~ cd, z = ~3xj2, and ji is a Bessel
function. The coupling constant go is given by

3E~2

(M s 2) (kti O~ )

n111 0 4
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7
=: Fit to KCI data of Kiefl et6
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with M the mean ion mass and OD the Debye
temperature. Our value for Ep yields go

——260 for Mu
in NaF.

The result of using our values of t( ) and Eg (or g& I )
in place of t and g~qA to calculate the inverse time-of-
stay using Eqs. (2) and (5) is shown as the lower curve
in Fig. 2. The crossover temperature is T, h 140 K,
which is of the same order as observed in KCl (Ref. 1) and
NaCl. However, many orders of magnitude separate the
observed and calculated rates. To find the renormalized
values that would be needed to represent the data, we
attempted to fit the KCl data, and show the best over-
all representation that we found as the upper curve in
Fig. 2. The fitted deformation potential ~Eg~ = 1.4 eV is
slightly smaller than that calculated for NaF. The slopes
in the incoherent regime and in the coherent regime near

T, h adequately represent the data there. However, we
were unable to reproduce the three orders of magnitude
increase in 1/7; that occurs below T, h, while keeping
OD reasonable. Stamp and Zhang have proposed an
intriguing alternative, in which ~t ~—:~Z~t~ 10 K and
an activation energy E 33 meV would fit the data.
This activation energy corresponds to go 88, which
gives Z 10 . It is not clear that the rate they con-
sider is related to the correlation time of the effective
fields measured in the experiment.

B. Two-phonen coupling

Quite good fits to the experimental data for Mu
relaxation have been found using adjustable parameters
in modifications of the small polaron model. One modi-
fication that has been included is the effect of two-phonon
scattering within the narrow coherent band. This does
limit the difFusion constant, but since the two-phonon
mean free path should be larger than the lattice spac-
ing for this picture to remain valid, it seems irrelevant
to the Mu relaxation rate. A second modification is to
attempt to model the barrier fluctuations that lead to
level coincidences favorable to tunneling by expanding
the transfer matrix element in displacements from the
undistorted configuration

t((a, )) = t(') + ) t,'„'y,„
qA

(2)+ P q~p~q~+24'qqA'i PqqAq +
q1 A1
q2A2

The coefIicients t(') can, in principle, be determined by
electronic-structure methods, but the concern is that in
situations where these barrier fIuctuations are important
the effects are too large to be treated by this kind of
perturbative expansion. Specifically, the present work
(Sec. V) indicates that t(fR, )) )) t(o) for typical R;.
An expansion of lnt((R, }) about its minimum to in-
troduce lattice-dynamical effects has been suggested by
Kagan and Klinger. The path-integral approach intro-
duces similar effects. The magnitude of the contribution
of these phonon effects is not yet known. The relaxation
energy calculation of Sec. V shows that, between the
cases of no following and instantaneous following of the
Mu by the surrounding ions (where the phonon processes
would play a role), there is one full order of magnitude
in energy. The outstanding question then is, how can
these phonon effects be calculated and, when they are,
how can they account for the large discrepancy between
our rigid-lattice calculation and experiment, in view of
the high zero-point frequency of the muon in the crystal
compared to the host ion vibration frequencies.

I"IG. 2. Inverse time of stay for Mu in alkali halides as a
function of temperature, as given by small-polaron theory.
The lower curve is for NaF, using our calculated bare values
(~tC i~ = 9 mK, go

——260, Qo = 354 K). The upper curve is
our fit (~t

~

= 2.5 K, gs ——120, O~ = 200 K) to the data
(points) of Kie8 et al. (Ref. 1) for Mu in KCl.

C. Path integrals

The alternative approach ' that uses path-
integral methods seems to be better suited to these situ-
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ations. The approach is based on a saddle-point approx-
imation in which the Euclidean efFective action (or
the influence functional ' ) for the tunneling particle is
expanded about a "classical trajectory" that minimizes
this effective action. To find this instanton trajectory
through realistic computations, the particle-lattice inter-
actions and phonon modes are needed. Sections II—IV
show how the former can be computed. Likely the har-
monic approximation will be used initially, and it is not
yet known how important the effects of lattice anhar-
monicity may be.

The saddle-point approximation suggests that there is
a characteristic time interval during which the lattice can
respond to the particle as it tunnels. The instanton path,
which is the classical Euclidean trajectory in the effective
potential, identifies this interval as the duration of the
"Hip" where the tunneling particle crosses from one site
to the next. ' The only phonon modes that can fol-
low the particle adiabatically as it tunnels are those with
frequencies that are high on the scale of this Hip time.
Mu is an extremely light impurity, and the characteristic
classical frequency w, ~ that we calculate in NaF (4900 K)
is far higher than any phonon frequencies. If the frequen-
cies characterizing the instanton trajectory are u, I, the
high-frequency renormalization t~ ~ ~ t should be small.
Such large renormalization would, instead, seem to re-
quire the characteristic frequencies to be smaller than
OD. If this were true, the resulting temperature d.epen-
dence could be related to the inability of small polaron
theory to reproduce the large change with temperature
below T, h. Our fitted ~t~ for KC1 is 300 times larger
than our calculated ~t( )

~

for NaF. This is similar to the

differences found by Shore and Sander. However, the
circumstances are somewhat different.

VII. SUMMARY

In summary, we have estimated the bare or micro-
scopic transfer-matrix element t~ ~ and particle-phonon
coupling strength Eg for Mu in an alkali halide. Com-
parison of our result for t~ ~ with the experimental data
shows that a large upward renormalization must occur
on transforming to the usual (truncated) small polaron
model Hamiltonian of quantum diffusion. We have also
estimated the strength of the Mu-phonon coupling. The
values of these two fund. amental parameters uncover puz-
zling aspects of quantum tunneling as observed by ele-
gant @SR experiments. We hope that this provides im-
petus toward a quantitative theory, possibly based on the
existing path-integral formulations.
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